首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A series of ternary copper(II) complexes have been derived using levofloxacin and five phenanthroline derivatives. Complexes were characterized using infrared spectroscopy, Thermogravimetric (TG)-analysis, fast atom bombardment mass spectroscopy and reflectance spectra. Synthesized complexes exhibit the only d-d band at ~ 666?nm points toward a distorted square pyramidal geometry at metal centre with one unpaired electron responsible for paramagnetic behaviour of whole moiety. Binding behaviour of the complexes toward Herring Sperm DNA were determined using ultraviolet-Vis (UV-Vis) absorption titration and viscometric titration experiment, where as the cleavage efficacy of the complexes toward pUC19 DNA was determined by electrophoresis in presence of ethidium bromide. Complexes exhibit superoxide dismutase-like activity with their IC(50) values ranging from 0.7917 to 1.7432 μM.  相似文献   

2.
Novel palladium(II) complexes ( 7a–7e ) of substituted quinoline derivatives were synthesized. The complexes were characterized using various techniques such as thermogravimetric analysis (TGA), elemental analysis, conductance measurement, mass, absorption, infra‐red (IR), 1H NMR, 13C NMR and energy‐dispersive X‐ray spectroscopy (EDX). Complexes for herring sperm DNA (HS DNA) binding were explored and absorption titration and the binding constant (Kb) as well as Gibb's free energy were evaluated. Complex 7d exhibited the highest binding constant, therefore the thermodynamic parameters of 7d at different temperatures were evaluated. To support the results of the absorption titration, fluorescence titration, viscosity measurement and molecular docking studies were performed. The fluorescence quenching data as evaluated from Stern–Volmer equation were used to calculate KSV, Kf and the number of binding sites. The results of all these studies were in good agreement with the absorption study. DNA electrophoretic mobility was performed to explore the possible application of metal complexes as artificial metallonucleases. The antibacterial activity of the complexes was accessed against different pathogenic bacteria and cytotoxicity was measured using brine shrimp and S. pombe.  相似文献   

3.
The present study characterizes the effects of the boric acid binding on calf thymus DNA (ct-DNA) by spectroscopic and calorimetric methods. UV–Vis absorbance spectroscopy, circular dichroism (CD) spectroscopy, transmission electron microscopy (TEM), isothermal titration calorimetry (ITC), and Fourier transform infrared (FT-IR) spectroscopy were employed to characterize binding properties. Changes in the secondary structure of ct-DNA were determined by CD spectroscopy. Sizes and morphologies of boric acid–DNA complexes were determined by transmission electron microscopy (TEM). The kinetics of boric acid binding to calf thymus DNA (ct-DNA) was investigated by isothermal titration calorimetry (ITC). ITC results revealed that boric acid exhibits a moderate affinity to ct-DNA with a binding constant (K a) of 9.54?×?104 M?1. FT-IR results revealed that boric acid binds to the deoxyribose sugar of DNA without disrupting the B-conformation at tested concentrations.  相似文献   

4.
Two new Ru(II) complexes, [Ru(bpy)2(FAMP)](ClO4)2 1 and 2, are synthesized and characterized by elemental analysis, electrospray mass spectrometry, and 1H nuclear magnetic resonance. The in vitro cytotoxicities and apoptosis-inducing properties of these complexes are extensively studied. Complexes 1 and 2 exhibit potent antiproliferative activities against a panel of human cancer cell lines. The cell cycle analysis shows that complexes 1 and 2 exhibit effective cell growth inhibition by triggering G0/G1 phase arrest and inducing apoptosis by mitochondrial dysfunction. The in vitro DNA binding properties of the two complexes are investigated by different spectrophotometric methods and viscosity measurements.  相似文献   

5.
Two copper(II) complexes, 1 and 2 with L1 and L2 [L1 = 2-hydroxybenzyl(2-(pyridin-2-yl)ethylamine); L2 = 2-hydroxybenzyl(2-(pyridin-2-yl)methylamine)] ligands, respectively, have been synthesized and characterized. The interaction of both the complexes with DNA has been studied to explore their potential biological activity. The DNA binding properties of the complexes with calf thymus (CT) DNA were studied by spectroscopic titration. The complexes show binding affinity to CT DNA with binding constant (Kb) values in the order of 105 M−1. Thermal denaturation and circular dichroism studies suggest groove binding of the complexes to CT DNA. Complexes also exhibit strong DNA cleavage activity in presence of reducing agents like 3-mercaptopropionic acid and β-mercaptoethanol. Mechanistic studies reveal the involvement of reactive hydroxyl radicals for their DNA cleavage activity.  相似文献   

6.
The complexes of oxovanadium(IV) with ciprofloxacin and various uni-negative bidentate ligands have been prepared and their structure investigated using spectral, physicochemical and elemental analyses. The viscosity measurement suggest that the complexes bind to DNA by intercalation. The DNA binding efficacy was determined using absorption titration to obtain the binding constant (Kb). The DNA cleavage efficacy was determined using gel electrophoresis. The DNA binding and cleavage efficacy were increased in the complexes relative to the parental ligands and metal salts. Antibacterial activity has been assayed against two Gram( ? ve) i.e. Escherichia coli, Pseudomonas aeruginosa and three Gram( + ve) Staphylococcus aureus, Bacillus subtilis, Serratia marcescens microorganisms using the doubling dilution technique. The results show a significant increase in antibacterial activity in the complexes compared with parental ligands and metal salts.  相似文献   

7.
Cyclophosphazenes (RNH)6P3N31 react with three and six equivalents of butyllithium in thf to give lithium complexes of tri- (2) and hexaanionic (3) phosphazenate ligands, respectively. A variety of lithium complexes 2 and 3 were prepared and structurally characterised. The degree of puckering of the (PN)3 ring systems correlates with increasing ligand charge. The trianions solely exhibit the chair conformation; their deprotonated side groups are positioned at equatorial sites. This conformation ensures that the charge of the ligand is most effectively distributed and it also provides three distinct coordination sites for the three lithium ions. Complexes of the trianion can be monomeric or dimeric. Aryl-N(exo) derivatives tend to form monomers, while alkyl derivatives form dimeric sandwich complexes. Complexes of the hexaanion fall into two categories. Binary complexes, which contain the ligand and lithium ions, form dimers; the (PN)3 ring in these complexes exhibit a chair conformation. Complexes which, in addition, contain small monodentate ions, such as chloride, fall into the second category; their ring systems adopt a boat conformation.  相似文献   

8.
The square planar Pt(II) complexes of the type [Pt(Ln)(Cl2)] (where Ln = L1?3 = thiophene-2-carboxamide derivatives and L4?6 = thiophene-2-carbothioamide derivatives) have been synthesized and characterized by physicochemical and various spectroscopic studies. MIC method was employed to inference the antibacterial potency of complexes in reference to free ligands and metal salt. Characteristic binding constant (Kb) and binding mode of complexes with calf thymus DNA (CT-DNA) were determined using absorption titration (0.76–1.61 × 105 M?1), hydrodynamic chain length assay and fluorescence quenching analysis, deducing the partial intercalative mode of binding. Molecular docking calculation displayed free energy of binding in the range of –260.06 to –219.63 kJmol?1. The nuclease profile of complexes towards pUC19 DNA shows that the complexes cleave DNA more efficiently compared to their respective metal salt. Cytotoxicity profile of the complexes on the brine shrimp shows that all the complex exhibit noteworthy cytotoxic activity with LC50 values ranging from 7.87 to 15.94 μg/mL. The complexes have been evaluated for cell proliferation potential in human colon carcinoma cells (HCT 116) and IC50 value of complexes by MTT assay (IC50 = 125–1000 μg/mL).  相似文献   

9.
The copper(II) complexes with ciprofloxacin (CFLH), levofloxacin (LFLH), norfloxacin (NFLH), and neutral bidentate ligands have been synthesized and characterized. The complexes have been evaluated for their antibacterial activity against selective species. Complexes have been also checked for their interacting behavior with DNA, and were found to have two different modes of interaction, classical and partial intercalation. Tested complexes were found to be better antioxidants with their IC50 values ranging from 0.51 to 0.97 μM.  相似文献   

10.
Five new copper(II) complexes of type [Cu(erx)( L )Cl] (erx, enrofloxacin; thiophene‐2‐carbaldehyde ( L 1 ); pyridine‐2‐carbaldehyde ( L 2 ); 2,2′‐dipyridylamine ( L 3 ); 4,5‐diazafluoren‐9‐one ( L 4 ); bis(3,5‐dimethyl‐1‐pyrazolyl)methane ( L 5 )) have been synthesized and characterized by elemental analysis, reflectance, IR, and FAB‐MS. Complexes have been investigated for their interaction with calf thymus (CT) DNA utilizing the absorption‐titration method, viscometric and DNA thermal denaturation studies. The cleavage reaction on pUC19 DNA has been monitored by agarose gel electrophoresis. The results indicated that the CuII complexes can more effectively promote the cleavage of plasmid DNA at physiological pH and superoxide dismutase. The (SOD) activity of the complexes has been evaluated by the nitroblue tetrazolium assay, and the complexes catalyzed the dismutation of superoxide at pH 7.8 with IC50 values of 0.35–1.25 μM . The complexes have also been screened for their antibacterial activity against five pathogenic bacteria.  相似文献   

11.
Copper(II) complexes with the non-steroidal anti-inflammatory drugs (NSAIDs) naproxen and diclofenac have been synthesized and characterized in the presence of nitrogen donor heterocyclic ligands (2,2′-bipyridine, 1,10-phenanthroline or pyridine). Naproxen and diclofenac act as deprotonated ligands coordinated to Cu(II) ion through carboxylato oxygens. The crystal structures of (2,2′-bipyridine)bis(naproxenato)copper(II), , (1,10-phenanthroline)bis(naproxenato)copper(II), and bis(pyridine)bis(diclofenac)copper(II), have been determined by X-ray crystallography. The UV study of the interaction of the complexes with calf-thymus DNA (CT DNA) has shown that the complexes can bind to CT DNA with (2,2′-bipyridine)bis(naproxenato)copper(II) exhibiting the highest binding constant to CT DNA. Competitive study with ethidium bromide (EB) indicates that the complexes can displace the DNA-bound EB suggesting strong competition with EB. The cyclic voltammograms of the complexes recorded in the presence of CT DNA have shown that the complexes can bind to CT DNA by the intercalative binding mode which has also been verified by DNA solution viscosity measurements. The NSAID ligands and their complexes exhibit good binding propensity to human or bovine serum albumin protein having relatively high binding constant values. The biological properties of the previously reported complexes [Cu2(naproxenato)4(H2O)2], [Cu2(diclofenac)4(H2O)2] and [Cu(naproxenato)2(pyridine)2(H2O)] have been also evaluated. The dinuclear complexes exhibit similar affinity for CT DNA as the 2,2′-bipyridine or 1,10-phenanthroline containing complexes. The pyridine containing complexes exhibit the lowest affinity for CT DNA and the lowest ability to displace EB from its EB-DNA complex.  相似文献   

12.
Electrospray mass spectrometry was evaluated regarding the reliability of the determination of the stoichiometries and equilibrium association constants from single spectra. Complexes between minor groove binders (Hoechst 33258, Hoechst 33342, DAPI, netropsin and berenil) and 12mer oligonucleotide duplexes with a central sequence (A/T)4 flanked by G/C base pairs were chosen as model systems. To validate the electrospray ionization mass spectrometry (ESI-MS) method, comparisons were made with circular dichroism and fluorescence spectroscopy measurements. ESI-MS allowed the detection of minor (2 drug + DNA) species for Hoechst 33258, Hoechst 33342, DAPI and berenil with duplex d(GGGG(A/T)4GGGG)· d(CCCC(A/T)4CCCC), which were undetectable with the other techniques. Assuming that the duplexes and the complexes have the same electrospray response factors, the equilbrium association constants of the 1:1 and 2:1 complexes were determined by ESI-MS, and the values show a good quantitative agreement with fluorescence determined constants for Hoechst 33258 and Hoechst 33342. It is also shown that ESI-MS can quickly give reliable information on the A/T sequence selectivity of a drug: the signal of a complex is directly related to the affinity of the drug for that particular duplex. The potential of ESI-MS as a qualitative and quantitative affinity screening method is emphasized.  相似文献   

13.
A barbiturate derivative [1,5-dihydro-5-[5-pyrimidine-2,4(1H,3H)-dionyl]-2H-chromeno[2,3-d] pyrimidine-2,4(3H)-dione] (LH4) was allowed to react with 2,2′-bipyridyl-dinitrato-Copper(II)-dihydrate which provides two complexes, characterized as [Cu(bpy)(L1)]·3H2O () and [Cu(bpy)(L2)]·H2O (), where bpy = 2,2′-bipyridine, L1 = 5-hydroxy-hydurilic acid and L2 = alloxanic acid. In a separate reaction of LH4 with Cu(NO3)2·H2O another type of complex [Cu(LH3)2·(H2O)2]·4H2O () is formed. The complexes were characterized by single crystal X-ray crystallography, physicochemical and electrochemical studies. The interaction of complexes 1 and 3 with DNA was monitored using absorption and emission titrations as well as circular dichroism spectroscopy. The complexes were found to cleave supercoiled plasmid DNA to nicked circular and linear DNA. Complexes 1 and 3 were also tested against T-cell lymphoma (Dalton lymphoma DL) and showed significant cytotoxic activity with IC50 values of ~ 9.0 nM and 0.6 nM.  相似文献   

14.
Four complexes [Pd(L)(bipy)Cl]·4H2O (1), [Pd(L)(phen)Cl]·4H2O (2), [Pt(L)(bipy)Cl]·4H2O (3), and [Pt(L)(phen)Cl]·4H2O (4), where L = quinolinic acid, bipy = 2,2’-bipyridyl, and phen = 1,10-phenanthroline, have been synthesized and characterized using IR, 1H NMR, elemental analysis, and single-crystal X-ray diffractometry. The binding of the complexes to FS-DNA was investigated by electronic absorption titration and fluorescence spectroscopy. The results indicate that the complexes bind to FS-DNA in an intercalative mode and the intrinsic binding constants K of the title complexes with FS-DNA are about 3.5?×?104 M?1, 3.9?×?104 M?1, 6.1?×?104 M?1, and 1.4?×?105 M?1, respectively. Also, the four complexes bind to DNA with different binding affinities, in descending order: complex 4, complex 3, complex 2, complex 1. Gel electrophoresis assay demonstrated the ability of the Pt(II) complexes to cleave pBR322 plasmid DNA.  相似文献   

15.
Complexes of the uranyl cation [UO(2)(2+)] with histidine (His), N-acetyl-histidine (NAH), tyrosine (Tyr), and N-acetyl-tyrosine (NAT) were studied by UV-visible and NMR spectroscopy, and by potentiometric titration. Protonation constants for each ligand are reported, as are cumulative formation constants for uranyl-amino acid complexes. Coupling constant data (J(CH)) for uranyl-histidine complexes indicate that inner-sphere solution interactions between histidine and uranyl cation are solely at the carboxylate site. At 25 degrees C the major uranyl-histidine complex has a cumulative formation constant of logbeta(110)=8.53, and a proposed formula of [UO(2)HisH(2)(OH)(2)](+); the stepwise formation constant, logK(UL), is estimated to be 5.6 ( approximately 8.53-(-6.1)-(-6.1)-15.15). Outer-sphere interactions, H-bonding or electrostatic interactions, are proposed as contributing a significant portion of the stability to the ternary uranyl-hydroxo-amino acid complexes. The temperature dependent protonation constants of histidine and formation constants between uranyl cation and histidine are reported from 10 to 35 degrees C; at 25 degrees C, DeltaG=-43.3 kJ/mol.  相似文献   

16.
Abstract

The synthesis and chemical characterization of two structurally related platinum(II) and palladium(II) complexes, [M(2,2′-bipyridine)(morpholinedithiocarbamate)]NO3 or [M(bpy) (mor-dtc)]NO3, where M = Pt(II) or Pd(II), are described. Studies of anti-tumor activities of these complexes against human cell tumor lines (K562) have been carried out. They show 50% cytotoxic concentration (Cc50) values much lower than that of cisplatin. Both of these water soluble complexes have been shown to interact with calf thymus DNA (ct-DNA) using difference absorption-, fluorescence-, and circular dichroism-titration techniques. These studies showed that both complexes exhibit cooperative binding and presumably intercalate in DNA. These complexes unexpectedly denature DNA at very low concentrations (50–100 μM). Several binding and thermodynamic parameters are also described.  相似文献   

17.
A new water-soluble palladium(II) complex, [Pd(bpy)(pyr-Ac]NO3 in which bpy = 2,2′-bipyridine and pyr-Ac is 1-pyrrolacetato, has been synthesized and characterized by spectroscopic methods (1H NMR, FT-IR, and UV-Vis), molar conductivity measurements, and elemental analysis. The results obtained from elemental analysis and conductivity measurements confirmed the stoichiometry of ligand and its complex while the characteristic peaks in UV-Vis and FT-IR and resonance peaks in 1H NMR spectra confirmed the formation of ligand frameworks around the palladium ion. The 50% cytotoxic concentration (Ic50) of new synthesized Pd(II) complex was determined by using MTT assay against human breast cancer cell line, T47D. The interaction between the Pd(II) complex with calf thymus DNA was studied at different temperatures by using absorption spectroscopy, fluorescence titration spectra, ethidium bromide displacement, and gel chromatography studies. The results obtained by absorption spectroscopy revealed that the Pd(II) complex can bind to DNA cooperatively at low concentrations. Several binding parameters in the above interaction were calculated by the fluorescence quenching method. The quenching mechanism was suggested to be the static quenching. The thermodynamic parameters: enthalpy change (ΔH °), entropy change (ΔS °), and Gibbs free energy (ΔG °), showed that van der Waals and hydrogen binding are predominant intermolecular forces between Pd(II) complex and DNA. These results were also consistent with the results obtained from Scatchard's plots.  相似文献   

18.
The complexes of oxovanadium(IV) with ciprofloxacin and various uni-negative bidentate ligands have been prepared and their structure investigated using spectral, physicochemical and elemental analyses. The viscosity measurement suggest that the complexes bind to DNA by intercalation. The DNA binding efficacy was determined using absorption titration to obtain the binding constant (K(b)). The DNA cleavage efficacy was determined using gel electrophoresis. The DNA binding and cleavage efficacy were increased in the complexes relative to the parental ligands and metal salts. Antibacterial activity has been assayed against two Gram((- ve)) i.e. Escherichia coli, Pseudomonas aeruginosa and three Gram((+ ve)) Staphylococcus aureus, Bacillus subtilis, Serratia marcescens microorganisms using the doubling dilution technique. The results show a significant increase in antibacterial activity in the complexes compared with parental ligands and metal salts.  相似文献   

19.
A new ligand DBHIP and its two ruthenium(II) complexes [Ru(dmb)2(DBHIP)](ClO4)2 (1) and [Ru(dmp)2(DBHIP)](ClO4)2 (2) have been synthesized and characterized. The cytotoxicity of DBHIP and complexes 1 and 2 has been assessed by MTT assay. The apoptosis studies were carried out with acridine orange/ethidium bromide (AO/EB) staining methods. The binding behaviors of these complexes to calf thymus DNA (CT-DNA) were studied by absorption titration, viscosity measurements, thermal denaturation and photoactivated cleavage. The DNA-binding constants of complexes 1 and 2 were determined to be 8.64 ± 0.16 × 104 (s = 1.34) and 2.79 ± 0.21 × 104 (s = 2.17) M−1. The results suggest that these complexes interact with DNA through intercalative mode. The studies on the mechanism of photocleavage demonstrate that superoxide anion radical (O2 •–) and singlet oxygen (1O2) may play an important role in the DNA cleavage. The experiments on antioxidant activity show that these compounds also exhibit good antioxidant activity against hydroxyl radical (OH).  相似文献   

20.
New carbohydrate-conjugated heterobimetallic complexes [C(32)H(62)N(10)O(8)NiSn(2)Cl(4)]Cl(2)(1) and [C(32)H(62)N(10)O(8)CuSn(2)Cl(4)]Cl(2) (2) were synthesized and characterized by spectroscopic (IR, (1)H, (13)C, and (119)Sn NMR, EPR, UV-vis, ESI-MS) and analytical methods. The interaction studies of 2 with CT DNA were studied by using various biophysical techniques, which showed high binding affinity of 2 toward CT DNA. The extent of interaction was further confirmed by the interaction of 2 with the nucleotides viz.; 5'-AMP, 5'-CMP, 5'-GMP, and 5'-TMP, by absorption titration. (1)H, (31)P, (119)Sn NMR spectroscopy further validated the interaction mode of 2 with 5'-GMP. The electrophoresis pattern observed for 2 with supercoiled pBR322 DNA, exhibited significantly good nuclease activity following oxidative pathway. The preferential selectivity of 2 toward the major groove was observed on interaction of 2 with pBR322 DNA, in the presence of standard groove binders viz.; DAPI and methyl green. Additionally, in vitro antitumor activity of 2 was evaluated on a panel of human cancer cell lines, exhibiting remarkable cytotoxicity activity against Colo205 (colon) and MCF7 (breast) cell lines with GI(50) values <10 μg/mL.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号