首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3D-QSAR studies were conducted on a series of paullones as CDK inhibitors using three-dimensional quantitative structure-activity relationship (3D-QSAR) methods. Two methods were compared: the widely used comparative molecular field analysis (CoMFA) and the recently reported comparative molecular similarity indices analysis (CoMSIA). Systematic variations of some parameters in CoMSIA and CoMFA were performed to search for the best 3D-QSAR model. The computed results showed that the 3D-QSAR models from CoMSIA were clearly superior to those from CoMFA. Using the best model from CoMSIA analysis, a significant cross-validated q2 was obtained and the predicted biological activities of the five compounds in the test set were in good agreement with the experimental values. The correlation results obtained from CoMSIA were graphically interpreted in terms of field contribution maps allowing physicochemical properties relevant for binding to be easily mapped back onto molecular structures. The features in the CoMSIA contour maps intuitively suggested where to modify a molecular structure in terms of physicochemical properties and functional groups in order to improve its binding affinity, which is very important for improving our understanding of the ligand-receptor interactions and in helping to design compounds with improved activity.  相似文献   

3.
A series of benzofuran-based farnesyltransferase inhibitors have been designed and synthesized as antitumor agents. Among them, 11f showed the most potent enzyme inhibitory activity (IC50 = 1.1 nM) and antitumor activity in human cancer xenografts in mice.  相似文献   

4.
A series of flavonoid analogues were synthesized and screened for the in vitro antioxidant activity through their ability to quench 1,1-diphenyl-2-picryl hydrazyl (DPPH) radical. The activity of these compounds, measured in comparison to the well-known standard antioxidants (2932), their precursors (3842) and other bioactive moieties (3842) resembling partially the flavone skeleton was analyzed further to develop Quantitative Structure–Activity Relationship (QSAR) models using the Genetic Function Approximation (GFA) technique. Based on the essential structural requirements predicted by the QSAR models, some analogues were designed, synthesized and tested for activity. The predicted and experimental activities of these compounds were well correlated. Flavone analogue 20 was found to be the most potent antioxidant.  相似文献   

5.
6.
Selectivity of nuclear probes is controlled by competitive accumulation of the probe by cellular organelles as well as the high affinity for nucleic acids. Physicochemical features of probes which favor nucleic acid binding include cationic character and a planar aromatic system above a minimum size. Features of probes which permit entry into cells are low protein and lipid binding. Features which reduce accumulation in non-nuclear sites include high base strength and hydrophilicity of the cation. The overall quantitative structure–activity (QSAR) model specifying nuclear accumulation may be expressed as follows: CBN<40; 8>log P neutral species>0; AI<8; Z>0; -5<log P cation<0; pK a >10; LCF>17; LCF/CBN>0.70 (where CBN is the conjugated bond number, log P x the logarithm of the water–octanol partition coefficient of species x, AI the amphilicity index, Z the electric charge, pK a the negative logarithm of the equilibrium constant for the free base–protonated base reaction, and LCF the largest conjugated fragment). Preliminary applications of the QSAR model—to the selection of anticancer drugs, minimization of dye and drug toxicity and the designed synthesis of fluorescent probes—are outlined.  相似文献   

7.
This contribution focuses on the use of ladder particle swarm optimisation (LPSO) on modelling of oxadiazole- and triazole-substituted naphthyridines as human immunodeficiency virus-1 integrase inhibitors. Artificial neural network (ANN) and Monte Carlo cross-validation techniques were combined with LPSO to develop a quantitative structure–activity relationship model. The techniques of LPSO, ANN and sample set partitioning based on joint xy distances were applied as feature selection, mapping and model evaluation, respectively. The variables selected by LPSO were used as inputs of Bayesian regularisation ANN. The statistical parameters of correlation of deterministic, R 2, and root-mean-square error for the test set were 0.876 and 0.23, respectively. Robustness of the model was confirmed by Y-randomisation method. Comparison of the LPSO–ANN results with those of stepwise multiple linear regression (MLR), LPSO–MLR and LPSO–MLR–ANN showed the superiority of LPSO–ANN. Inspection of the selected variables indicated that atomic mass, molecular size and electronic structure of the molecules play a significant role in inhibitory behaviour of oxadiazole- and triazole-substituted naphthyridines.  相似文献   

8.
The design, synthesis and biological evaluation of novel triazolyl p38α MAPK inhibitors with improved water solubility for formulation in cationic liposomes (SAINT-O-Somes) targeted at diseased endothelial cells is described. Water-solubilizing groups were introduced via a ‘click’ reaction of functional azides with 2-alkynyl imidazoles and isosteric oxazoles to generate two small libraries of 1,4-disubstituted 1,2,3-triazolyl p38α MAPK inhibitors. Triazoles with low IC50 values and desired physicochemical properties were screened for in vitro downregulation of proinflammatory gene expression and were formulated in SAINT-O-Somes. Triazolyl p38α MAPK inhibitor 88 (IC50 = 0.096 μM) displayed the most promising in vitro activity.  相似文献   

9.
The retention of 7 monotetrazolium and 9 ditetrazolium salts was determined on alumina and reversed-phase (RP) alumina layers using n-hexane-1-propanol and water-1-propanol mixtures as eluents. The retention capacity and the specific surface area of solutes in contact with the stationary phases were calculated. The relationship between retention characteristics and physicochemical parameters of solutes was elucidated by canonical correlation analysis and partial least-square regression analysis. Both methods found significant relationships between the chromatographic and physicochemical parameters, however, the results were different according to the method applied. Calculations suggested that the retention on both alumina and RP alumina layers is of mixed character, hydrophobic, electronic and steric parameters are equally involved in the retention.  相似文献   

10.
11.
A novel series of 49 wogonin derivatives were synthesized by introducing group at 7-, 8- or B ring of wogonin. The cytotoxic activities against HepG2, A549 and BCG-823 cancer cell lines were also investigated in vitro. Several of them showed obvious cytotoxic activities and compound 3h possessed the highest potency against HepG2, A549, and BCG-823 with IC50 values of 1.07 μM, 1.74 μM and 0.98 μM, respectively. A quantitative structure-activity relationship (QSAR) study of these synthetic derivatives as well as wogonin indicated that high solubility and low octanol/water partition coefficient are favorable, and excessive electrostatic properties and refractivity are unfavorable for the cytotoxic activities of these wogonin derivatives. These findings and results provide a base for further investigations.  相似文献   

12.
DAP-kinase (DAPK) is the founding member of a family of highly related, death associated Ser/Thr kinases that belongs to the calmodulin (CaM)-regulated kinase superfamily. The family includes DRP-1 and ZIP-kinase (ZIPK), both of which share significant homology within the common N-terminal kinase domain, but differ in their extra-catalytic domains. Both DAPK and DRP-1 possess a conserved CaM autoregulatory domain, and are regulated by calcium-activated CaM and by an inhibitory auto-phosphorylation within the domain. ZIPK’s activity is independent of CaM but can be activated by DAPK. The three kinases share some common functions and substrates, such as induction of autophagy and phosphorylation of myosin regulatory light chain leading to membrane blebbing. Furthermore, all can function as tumor suppressors. However, they also each possess unique functions and intracellular localizations, which may arise from the divergence in structure in their respective C-termini. In this review we will introduce the DAPK family, and present a structure/function analysis for each individual member, and for the family as a whole. Emphasis will be placed on the various domains, and how they mediate interactions with additional proteins and/or regulation of kinase function.  相似文献   

13.
This paper considers an anisotropic hyperelastic soft tissue model, originally proposed for native valve tissue and referred to herein as the Lee–Sacks model, in an isogeometric thin shell analysis framework that can be readily combined with immersogeometric fluid–structure interaction (FSI) analysis for high-fidelity simulations of bioprosthetic heart valves (BHVs) interacting with blood flow. We find that the Lee–Sacks model is well-suited to reproduce the anisotropic stress–strain behavior of the cross-linked bovine pericardial tissues that are commonly used in BHVs. An automated procedure for parameter selection leads to an instance of the Lee–Sacks model that matches biaxial stress–strain data from the literature more closely, over a wider range of strains, than other soft tissue models. The relative simplicity of the Lee–Sacks model is attractive for computationally-demanding applications such as FSI analysis and we use the model to demonstrate how the presence and direction of material anisotropy affect the FSI dynamics of BHV leaflets.  相似文献   

14.
Chu MH  Liu KL  Wu HY  Yeh KW  Cheng YS 《Planta》2011,234(2):243-254
Tarocystatin (CeCPI) from taro (Colocasia esculenta cv. Kaohsiung no. 1), a group-2 phytocystatin, shares a conserved N-terminal cystatin domain (NtD) with other phytocystatins but contains a C-terminal cystatin-like extension (CtE). The structure of the tarocystatin–papain complex and the domain interaction between NtD and CtE in tarocystatin have not been determined. We resolved the crystal structure of the phytocystatin–papain complex at resolution 2.03 Å. Surprisingly, the structure of the NtD–papain complex in a stoichiometry of 1:1 could be built, with no CtE observed. Only two remnant residues of CtE could be built in the structure of the CtE–papain complex. Therefore, CtE is easily digested by papain. To further characterize the interaction between NtD and CtE, three segments of tarocystatin, including the full-length (FL), NtD and CtE, were used to analyze the domain–domain interaction and the inhibition ability. The results from glutaraldehyde cross-linking and yeast two-hybrid assay indicated the existence of an intrinsic flexibility in the region linking NtD and CtE for most tarocystatin molecules. In the inhibition activity assay, the glutathione-S-transferase (GST)-fused FL showed the highest inhibition ability without residual peptidase activity, and GST-NtD and FL showed almost the same inhibition ability, which was higher than with NtD alone. On the basis of the structures, the linker flexibility and inhibition activity of tarocystatins, we propose that the overhangs from the cystatin domain may enhance the inhibition ability of the cystatin domain against papain.  相似文献   

15.
The p38-mitogen-activated protein kinases (p38-MAPKs) belong to a family of serine–threonine kinases activated by pro-inflammatory or stressful stimuli that are known to be involved in several diseases. Their biological importance, related to the release of inflammatory pro-cytokines such as tumor necrosis factor-α (TNF-α) and interleukin-1 (IL-1), has generated many studies aiming at the development of selective inhibitors for the treatment of inflammatory diseases. In this work, we developed receptor-based three dimensional (3D) quantitative structure–activity relationship (QSAR) models for a series of 33 pyridinyl imidazole compounds [Liverton et al. (1999) 42:2180], using a methodology named free-energy force-field (FEFF) [Tokarski and Hopfinger (1997) 37:792], in which scaled intra- and intermolecular energy terms of the Assisted Model Building Energy Refinement (AMBER) force field combined with a hydration-shell solvation model are the independent variables used in the QSAR studies. Multiple temperature molecular-dynamics simulations (MDS) of ligand–protein complexes and genetic-function approximation (GFA) were employed using partial least squares (PLS) as the fitting functions to develop FEFF-3D-QSAR models for the binding process. The best model obtained in the FEFF-3D-QSAR receptor-dependent (RD) method shows the importance of the van der Waals energy change upon binding and the electrostatic energy in the interaction of ligands with the receptor. The QSAR equations described here show good predictability and may be regarded as representatives of the binding process of ligands to p38-MAPK. Additionally, we have compared the top FEFF-3D-QSAR model with receptor independent (RI) 4D-QSAR models developed in a recent study [Romeiro et al. (2005) 19:385]. 1 Qadjusted 2 values obtained for the best models with 3 to 6 terms for the FEFF MDS simulation temperatures after GFA-PLS optimization  相似文献   

16.
Constitutive androstane receptor (CAR) and pregnane X receptor (PXR) are closely related orphan nuclear receptor proteins that share several ligands and target overlapping sets of genes involved in homeostasis and all phases of drug metabolism. CAR and PXR are involved in the development of certain diseases, including diabetes, metabolic syndrome and obesity. Ligand screens for these receptors so far have typically focused on steroid hormone analogs with pharmacophore-based approaches, only to find relatively few new hits. Multiple CAR isoforms have been detected in human liver, with the most abundant being the constitutively active reference, CAR1, and the ligand-dependent isoform CAR3. It has been assumed that any compound that binds CAR1 should also activate CAR3, and so CAR3 can be used as a ligand-activated surrogate for CAR1 studies. The possibility of CAR3-specific ligands has not, so far, been addressed. To investigate the differences between CAR1, CAR3 and PXR, and to look for more CAR ligands that may be of use in quantitative structure–activity relationship (QSAR) studies, we performed a luciferase transactivation assay screen of 60 mostly non-steroid compounds. Known active compounds with different core chemistries were chosen as starting points and structural variants were rationally selected for screening. Distinct differences in agonist versus inverse agonist/antagonist effects were seen in 49 compounds that had some ligand effect on at least one receptor and 18 that had effects on all three receptors; eight were CAR1 ligands only, three were CAR3 only ligands and four affected PXR only. This work provides evidence for new CAR ligands, some of which have CAR3-specific effects, and provides observational data on CAR and PXR ligands with which to inform in silico strategies. Compounds that demonstrated unique activity on any one receptor are potentially valuable diagnostic tools for the investigation of in vivo molecular targets.  相似文献   

17.
A quantitative structure–activity relationship (QSAR) study is made on a series of aromatic/heterocyclic sulfonamides and their charged derivatives acting as carbonic anhydrase (CA) inhibitors. These compounds were studied by Scozzafava et al. (J. Med. Chem. 2000; 43: 292) for the selective inhibition of CAs—sulfonamides generally do not discriminate between different CA isozymes and hence exhibit many undesirable side effects when used as drugs against a particular disease. In this communication, an attempt has been made to investigate the physicochemical and structural properties that can make them selective for a given CA isozyme. Based on in vitro data reported by Scozzafava et al. against two cytosolic isozymes and one membrane-bound isozyme, the QSAR study has shown that uncharged compounds cannot be made selective for cytosolic or membrane-bound isozyme since in both the cases the compounds appear to follow the same mechanism of inhibition. However, for the charged compounds the polarizability of the molecule seems to greatly favor the inhibition of the membrane-bound enzyme, and hence they can be made selective for this enzyme by enhancing their polarizability, which is found to play no role in the inhibition of cytosolic enzymes.  相似文献   

18.
The recrudescence of breast cancer can partly be attributed to poor understanding of the early steps and the mechanisms involved in breast cancer metastasis, especially how tumor inflammatory cells including tumor-associated macrophages (TAM) affect invasion process. However, invasion-related biological studies in traditional in vitro assays or in vivo models are challenging due to the arduousness in establishing models that precisely reproduce the tumor invasion environment. To this end, we proposed a juxtaposed dual-layer cell-loaded hydrogels biomimetic microfluidic system and formed monolayer size-selective permeable vascular endothelial barriers besides the dual layer to mimic mammalian blood vessels. We clarified that in this system, TAM promoted the invasion of breast cancer cells, whereas breast cancer cells maintained the phenotype of TAM cells and promoted the differentiation of U937 cells into TAM. It formed a tumor–macrophage bidirectional crosstalk system. This system could be used for drug screening. So finally, through the calculation of the survival rate of breast cancer cells when cocultured with different macrophages under paclitaxel treatment, we analyzed the antagonism of tumor–macrophage bidirectional crosstalk on anticancer drugs.  相似文献   

19.

Background  

We present 2DDB, a bioinformatics solution for storage, integration and analysis of quantitative proteomics data. As the data complexity and the rate with which it is produced increases in the proteomics field, the need for flexible analysis software increases.  相似文献   

20.
Twenty two oxygenated aromatic essential oil compounds were chosen for the study of the antifungal activity against two wood-decaying fungi, the white-rot Trametes versicolor, which mainly metabolizes lignin, and the brown-rot Coniophoha puteana, which digests cellulose in plant cell walls. Minimal inhibitory concentrations (MICs) were determined by the agar dilution method, using dimethyl sulfoxide (DMSO) as the solvent for the selected compounds and potato-dextrose agar (PDA) as the growth medium for both fungi. The MICs were then used to generate a tree structure, which represents the structuring of the essential oil compounds by the nature and position of the substituents in their aromatic rings, and as dependent variables (log(1/MIC)) in the QSAR analysis. Data structuring proved that a relationship between the molecular structures of the essential oil compounds and their antifungal activity exists, and the hypotheses derived therefrom were complemented by performing a QSAR analysis using the partial least squares (PLS) method. Statistically significant PLS models were obtained with the 1-octanol–water partition coefficient (C log P), the energy of the highest occupied molecular orbital (E HOMO), and the number of hydrogen-bond donor atoms in the molecules of the compounds studied (Donor) for T. versicolor and with C log P and the fractional negative surface area (FNSA1) for C. puteana.Figure Tree structure representing the structuring of the oxygenated aromatic essential-oil compounds by the position and nature of their substituents in the aromatic ring  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号