首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Biotransformation of glycyrrhizin by Aspergillus niger was investigated and one new compound (1) and one known compound (2) were isolated and identified from the biotransformation products. These were 7β,15α-dihydroxy-3,11-dioxo-oleana-12-en-30-oic acid (1) and 15α-hydroxy-3,11-dione-oleana-12-en-30-oic acid (2). A biotransformation pathway was proposed from HPLC analyses at different reaction times. The biotransformation by A. niger included two stages: first, the two glucuronic acid residues at the C-3 position of glycyrrhizin were hydrolyzed to produce glycyrrhetic acid; and second, glycyrrhetic acid was oxidized and hydroxylated to compounds 1 and 2.  相似文献   

2.
以齐墩果酸为原料,分别用高锰酸钾和SeO2/H2O2(30%)进行氧化。从产物中分离得到3个化合物,经1H NMR、13C NMR、2D-NMR、MS等波谱分析,分别鉴定为3,11-二羰基-12,17-二烯-28-去甲基齐墩果烷(1)、3β-羟基-11-烯-13,28-内酯-齐墩果烷(2)和3α,12β,13α-三羟基-28-羧基齐墩果烷(3),收率依次是4.5%、6.4%、2%,其中化合物1和3为新化合物。  相似文献   

3.
Four new bitter terpenoids, lucidenic acids A (1), B (2), C (3) and ganoderic acid C (5), were isolated from the fruiting bodies of Ganoderma lucidum, together with the known bitter ganoderic acid B (4). On the basis of spectroscopic data and chemical conversion, their structures were determined to be 7β-hydroxy-4,4,14α-trimethyl-3,11,15-trioxo-5α-chol-8-en-24-oic acid, 7β,12β-dihydroxy-4,4,14α-trimethyl-3,11,15-trioxo-5α-chol-8-en-24-oic acid, 3β,7β,12β-trihydroxy-4,4,14α-trimethyl-11,15-dioxo-5α-chol-8-en-24-oic acid and 7β-hydroxy-3,11,15,23-tetraoxo-5α-lanost- 8-en-26-oic acid, respectively.  相似文献   

4.
飞龙掌血中三萜酸成分研究   总被引:5,自引:0,他引:5  
从芸香科植物飞龙掌血中提取分离出4个新三萜酸,经波谱数据分析,分别鉴定为2α,3α,19α-trihydroxy11-oxo-urs-12-en-28-oic acid(1),2α,3α,11α,19α-tetrahydroxy-urs-12-en-28-oic acid(2),2α,3α-dillydroxy-19-oxo-18,19-seco-urs-11,13(18)-diene-28-oic acid(3)和2α,3α,19α-trihydroxy-olean-11,13(18)-dien-28-oic acid(4)。还分离鉴定出已知成分野鸭春酸(5)、arjunic acid(6)、飞龙掌血素、勒钩内脂和β-谷甾醇。  相似文献   

5.
The following terpenoids were identified in the oleoresin, bark and timber of Canarium zeylanicum: 3β-hydroxyurs-12-en-11-one, 3β-hydroxyolean-12-en-11-one, olean-12-en-3,11-dione, urs-12-en-3,11-dione, α- and β-amyrin, α- and β-amyrenone, taraxerol, sitosterol, canaric acid, elemene, elemol, α-pinene, α- and β-phellandrene, limonene, terpineol and carvone.  相似文献   

6.
对岭南药材广东紫珠(Callicarpa kwangtungensis)地上部分进行化学成分研究,得到11个萜类化合物,分别鉴定为sambucunlin A(1)、2α-羟基羽扇豆醇(2)、swinhoeic acid(3)、3β-羟基-乌苏烷-11-烯-13β,28-内酯(4)、蔷薇酸(5)、2α,3β,6β,18β,23-pentahydroxy-olean-12-en-28-oic acid(6)、rel-5-(3S,8S-dihydroxy-1R,5S-dimethyl-7-oxa-6-oxobicyclo-oct-8-yl)-3-methyl-2Z,4E-pentadienoic acid(7)、salvionoside B(8)、齐墩果酸(9)、白桦脂酸(10)和α-香树脂醇(11)。其中,化合物1~4和6~8为首次从该属植物中分离得到。在化学成分分离基础上,进一步选择脂多糖(LPS)诱导的RAW 264.7小鼠巨噬细胞炎症模型进行萜类化合物抗炎活性测试。结果表明:化合物3和9具有显著的抗炎活性,对比结构发现,三萜类化合物(3~6、9和11)抗炎活性优于倍半萜类化合物(7和...  相似文献   

7.
The microbiological transformation of 7α,19-dihydroxy-ent-atis-16-ene by the fungus Gibberella fujikuroi gave 19-hydroxy-7-oxo-ent-atis-16-ene, 13(R),19-dihydroxy-7-oxo-ent-atis-16-ene, 7α,11β,19-trihydroxy-ent-atis-16-ene and 7α,16β,19-trihydroxy-ent-atis-16-ene, while the incubation of 19-hydroxy-7-oxo-ent-atis-16-ene afforded 13(R),19-dihydroxy-7-oxo-ent-atis-16-ene and 16β,17-dihydroxy-7-oxo-ent-atisan-19-al. The biotransformation of 7-oxo-ent-atis-16-en-19-oic acid gave 6β-hydroxy-7-oxo-ent-atis-16-en-19-oic acid, 6β,16β,17-trihydroxy-7-oxo-19-nor-ent-atis-4(18)-ene and 3β,7α-dihydroxy-6-oxo-ent-atis-16-en-19-oic acid.  相似文献   

8.
从尼泊尔水东哥树皮的95%乙醇提取物中首次分离到12个化合物,应用波谱方法或与已知品对照的手段鉴定为auranamide(1)、aurantiamide benzoate(2)、齐墩果酸(3)、β-谷甾醇(4)、β-胡萝卜甙(5)、乌苏酸(6)、2α,3α-二羟基-12-烯-28-乌苏酸(7)、2α,3β,24-三羟基-12-烯-28-乌苏酸(8)、(2S,3S,4R,10E)-2-[(2′R)-2′-hydroxytetracosanoylamino]-10-octadecene-1,3,4-triol(9)、2α,3α,24-三羟基-12-烯-28-齐墩果酸(10)、2α,3β-二羟基-12-烯-28-乌苏酸(11)和2α,3α,24-三羟基-12-烯-28-乌苏酸(12)。  相似文献   

9.
Three new diterpenoids have been detected in Salvia oxyodon and identified as 3β-hydroxy-dehydroabietic acid, 3β-acetoxy-abieta-8(14)-en-18-oic acid 9α,13α-endoperoxide and 3β-hydroxy-abieta-8(14)-en-18-oic acid 9α,13α-endoperoxide. Salvia lavandulifolia yielded two known compounds ursolic acid and galdosol.  相似文献   

10.
Two new triterpenoids, octanordammar- 1,11,13(17)-trien- 17-ol-3,16-dione (1) and lup- 12-en- 15α,19β-diol-3,11-dioxo-28-oic acid (4), as well as 13 known compounds were isolated from the roots of Sanguisorba officinalis L. (Rosaceae). Their structures were determined using spectroscopic methods.  相似文献   

11.
The plant diastereoisomeric diterpenes ent-pimara-8(14)-15-dien-19-oic acid, obtained from Viguiera arenaria, and isopimara-8(14)-15-dien-18-oic acid, isolated from Cupressus lusitanica, were distinctly functionalized by the enzymes produced in whole cell cultures of the fungus Preussia minima, isolated from surface sterilized stems of C. lusitanica. The ent-pimaradienoic acid was transformed into the known 7β-hydroxy-ent-pimara-8(14)-15-dien-19-oic acid, and into the novel diterpenes 7-oxo-8 β-hydroxy-ent-pimara-8(14)-15-dien-19-oic and 7-oxo-9β-hydroxy-ent-pimara-8(14)-15-dien-19-oic acids. Isopimara-8(14)-15-dien-18-oic acid was converted into novel diterpenes 11α-hydroxyisopimara-8(14)-15-dien-18-oic acid, 7β,11α-dihydroxyisopimara-8(14)-15-dien-18-oic acid, and 1β,11α-dihydroxyisopimara-8(14)-15-dien-18-oic acid, along with the known 7β-hydroxyisopimara-8(14)-15-dien-18-oic acid. All compounds were isolated and fully characterized by 1D and 2D NMR, especially 13C NMR. The diterpene bioproduct 7-oxo-9β-hydroxy-ent-pimara-8(14)-15-dien-19-oic acid is an isomer of sphaeropsidin C, a phytotoxin that affects cypress trees produced by Shaeropsis sapinea, one of the main phytopathogen of Cupressus. The differential metabolism of the diterpene isomers used as substrates for biotransformation was interpreted with the help of computational molecular docking calculations, considering as target enzymes those of cytochrome P450 group.  相似文献   

12.
Biotransformation of ursolic acid by the filamentous fungus Syncephalastrum racemosum (Cohn) Schroter AS 3.264 yielded five metabolites. Their structures were identified as 3β,21β-dihydroxy-urs-11-en-28-oic acid-13-lactone, 3β,7β,21β-trihydroxy-urs-11-en-28-oic acid-13-lactone, 1β,3β-dihydroxy-urs-12-en-21-one-28-oic acid, 1β,3β,21β-trihydroxy-urs-12-en-28-oic acid and 11,26-epoxy-3β,21β-dihydroxy-urs-12-en-28-oic acid based on NMR and MS spectroscopic analyses. The condensation reactions to form 28-oic acid-13-lactone ring and 11,26-epoxy ring are not frequently seen for the biotransformation of triterpenoids. One compound showed moderate inhibitory activity against protein tyrosine phosphatase 1B (PTP1B).  相似文献   

13.
Biotransformations of steroid compounds: androstenedione, testosterone, progesterone, pregnenolone and DHEA using Chaetomium sp. 1 KCH 6651 strain as a biocatalyst were investigated. The microorganism proved capable of selective hydroxylation of the steroid substrates. Androstenedione was converted to 14α-hydroxyandrost-4-en-3,17-dione (in over 75% yield) and 6β-hydroxyandrost-4-en-3,17-dione (in low yield), while testosterone underwent regioselective hydroxylation at 6β position. Progesterone was transformed to a single product—6β,14α-dihydroxypregnan-4-en-3,20-dione in high yield, whereas biotransformation of DHEA resulted in the formation of 7α-hydroxy derivative, which was subsequently converted to 7α-hydroxyandrost-4-en-3,17-dione.  相似文献   

14.
Two new diterpenes, (13E)-labd-13-ene-3β,8α,15-triol and (13E)-3β,8α-dihydroxylabd-13-en-15-oic acid have been isolated from an unclassified Acacia sp. Chemical and spectroscopic evidence for their structure is presented. The known labdanes, sclareol, 13-epi-sclareol and (13E)-labd-13-ene-8α,15-diol were also isolated.  相似文献   

15.
Microbial transformation of ursolic acid (1) by Bacillus megaterium CGMCC 1.1741 was investigated and yielded five metabolites identified as 3-oxo-urs-12-en-28-oic acid (2); 1β,11α-dihydroxy-3-oxo-urs-12-en-28-oic acid (3); 1β-hydroxy-3-oxo-urs-12-en-28, 13-lactoe (4); 1β,3β, 11α-trihydroxyurs-12-en-28-oic acid (5) and 1β,11α-dihydroxy-3-oxo-urs-12-en-28-O-β-d-glucopyranoside (6). Metabolites 3, 4, 5 and 6 were new natural products. Their nitric oxide (NO) production inhibitory activity was assessed in lipopolysaccharide (LPS) – stimulated RAW 264.7 cells. Compounds 3 and 4 exhibited significant activities with the IC50 values of 1.243 and 1.711 μM, respectively. A primary structure-activity relationship was also discussed.  相似文献   

16.
Six known terpenoids: vergatic acid, ursolic acid, crataegolic acid, lupane-3β-,11α, 20-triol, sclareol and sitosteryl 3β-glucoside were isolated from the leaves of Salvia palaestina and were identified by spectral data. Among the compounds, sclareol showed high activity against Staphylococcus aureus, S. epidermis, Escherichia coli, Proteus vulgaris and Pseudomonas aeruginosa, while the triterpenoids were not tested due to solubility problems.  相似文献   

17.
锐尖山香圆叶中三萜类成分的研究   总被引:1,自引:0,他引:1  
从锐尖山香圆(Turpinia arguta (Lindl.) Seem.)叶中分离得到了11个三萜类化合物。通过光谱分析,分别鉴定其结构为熊果酸(1), 3β,6β,23-trihydroxy-12-oleanen-28-oic acid (2), 3β,6β,23-trihydroxyurs-12-en-28-oic acid (3), 3β,6β,19α,23-tetrahydroxyurs-12-en-28-oic acid (4), 1 α, 3β,23-trihydroxy-12-oleanen-28-oic acid (5), arjunglucoside II (6), rosamultin (7), 3β-O-β-D-glucopyranoylcincholic acid (8), cinchonaglycoside C (9), mussaendoside S (10) 和3β-O-β-D-glucopyranosyl quinovic acid 28-O-β-D-glucopyranosyl ester (11)。除化合物16,其它化合物均为首次从山香圆叶中分离得到。  相似文献   

18.
Microbial metabolism of steviol and steviol-16alpha,17-epoxide   总被引:1,自引:0,他引:1  
Yang LM  Hsu FL  Chang SF  Cheng JT  Hsu JY  Hsu CY  Liu PC  Lin SJ 《Phytochemistry》2007,68(4):562-570
Steviol (2) possesses a blood glucose-lowering property. In order to produce potentially more- or less-active, toxic, or inactive metabolites compared to steviol (2), its microbial metabolism was investigated. Incubation of 2 with the microorganisms Bacillus megaterium ATCC 14581, Mucor recurvatus MR 36, and Aspergillus niger BCRC 32720 yielded one new metabolite, ent-7alpha,11beta,13-trihydroxykaur-16-en-19-oic acid (7), together with four known related biotransformation products, ent-7alpha,13-dihydroxykaur-16-en-19-oic acid (3), ent-13-hydroxykaur-16-en-19-alpha-d-glucopyranosyl ester (4), ent-13,16beta,17-trihydroxykauran-19-oic acid (5), and ent-13-hydroxy-7-ketokaur-16-en-19-oic acid (6). The preliminary testing of antihyperglycemic effects showed that 5 was more potent than the parent compound (2). Thus, the microbial metabolism of steviol-16alpha,17-epoxide (8) with M. recurvatus MR 36 was continued to produce higher amounts of 5 for future study of its action mechanism. Preparative-scale fermentation of 8 yielded 5, ent-11alpha,13,16alpha,17-tetrahydroxykauran-19-oic acid (10), ent-1beta,17-dihydroxy-16-ketobeyeran-19-oic acid (11), and ent-7alpha,17-dihydroxy-16-ketobeyeran-19-oic acid (13), together with three new metabolites: ent-13,16beta-dihydroxykauran-17-acetoxy-19-oic acid (9), ent-11beta,13-dihydroxy-16beta,17-epoxykauran-19-oic acid (12), and ent-11beta,13,16beta,17-tetrahydroxykauran-19-oic acid (14). The structures of the compounds were fully elucidated using 1D and 2D NMR spectroscopic techniques, as well as HRFABMS. In addition, a GRE (glucocorticoid responsive element)-mediated luciferase reporter assay was used to initially screen the compounds 3-5, and 7 as glucocorticoid agonists. Compounds 4, 5 and 7 showed significant effects.  相似文献   

19.
Sitosterol and three new pentacyclic triterpenoids, plectranthoic acid, acetylplectranthoic acid and plectranthadiol, have been isolated from leaves of P. rugosus. From spectroscopic evidence and chemical behaviour the structure of plectranthoic acid was established as (19S)-3α-hydroxy-18α-urs-12-en-29β-oic acid and acetylplectranthoic acid is the 3α-acetyl derivative of this compound. Plectranthadiol is (19S)- 3α-hydroxy-18α-urs-12-en-29β-ol.  相似文献   

20.
The conversion of ent-kaur-16-enes to gibberellic acid in Gibberella fujikuroi is blocked by A-ring modifications. Thus ent-3β-hydroxykaur-16-en-19-yl succinate gives good conversion (46%) to the 7β-hydroxy derivative.* Under the same conditions the 3β-epimer gives 7β- or 6α-hydroxylation and the former occurs for the 3-oxo analogue. The succinoyloxy function acts as a less efficient block and ent-kaur-16-en-19-yl succinate is converted to 7β-hydroxy and 6β,7β-dihydroxy derivatives along with gibberellic acid. Hydrolysis of the succinate block of the metabolities provides the 7β, 19-diol and 6β,7β, 19-triol. Of this pair only the former was effectively metabolized to gibberellic acid in G. fujikuroi.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号