首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Carbonic anhydrase inhibitors (CAIs) are a class of pharmaceuticals used as antiglaucoma agents, diuretics and antiepileptics. Thus, discovery of novel CAIs has become of great importance in the recent years. In the current study, in vitro and in vivo inhibition effects of benzodiazepine drugs, diazepam and midazolam, on human erythrocytes carbonic anhydrase I and II isozymes were investigated. After purification of the isoenzymes, in vitro inhibition assays were performed and K(i) values were determined to be of 141.5 μM and 40.7 μM for hCA I and of 5.11 μM and 0.58 μM against hCA II by the esterase activity assay, respectively. The drugs showed strong inhibitory effects on hCA II, in the same range as the clinically used sulphonamide acetazolamide. For in vivo studies, five adult male New Zealand White rabbits (3-4.2 kg) were selected for intravenous administrations of the drugs (2 mg/kg and 0.2 mg/kg body weight, respectively). The enzyme was significantly inhibited by 2 mg/kg diazepam (p < 0.05), and 0.2 mg/kg midazolam (p < 0.05) for up to 30 min following intravenous administration.  相似文献   

2.
In this study, we have synthesised (3,4-dihydroxyphenyl)(2,3,4-trihydroxyphenyl)methanone and a series of its derivatives (5, 13–16) and tested the ability of these compounds to inhibit two metalloenzyme human carbonic anhydrase (hCA, EC 4.2.1.1) isozymes, hCA I and hCA II. The synthesised compounds showed inhibitory effect on hCA I and hCA II isozymes. The results showed that synthesised compounds (5, 13–16) demonstrated the best inhibition activity against hCA I (IC50: 3.22–54.28 μM) and hCA II (IC50: 18.52–142.01 μM). The compound 14 showed the highest inhibiton effect against hCA I (IC50: 3.22 μM; Ki: 1.19?±?1.4 μM). On the other hand, the compound 13 showed the highest inhibiton effect against hCA II (IC50: 18.52 μM; Ki: 3.25?±?1.13 μM).  相似文献   

3.
Sulfonamide-bearing thiazole compounds were synthesized and their inhibitory effects on the activity of purified human carbonic anhydrase I and II were evaluated. Human carbonic anhydrase isoenzymes (hCA-I and hCA-II) were purified from erythrocyte cells by affinity chromatography. The inhibitory effects of the 12 synthesized sulfonamide (5al) on the hydratase and esterase activities of these isoenzymes (hCA-I and hCA-II) were studied in vitro. In relation to these activities, the inhibition equilibrium constants (Ki) were determined. The results showed that all the synthesized compounds inhibited the CA isoenzyme activity. Among them 5b was found to be the most active (IC50?=?0.35?μM; Ki: 0.33?μM) for hCA I and hCA II.  相似文献   

4.
The in vitro effects of the anabolic compounds, zeranol, 17 β-estradiol, diethylstilbestrol (DES), and trenbolone, on the activity of purified human carbonic anhydrase I and II were evaluated. In vitro CA enzyme activity was determined colorimetrically using the CO2 hydration method of Maren. IC50 values of the compounds that caused inhibition were determined by means of activity percentage diagrams. The IC50 concentrations of zeranol, 17 β-estradiol, DES and trenbolone on hCA I were 94, 55, 10, 898 µM and for hCA II 89, 159, 439 and 101 μM, respectively.  相似文献   

5.
Carbonic anhydrase inhibitors (CAIs) are a class of pharmaceuticals used as anti-glaucoma agents, diuretics and anti-epileptics. We report here the inhibitory capacities of benzenesulphonamides, cyclitols and phenolic compounds 1–11 against three human CA isozymes (hCA I, hCA II and hCA VI) and bovine skeletal muscle carbonic anhydrase III (bCA III). The four isozymes showed quite diverse inhibition profiles with Ki values ranging from low micromolar to millimolar concentrations against all isoenzymes. Compound 5 and 6 had more powerful inhibitory action against hCA I and very similar action against hCA II and hCA VI as compared with acetazolamide (AZA) and sulphapyridine (SPD), specific CAIs. Probably the inhibition mechanism of the tested compounds is distinct of the sulphonamides with RSO2NH2 groups and similar to that of the coumarins/lacosamide, i.e. binding to a distinct part of the active site than that where sulphonamides bind. These data may lead to drug design campaigns of effective CAIs possessing a diverse inhibition mechanism compared to other sulphonamide/sulphamate inhibitors.  相似文献   

6.
4-(3-(4-Substituted-phenyl)-5-phenyl-4,5-dihydro-1H-pyrazol-1-yl) benzenesulfonamides (9–16) were successfully synthesized and their chemical structures were confirmed by 1H NMR, 13C NMR, and HRMS spectra. Carbonic anhydrase I and II inhibitory effects of the compounds were investigated. Ki values of the compounds were in the range of 316.7?±?9.6–533.1?±?187.8?nM towards hCA I and 412.5?±?115.4–624.6?±?168.2?nM towards hCA II isoenzymes. While Ki values of the reference compound Acetazolamide were 278.8?±?44.3?nM and 293.4?±?46.4?nM towards hCA I and hCA II izoenzymes, respectively. Compound 14 with bromine and compound 13 with fluorine substituents can be considered as the leader compounds of the series because of the lowest Ki values in series to make further detailed carbonic anhydrase inhibiton studies.  相似文献   

7.
Studies on carbonic anhydrase (CA, EC 4.2.1.1) inhibitors have increased due to several therapeutic applications while there are few investigations on activators. Here we investigated CA inhibitory and activatory capacities of a series of dopaminergic compounds on human carbonic anhydrase (hCA) isozymes I, II, and VI. 2-Amino-1,2,3,4-tetrahydronaphthalene-6,7-diol hydrobromide and 2-amino-1,2,3,4-tetrahydronaphthalene-5,6-diol hydrobromide were found to show effective inhibitory action on hCA I and II whereas 2-amino-5,6-dibromoindan hydrobromide and 2-amino-5-bromoindan hydrobromide exhibited only moderate inhibition against both isoforms, being more effective inhibitors of hCA VI. Ki values of the molecules 36 were in the range of 41.12–363 μM against hCA I, of 0.381–470 μM against hCA II and of 0.578–1.152 μM against hCA VI, respectively. Compound 7 behaved as a CA activator with KA values of 27.3 μM against hCA I, of 18.4 μM against hCA II and of 8.73 μM against hCA VI, respectively.  相似文献   

8.
A series of phenolic and saponin type natural products such as quercetin, rutin, catechin, epicatechin, silymarin, trojanoside H, astragaloside IV, astragaloside VIII and astrasieversianin X, were investigated for their inhibitory effects against the metalloenzyme carbonic anhydrase (CA, EC 4.2.1.1). We here report inhibitory effects of these compounds against five α-CA isozymes (hCA I, hCA II, bCA III, hCA IV and hCA VI). Most of the phenolic and saponin type compounds inhibited the isoenzymes quite effectively at low micromolar KI-s ranging between 0.1 and 4 µM, whereas a few derivatives were ineffective (KI-s > 100 µM). The results were remarkable which might lead to design of novel CAIs with a diverse inhibition mechanism compared to sulfonamide/sulfamate inhibitors.  相似文献   

9.
Abstract

In an in vitro screening for human carbonic anhydrase (hCA) inhibiting agents from higher plants, the petroleum ether and ethyl acetate extracts of Magydaris pastinacea seeds selectively inhibited hCA IX and hCA XII isoforms. The phytochemical investigation of the extracts led to the isolation of ten linear furocoumarins (110), four simple coumarins (1215) and a new angular dihydrofurocoumarin (11). The structures of the isolated compounds were elucidated based on 1?D and 2?D NMR, MS, and ECD data analysis. All isolated compounds were inactive towards the ubiquitous cytosolic isoform hCA I and II (K i?>?10,000?nM) while they were significantly active against the tumour-associated isoforms hCA IX and XII. Umbelliprenin was the most potent coumarin inhibiting hCA XII isoform with a K i of 5.7?nM. The cytotoxicity of the most interesting compounds on HeLa cancer cells was also investigated.  相似文献   

10.
We report the synthesis and characterisation of a novel series of triazole benzenesulfonamide derivatives, which incorporate the general pharmacophore associated with carbonic anhydrase (CA, EC 4.2.1.1) inhibitors. The synthesised compounds were tested in vitro against four human carbonic anhydrase (hCA, EC 4.2.1.1) isozymes, hCA I, hCA II, hCA IV and hCA IX. The obtained results showed that the tumour-associated hCA IX was the most sensitive to inhibition with the synthesised derivatives, with the triazolo-pyridine benzenesulfonamides 14, 16 and 17 being the most effective inhibitors. Some selected compounds were chosen for a single dose anti-proliferative activity testing against a panel of 57 human tumour cell lines and show some anti-proliferative activity ex vivo.  相似文献   

11.
Here we determined the in vitro inhibitory effects of 5-(2-hydroxyethyl)-3,4-dimethylthiazolium iodide (1), 3-Benzyl-5-(2-hydroxyethyl)-4-methylthiazolium chloride (2) and thiamine (3) on human erythrocyte carbonic anhydrase I, II isozymes (hCA I and hCA II) and secreted isoenzyme CA VI. KI values ranged from 0.38 to 2.27 µM for hCA I, 0.085 to 0.784 µM for hCA II and 0.062 to 0.593 µM for hCA VI, respectively. The compounds displayed relatively strong actions on hCA II, in the same range as the clinically used sulfonamidesethoxzolamide, zonisamide and acetazolamide.  相似文献   

12.
N-Protected amino acids (Gly, Ala and Phe) were reacted with amino substituted coumarin and quinolinone derivatives, leading to the corresponding N-protected amino acid–coumarin/quinolinone conjugates. The carbonic anhydrase (CA, EC 4.2.1.1) inhibitory activity of the new compounds was assessed against various human (h) isoforms, such as hCA I, hCA II, hCA IV and hCA XII. The quinolinone conjugates were inactive as enzyme inhibitors, whereas the coumarins were ineffective hCA I/II inhibitors (KIs?>?50?μM) but were submicromolar hCA IV and XII inhibitors, with inhibition constants ranging between 92?nM and 1.19?μM for hCA IV, and between 0.11 and 0.79?μM for hCA XII. These coumarin derivatives, as many others reported earlier, thus show an interesting selective inhibitory profile for the membrane-bound over the cytosolic CA isoforms.  相似文献   

13.
Carbonic anhydrase inhibitors (CAIs) are a class of pharmaceuticals used as antiglaucoma agents, diuretics, antiepileptics, in the management of mountain sickness, gastric and duodenal ulcers, neurological disorders or osteoporosis. We report here the inhibitory capacities of some phenolic compounds against three human CA isozymes (hCA I, hCA II, and hCA VI) and the gill carbonic anhydrase of the teleost fish Dicentrarchus labrax (European seabass) (dCA). The isozymes showed quite diverse inhibition profiles with these compounds. These data may lead to design novel CAIs with a diverse inhibition mechanism compared to sulfonamide/sulfamate inhibitors.  相似文献   

14.
The in vitro effects of the injectable form of analgesic drugs, dexketoprofen trometamol, dexamethasone sodium phosphate, metamizole sodium, diclofenac sodium, thiocolchicoside, on the activity of purified human carbonic anhydrase I and II were evaluated. The effect of these drugs on erythrocyte hCA I and hCA II was compared to recombinant hCA I and hCA II expressed in Ecoli. IC(50) values of the drugs that caused inhibition were determined by means of activity percentage diagrams. The IC(50) concentrations of dexketoprofen trometamol and dexamethasone sodium phosphate on hCA I were 683 μM and 4250 μM and for hCA II 950 μM and 6200 μM respectively. Conversely, the enzyme activity was increased by diflofenac sodium. In addition, thiocolchicoside has not any affect on hCA I and hCA II. The effect of these drugs on erythrocyte hCA I and hCA II were consistent with the inhibition of recombinant enzymes.  相似文献   

15.
A large number of novel secondary sulfonamides based on the open saccharin scaffold were synthesized and evaluated as selective inhibitors of four different isoforms of human carbonic anhydrase (hCA I, II, IX and XII, EC 4.2.1.1). They were obtained by reductive ring opening of the newly synthesized N-alkylated saccharin derivatives and were shown to be inactive against the two cytosolic off-target hCA I and II (Kis?>?10?µM). Interestingly, these compounds inhibited hCA IX in the low nanomolar range with Kis ranging between 20 and 298?nM and were extremely potent inhibitors of hCA XII isoenzyme (Kis ranging between 4.3 and 432?nM). Since hCA IX and XII are the cancer-related isoforms recently validated as drug targets, these results represent an important goal in the development of new anticancer candidates. Finally, a computational approach has been performed to better correlate the biological data to the binding mode of these inhibitors.  相似文献   

16.
Abstract

Carbonic anhydrases (CAs) are widespread metalloenzymes in higher vertebrates including humans. A series of phenolic compounds, including guaiacol, 4-methylguaiacol, 4-propylguaiacol, eugenol, isoeugenol, vanillin, syringaldehyde, catechol, 3-methyl catechol, 4-methyl catechol and 3-methoxy catechol were investigated for their inhibition of all the catalytically active mammalian isozymes of the Zn2+-containing CA (EC 4.2.1.1). All the phenolic compounds effectively inhibited human carbonic anhydrase isoenzymes (hCA I, II, IX and XII), with Kis in the range of 2.20–515.98?μM. The various isozymes showed diverse inhibition profiles. Among the tested phenolic derivatives, compounds 4-methyl catechol and 3-methoxy catechol showed potent activity as inhibitors of the tumour-associated transmembrane isoforms (hCA IX and XII) in the submicromolar range, with high selectivity. The results obtained from this research may lead to the design of more effective carbonic anhydrase isoenzyme inhibitors (CAIs) based on such phenolic compound scaffolds.  相似文献   

17.
Carbonic anhydrase (CA) inhibitors have been used for more than 60 years for therapeutic purposes in many diseases table such as in medications against antiglaucoma and as diuretics. Phenolic compounds are a new class of CA inhibitor. In our study, we tested the effects of arachidonoyl dopamine, 2,4,6-trihydroxybenzaldehyde and 3,4-dihydroxy-5-methoxybenzoic acid on esterase and the CO2-hydratase activities of CA I and II isozymes purified from in vivo to ex vivo. The Ki values of arachidonoyl dopamine, 2,4,6-trihydroxybenzaldehyde and 3,4-dihydroxy-5-methoxybenzoic acid were 203.80, 1170.00 and 910.00?μM, respectively for hCA I and 75.25, 354.00 and 1510.00?μM, respectively for hCA II. Additionally, IC50 values from in vivo studies were found to be in the range of 173.25–1360.0?μM for CA I and II, respectively, using CO2-hydratase activity methods. These results demonstrated that phenolic compounds used in in vivo studies could be used in different biomedical applications to inhibit approximately 30% of the CO2-hydratase activity of the total CA enzyme of rat erythrocytes.  相似文献   

18.
The synthesis of (Z)-4-oxo-4-(arylamino)but-2-enoic acid (4) derivatives containing structural characteristics that can be used for the synthesis of several active molecules, is presented. Some of the butenoic acid derivatives (4a, 4c, 4e, 4i, 4j, 4k) are synthesized following literature procedures and at the end of the reaction. In addition, structures of all synthesized derivatives (4a4m) were determined by 1H-NMR, 13C-NMR and IR spectroscopy. Carbonic anhydrase is a metalloenzyme involved in many crucial physiologic processes as it catalyzes a simple but fundamental reaction, the reversible hydration of carbon dioxide to bicarbonate and protons. Significant results were obtained by evaluating the enzyme inhibitory activities of these derivatives against human carbonic anhydrase hCA I and II isoenzymes (hCA I and II). Butenoic acid derivatives (4a4m) strongly inhibited hCA I and II with Kis in the low nanomolar range of 1.85?±?0.58 to 5.04?±?1.46?nM against hCA I and in the range of 2.01?±?0.52 to 2.94?±?1.31?nM against hCA II.  相似文献   

19.
Four human (h) carbonic anhydrase isoforms (CA, EC 4.2.1.1), hCA I, II, IV, and VII, were investigated for their activation profile with piperazines belonging to various classes, such as N-aryl-, N-alkyl-, N-acyl-piperazines as well as 2,4-disubstituted derivatives. As the activation mechanism involves participation of the activator in the proton shuttling between the zinc-coordinated water molecule and the external milieu, these derivatives possessing diverse basicity and different scaffolds were appropriate for being investigated as CA activators (CAAs). Most of these derivatives showed CA activating properties against hCA I, II, and VII (cytosolic isoforms) but were devoid of activity against the membrane-associated hCA IV. For hCA I, the KAs were in the range of 32.6–131?µM; for hCA II of 16.2–116?µM, and for hCA VII of 17.1–131?µM. The structure-activity relationship was intricate and not easy to rationalize, but the most effective activators were 1-(2-piperidinyl)-piperazine (KA of 16.2?µM for hCA II), 2-benzyl-piperazine (KA of 17.1?µM for hCA VII), and 1-(3-benzylpiperazin-1-yl)propan-1-one (KA of 32.6?µM for hCA I). As CAAs may have interesting pharmacologic applications in cognition and for artificial tissue engineering, investigation of new classes of activators may be crucial for this relatively new research field.  相似文献   

20.
This study explores the correlation between human carbonic anhydrase (CA, EC 4.2.1.1) isoforms I and II (hCA I, II) and the inhibitory features of some spirobisnaphthalene derivatives. A group of spirobisnaphthalenes was synthesized and their hCA I and II inhibitory effects was investigated. The Ki values were similar for both CA isoenzymes, the compounds showing good inhibitory activity. Ki values ranged between 1.60 and 460.42?µM for hCA I and between 0.39 and 419.42?µM for hCA II, respectively. The spirobisnaphthalenes derivatives might be useful for designing CA inhibitors belonging to novel chemotypes compared to the highly investigated sulfonamides, sulfamates or coumarins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号