首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Eight selected sulfonamide drugs were investigated as inhibitors of heat shock protein 90 (Hsp90). The investigation included simulated docking experiments to fit the selected compounds within the binding pocket of Hsp90. The selected molecules were found to readily fit within the ATP-binding pocket of Hsp90 in low-energy poses. The sulfonamides torsemide, sulfathiazole, and sulfadiazine were found to inhibit the ATPase activity of Hsp90 with IC(50) values of 1.0, 2.6, and 1.5 μM, respectively. Our results suggest that these well-established sulfonamides can be good leads for subsequent optimization into potent Hsp90 inhibitors.  相似文献   

2.
A novel series of heat shock protein 90 (Hsp90) inhibitors was identified by X-ray crystal analysis of complex structures at solvent-exposed exit pocket C. The 2-amino-pyrrolo[2,3-d]pyrimidine derivatives, 7-deazapurines substituted with a benzyl moiety at C5, showed potent Hsp90 inhibition and broad-spectrum antiproliferative activity against NCI-60 cancer cell lines. The most potent compound, 6a, inhibited Hsp90 with an IC50 of 36 nM and showed a submicromolar mean GI50 value against NCI-60 cell lines. The interaction of 6a at the ATP-binding pocket of Hsp90 was confirmed by X-ray crystallography and Western blot analysis.  相似文献   

3.
Heat shock protein (Hsp90α) has been recently implicated in cancer, prompting several attempts to discover and optimize new Hsp90α inhibitors. Towards this end, we docked 83 diverse Hsp90α inhibitors into the ATP-binding site of this chaperone using several docking-scoring settings. Subsequently, we applied our newly developed computational tool-docking-based comparative intramolecular contacts analysis (dbCICA)-to assess the different docking conditions and select the best settings. dbCICA is based on the number and quality of contacts between docked ligands and amino acid residues within the binding pocket. It assesses a particular docking configuration based on its ability to align a set of ligands within a corresponding binding pocket in such a way that potent ligands come into contact with binding site spots distinct from those approached by low-affinity ligands, and vice versa. The optimal dbCICA models were translated into valid pharmacophore models that were used as 3D search queries to mine the National Cancer Institute's structural database for new inhibitors of Hsp90α that could potentially be used as anticancer agents. The process culminated in 15 micromolar Hsp90α ATPase inhibitors.  相似文献   

4.
5.
Although Hsp90‐family chaperones have been extensively targeted with ATP‐competitive inhibitors, it is unknown whether high affinity is achieved from a few highly stabilizing contacts or from many weaker contacts within the ATP‐binding pocket. A large‐scale analysis of Hsp90α:inhibitor structures shows that inhibitor hydrogen‐bonding to a conserved aspartate (D93 in Hsp90α) stands out as most universal among Hsp90 inhibitors. Here we show that the D93 region makes a dominant energetic contribution to inhibitor binding for both cytosolic and organelle‐specific Hsp90 paralogs. For inhibitors in the resorcinol family, the D93:inhibitor hydrogen‐bond is pH‐dependent because the associated inhibitor hydroxyl group is titratable, rationalizing a linked‐protonation event previously observed by the Matulis group. The inhibitor hydroxyl group pKa associated with the D93 hydrogen‐bond is therefore critical for optimizing the affinity of resorcinol derivatives, and we demonstrate that spectrophotometric measurements can determine this pKa value. Quantifying the energetic contribution of the D93 hotspot is best achieved with the mitochondrial Hsp90 paralog, yielding 3–6 kcal/mol of stabilization (35–60% of the total binding energy) for a diverse set of inhibitors. The Hsp90 Asp93?Asn substitution has long been known to abolish nucleotide binding, yet puzzlingly, native sequences of structurally similar ATPases, such as Topoisomerasese II, have an asparagine at this same crucial site. While aspartate and asparagine sidechains can both act as hydrogen bond acceptors, we show that a steric clash prevents the Hsp90 Asp93?Asn sidechain from adopting the necessary rotamer, whereas this steric restriction is absent in Topoisomerasese II.  相似文献   

6.
Hsp90α and Hsp90β are implicated in a number of cancers and neurodegenerative disorders but the lack of selective pharmacological probes confounds efforts to identify their individual roles. Here, we analyzed the binding of an Hsp90α-selective PU compound, PU-11-trans, to the two cytosolic paralogs. We determined the co-crystal structures of Hsp90α and Hsp90β bound to PU-11-trans, as well as the structure of the apo Hsp90β NTD. The two inhibitor-bound structures reveal that Ser52, a nonconserved residue in the ATP binding pocket in Hsp90α, provides additional stability to PU-11-trans through a water-mediated hydrogen-bonding network. Mutation of Ser52 to alanine, as found in Hsp90β, alters the dissociation constant of Hsp90α for PU-11-trans to match that of Hsp90β. Our results provide a structural explanation for the binding preference of PU inhibitors for Hsp90α and demonstrate that the single nonconserved residue in the ATP-binding pocket may be exploited for α/β selectivity.  相似文献   

7.
Sensor kinases in the bacterial two-component system share a unique ATP-binding Bergerat fold with the GHL (gyrase, Hsp90, and MutL) family of proteins. We demonstrated that selected GHL inhibitors bind to the catalytic domain of sensor kinase PhoQ (PhoQcat) using NMR chemical shift perturbation experiments. Using crystallographic approaches, we show that radicicol (an Hsp90 inhibitor) binds and interacts specifically with residues in the ATP-binding pocket of PhoQ. The interaction between radicicol and PhoQcat demonstrates significant similarities as well as differences compared to AMPPNP (a non-hydrolyzable ATP analog) bound to PhoQcat and radicicol bound to Hsp90. Our results suggest that GHL inhibitors may be useful lead compounds for developing sensor kinase inhibitors.  相似文献   

8.
A series of novel and potent small molecule Hsp90 inhibitors was optimized using X-ray crystal structures. These compounds bind in a deep pocket of the Hsp90 enzyme that is partially comprised by residues Asn51 and Ser52. Displacement of several water molecules observed crystallographically in this pocket using rule-based strategies led to significant improvements in inhibitor potency. An optimized inhibitor (compound 17) exhibited potent Hsp90 inhibition in ITC, biochemical, and cell-based assays (Kd = 1.3 nM, Ki = 15 nM, and cellular IC50 = 0.5 μM).  相似文献   

9.
Heat shock protein 90 (Hsp90) is a molecular chaperone required for the conformational maturation and function of certain signaling proteins. Hsp90 inhibitors cause the inactivation, destabilization and eventual degradation of Hsp90 client proteins through occupying the ATP/ADP binding pocket of Hsp90. In the present study, we found that Hsp90 interacted with MEKK3 in HEK293 cells. Hsp90 inhibitors reduced the level of endogenous MEKK3 in time- and dose-dependent manners, and this decrease was reversed by Hsp90 overexpression. In addition, Hsp90 RNAi destabilized MEKK3. A selective inhibitor of Hsp90, geldanamycin (GA), shortened MEKK3 half-life, and induced ubiquitination and proteasomal degradation of MEKK3. These results strongly suggested that Hsp90 could work as the molecular chaperone of MEKK3.  相似文献   

10.
Heat shock protein 90 (Hsp90) is a molecular chaperone with essential functions in maintaining transformation, and there is increasing interest in developing Hsp90 inhibitors as cancer therapeutics. In this study, the authors describe the development and optimization of a novel assay for the identification of Hsp90 inhibitors using fluorescence polarization. The assay is based on the competition of fluorescently (BODIPY) labeled geldanamycin (GM) for binding to purified recombinant Hsp90alpha (GM is a natural product that binds to the ATP/ADP pocket in the amino terminal of Hsp90). The authors show that GM-BODIPY binds Hsp90alpha with high affinity. Even at low Hsp90alpha concentrations (30 nM), the measured polarization value is close to the maximum assay range of 160 mP, making measurements very sensitive. Its performance, as judged by signal-to-noise ratios (> 10) and Z and Z' values (> 0.5), suggests that this is a robust and reliable assay. GM, PU24FCl, ADP, and ATP, all known to bind to the Hsp90 pocket, compete with GM-BODIPY for binding to Hsp90alpha with EC(50)s in agreement with reported values. These data demonstrate that the Hsp90-FP-based assay can be used for high-throughput screening in aiding the identification of novel Hsp90 inhibitors.  相似文献   

11.
The Hsp90 molecular chaperone catalyses the final activation step of many of the most important regulatory proteins of eukaryotic cells. The antibiotics geldanamycin and radicicol act as highly selective inhibitors of in vivo Hsp90 function through their ability to bind within the ADP/ATP binding pocket of the chaperone. Drugs based on these compounds are now being developed as anticancer agents, their administration having the potential to inactivate simultaneously several of the targets critical for counteracting multistep carcinogenesis. This investigation used yeast to show that cells can be rendered hypersensitive to Hsp90 inhibitors by mutation to Hsp90 itself (within the Hsp82 isoform of yeast Hsp90, the point mutations T101I and A587T); with certain cochaperone defects and through the loss of specific plasma membrane ATP binding cassette transporters (Pdr5p, and to a lesser extent, Snq2p). The T101I hsp82 and A587T hsp82 mutations do not cause higher drug affinity for purified Hsp90 but may render the in vivo chaperone cycle more sensitive to drug inhibition. It is shown that these mutations render at least one Hsp90-dependent process (deactivation of heat-induced heat shock factor activity) more sensitive to drug inhibition in vivo.  相似文献   

12.
Structure-based virtual screening identified pyrimidine-2,4,6-trione and 4H-1,2,4-triazole-3-thiol as novel scaffolds of Hsp90 ATPase inhibitors. Their binding modes in the ATP-binding pocket of Hsp90 were analyzed using AutoDoc program combined with molecular dynamics (MD) simulations.  相似文献   

13.
Heat shock protein 90 (Hsp90) is a significant target in the development of rational cancer therapy due to its role at the crossroads of multiple signaling pathways associated with cell proliferation and cell viability. The relevance of Hsp90 as a therapeutic target for numerous diseases states has prompted the identification and optimization of novel Hsp90 inhibitors as an emerging therapeutic strategy. We performed a screening aimed to identify novel Hsp90 inhibitors among several natural compounds and we focused on the iminosugar (+)-lentiginosine, a natural amyloglucosidases inhibitor, for its peculiar bioactivity profile. Characterization of Hsp90 inhibition was performed using a panel of chemical and biological approaches, including limited proteolysis, biochemical and cellular assays. Our result suggested that the middle domain of Hsp90, as opposed to its ATP-binding pocket, is a promising binding site for new classes of Hsp90 inhibitors with multi-target anti-cancer potential.  相似文献   

14.
Efrapeptins (EF), a family of fungal peptides, inhibit proteasomal enzymatic activities and the in vitro and in vivo growth of HT-29 cells. They are also known inhibitors of F1F0-ATPase, a mitochondrial enzyme that functions as an Hsp90 co-chaperone. We have previously shown that treatment of cancer cells with EF results in disruption of the Hsp90:F1F0-ATPase complex and inhibition of Hsp90 chaperone activity. The present study examines the effect of EF on breast cancer growth in vitro and in vivo. As a monotherapy, EF inhibited cell proliferation in vitro with an IC50 value ranging from 6 nM to 3.4 μM. Inhibition of Hsp90 chaperone function appeared to be the dominant mechanism of action and the factor determining cellular sensitivity to EF. In vitro inhibition of proteasome became prominent in the absence of adequate levels of Hsp90 and F1F0-ATPase as in the case of the relatively EF-resistant MDA-MB-231 cell line. In vivo, EF inhibited MCF-7 and MDA-MB-231 xenograft growth with a maximal inhibition of 60% after administration of 0.15 and 0.3 mg/kg EF, respectively. 2-Deoxyglucose (2DG), a known inhibitor of glycolysis, acted synergistically with EF in vitro and antagonistically in vivo. In vitro, the synergistic effect was attributed to a prolonged endoplasmic reticulum (ER) stress. In vivo, the antagonistic effect was ascribed to the downregulation of tumoral and/or stromal F1F0-ATPase by 2DG.  相似文献   

15.
Heat-shock protein 90 (Hsp90) inhibitors exhibit activity against human cancers. We evaluated a series of new, oral bioavailable, chemically diverse Hsp90 inhibitors (PU-H71, AUY922, BIIB021, NVP-BEP800) against Kaposi sarcoma (KS). All Hsp90 inhibitors exhibited nanomolar EC50 in culture and AUY922 reduced tumor burden in a xenograft model of KS. KS is associated with KS-associated herpesvirus (KSHV). We identified the viral latency associated nuclear antigen (LANA) as a novel client protein of Hsp90 and demonstrate that the Hsp90 inhibitors diminish the level of LANA through proteasomal degradation. These Hsp90 inhibitors also downregulated EphA2 and ephrin-B2 protein levels. LANA is essential for viral maintenance and EphA2 has recently been shown to facilitate KSHV infection; which in turn feeds latent persistence. Further, both molecules are required for KS tumor formation and both were downregulated in response to Hsp90 inhibitors. This provides a rationale for clinical testing of Hsp90 inhibitors in KSHV-associated cancers and in the eradication of latent KSHV reservoirs.  相似文献   

16.
Hsp90 is an ATP dependent molecular chaperone protein which integrates multiple oncogenic pathways. As such, Hsp90 inhibition is a promising anti-cancer strategy. Several inhibitors that act on Hsp90 by binding to its N-terminal ATP pocket have entered clinical evaluation. Robust pre-clinical data suggested anti-tumor activity in multiple cancer types. Clinically, encouraging results have been demonstrated in melanoma, acute myeloid leukemia, castrate refractory prostate cancer, non-small cell lung carcinoma and multiple myeloma. In breast cancer, proof-of-concept was demonstrated by first generation Hsp90 inhibitors in combination with trastuzumab mainly in human epidermal growth factor receptor 2 (HER2)+metastatic breast cancer. There are a multitude of second generation Hsp90 inhibitors currently under investigation. To date, however, there is no FDA approved Hsp90 inhibitor nor standardized assay to ascertain Hsp90 inhibition. This review summarizes the current status of both first and second generation Hsp90 inhibitors based on their chemical classification and stage of clinical development. It also discusses the pharmacodynamic assays currently implemented in clinic as well as other novel strategies aimed at enhancing the effectiveness of Hsp90 inhibitors. Ultimately, these efforts will aid in maximizing the full potential of this class of agents. This article is part of a Special Issue entitled: Heat Shock Protein 90 (HSP90).  相似文献   

17.
Hsp90 is a chaperone required for the conformational maturation of certain signaling proteins including Raf, cdk4, and steroid receptors. Natural products and synthetic small molecules that bind to the ATP-binding pocket in the amino-terminal domain of Hsp90 inhibit its function and cause the degradation of these client proteins. Inhibition of Hsp90 function in cells causes down-regulation of an Akt kinase-dependent pathway required for D-cyclin expression and retinoblastoma protein-dependent G(1) arrest. Intracellular Akt is associated with Hsp90 and Cdc37 in a complex in which Akt kinase is active and regulated by phosphatidylinositol 3-kinase. Functional Hsp90 is required for the stability of Akt in the complex. Occupancy of the ATP-binding pocket by inhibitors is associated with the ubiquitination of Akt and its targeting to the proteasome, where it is degraded. This results in a shortening of the half-life of Akt from 36 to 12 h and an 80% reduction in its expression. Akt and its activating kinase, PDK1, are the only members of the protein kinase A/protein kinase B/protein kinase C-like kinase family that are affected by Hsp90 inhibitors. Thus, transduction of growth factor signaling via the Akt and Raf pathways requires functional Hsp90 and can be coordinately blocked by its inhibition.  相似文献   

18.
High-throughput screening of a library of diverse molecules has identified the 1,4-naphthoquinone scaffold as a new class of Hsp90 inhibitors. The synthesis and evaluation of a rationally-designed series of analogues containing the naphthoquinone core scaffold has provided key structure–activity relationships for these compounds. The most active inhibitors exhibited potent in vitro activity with low micromolar IC50 values in anti-proliferation and Her2 degradation assays. In addition, 3g, 12, and 13a induced the degradation of oncogenic Hsp90 client proteins, a hallmark of Hsp90 inhibition. The identification of these naphthoquinones as Hsp90 inhibitors provides a new scaffold upon which improved Hsp90 inhibitors can be developed.  相似文献   

19.
热休克蛋白90(Hsp90)通过对几百种蛋白质底物(客户蛋白质)进行合理的折叠、成熟其构象并且激活,在肿瘤细胞的生长和繁殖中发挥重要作用.因此,Hsp90成为非常有吸引力、有前途的抗肿瘤药物靶点,并且超过20种抑制剂已经进入临床实验阶段.我们在这里设计并合成了一个小分子抑制剂:FS36.收集了Hsp90N-FS36复合物晶体结构的X射线衍射实验数据.高分辨率X射线晶体结构表明,FS36在ATP结合位点上与Hsp90N相互作用,并且FS36可能替代核苷酸与Hsp90N结合.FS36和Hsp90N的复合物晶体结构和相互作用为后期设计和优化新型抗肿瘤药物奠定基础.  相似文献   

20.
The recent recognition of Plasmodium falciparum Hsp90 (PfHsp90) as a promising anti-malaria drug target has sparked interest in identifying factors that regulate its function and drug-interaction. Co-chaperones are well-known regulators of Hsp90's chaperone function, and certain members have been implicated in conferring protection against lethal cellular effects of Hsp90-specific inhibitors. In this context, studies on PfHsp90's co-chaperones are imperative to gain insight into the regulation of the chaperone in the malaria parasite. In this study, a putative co-chaperone P. falciparum Aha1 (PfAha1) was identified and investigated for its interaction and regulation of PfHsp90. A previous genome-wide yeast two-hybrid study failed to identify PfAha1's association with PfHsp90, which prompted us to use a directed assay to investigate their interaction. PfAha1 was shown to interact with PfHsp90 via the in vivo split-ubiquitin assay and the association was confirmed in vitro by GST pull-down experiments. The GST pull-down assay further revealed PfAha1's interaction with PfHsp90 to be dependent on MgCl2 and ATP, and was competed by co-chaperone Pfp23 that binds PfHsp90 under the same condition. In addition, the PfHsp90-PfAha1 complex was found to be sensitive to disruption by high salt, indicating a polar interaction between them. Using bio-computational modelling coupled with site-directed mutagenesis, the polar residue N108 in PfAha1 was found to be strategically located and essential for PfHsp90 interaction. The functional significance of PfAha1's interaction was clearly that of exerting a stimulatory effect on the ATPase activity of PfHsp90, likely to be essential for promoting the activation of PfHsp90's client proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号