首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Some novel ‘tailor-made’ compounds, 6,6-dimethyl-7,9-diaryl-1,2,4,8-tetraazaspiro[4.5]decan-3-thiones 23–27 have been studied for their in vitro antibacterial activity against Staphylococcus aureus, β-Heamolytic streptococcus, Vibreo cholerae, Salmonella typhii, Shigella felxneri, Escherichia coli, Klebsiella pneumonia, Pseudomonas aeruginosa and anti-fungal activity against Aspergillus flavus, Mucor, Rhizopus and Microsporum gypsuem. Compounds 24 and 25 exerted potent antibacterial activity against S. aureus, β-H. streptococcus, E. coli and P. aeruginosa whereas all compounds 23–27 exerted strong in vitro antifungal activity against A. flavus, Mucor and Rhizopus.  相似文献   

2.
A series of novel 2-phenyl-3-(4,6-diarylpyrimidin-2-yl)thiazolidin-4-ones 23-33 were synthesized, and studied for their in vitro antibacterial and antifungal activities against clinically isolated strains. Generally compounds possessing electron donating groups showed good antibacterial activity. Compound 31, which contain both electron withdrawing chloro and electron donating methyl groups showed potent activity against all the tested Gram positive and Gram negative bacterial strains whereas compounds 32 and 33 which contain electron donating methoxy functional group at the para position of the phenyl ring attached to pyrimidine ring showed promising activity against S.aureus, S.typhii and E.coli. Compounds 32 and 33, both containing electron withdrawing groups (-Cl, -F) showed excellent activities against all the tested A. flavus, Mucor, Rhizopus and M.gypsuem fungal strains. while against Mucor, compound 27 which contains an electron donating methyl group at the para position of the phenyl ring attached to pyrimidine ring showed promising activity. Also compound 31, which contains both electron withdrawing chloro and electron donating methyl groups showed potent activity against A. flavus and Rhizopus.  相似文献   

3.
Some 2,6-diarylpiperidin/tetrahydrothiopyran/tetrahydropyran-4-one oximes were synthesized in dry media under microwave irradiation and were evaluated for their in vitro antibacterial activity against clinically isolated bacterial strains i.e. S.aureus, β-H.Streptococcus, E.coli, P.aeruginosa, S.typhii and in vitro antifungal activities against fungal strains i.e. C.albicans, Rhizopus, A.niger and A.flavus. Structure-activity relationships for the synthesized compounds showed that compounds 12 and 15 exerted excellent antibacterial activity against all the tested bacterial strains except 15 against S.aureus and β-H.streptococcus. Against C.albicans and A.flavus, compound 15 exerted potent antifungal activities while against Rhizopus, compound 16 showed promising activity.  相似文献   

4.
Compound 26 is more potent against Escherichia coli. and 24 is more active against Staphylococcus aureus, β-Heamolytic streptococcus, Vibreo cholerae, Salmonella typhii, and Shigella flexneri than the standard drug ciprofloxacin. Moreover, of all the compounds tested, 26 is more effective against Aspergillus flavus and Mucor, than the standard drug fluconazole.  相似文献   

5.
A series of novel hybrid heterocyclic compounds, 3-(3-alkyl-2,6-diarylpiperin-4-ylidene)-2-thioxoimidazolidin-4-ones were synthesised and a comparative study was also carried out under microwave irradiation. The synthesised compounds were characterised by their melting points, elemental analysis, MS, FT-IR, one-dimensional NMR (1H, D2O exchanged 1H and 13C), two dimensional HOMOCOSY and NOESY spectroscopic data. All the synthesised title compounds were screened for their in vitro antibacterial and antifungal activity against clinically isolated strains namely B. subtilis, M. luteus, S. typhii, S. paratyphii B, S. felxneri, P. vulgaris, A. niger, Mucor, Rhizopus and M. gypsuem and the results were discussed.  相似文献   

6.
A series of biologically active oxovanadium(IV) complexes of triazole derived Schiff bases L1–L5 have been synthesized and characterized by their physical, analytical, and spectral data. The synthesized ligands potentially act as bidentate, in which the oxygen of furfural and nitrogen of azomethine coordinate with the oxovanadium atom to give a stoichiometry of vanadyl complexes 1:2 (M:L) in a square-pyramidal geometry. In vitro antibacterial and antifungal activities on different species of pathogenic bacteria (E. coli, S. flexneri, P. aeruginosa, S. typhi, S. aureus, and B. subtilis) and fungi (T. longifusus, C. albicans, A. flavus, M. canis, F. solani, and C. glabrata) have been studied. All compounds showed moderate to significant antibacterial activity against one or more bacterial strains and good antifungal activity against most of the fungal strains. The brine shrimp bioassay was also carried out to check the cytotoxicity of coordinated and uncoordinated synthesized compounds.  相似文献   

7.
An array of novel spiro imidazolidine derivatives was synthesized in dry media and was screened for their anti-microbial activities. Structure-activity relationship results revealed that compounds 22, 23 against P.aeruginosa, 24 against S.aureus, 24, 25 against K.pneumonia, 27 against S.aureus, β-H.streptococcus, 29 against M.luteus, K.pneumonia, 29, 30 against P.vulgaris exhibited excellent antibacterial activity at a minimum inhibitory concentration (MIC) value of 6.25 µg/mL. Compound 23 against M.gypseum, 25, 29 against Candida 6 and 29, 30 against C.albicans revealed excellent antifungal activity at a MIC value of 6.25 µg/mL.  相似文献   

8.
A convenient method for the ‘one-pot’ synthesis of novel target molecule 2,7-diaryl-[1,4]-diazepan-5-ones from the respective 2,6-diaryl-piperidin-4-ones was catalyzed by NaHSO4.Al2O3 heterogeneous catalyst in dry media under microwave irradiation in solvent-free conditions. Moreover, the catalyst could be recovered and re-used up to 4 times after washing with ethyl acetate. They were evaluated for potential antibacterial activity against Staphylococcus aureus, β-Haemolytic streptococcus, Vibreo cholerae, Salmonella typhii, Escherichia coli, Klebsiella pneumonia, Pseudomonas and antifungal activity against Aspergillus flavus, Aspergillus fumigatus, Mucor, Candida albicans and Rhizopus. Structure-Activity Relationship (SAR) led to the conclusion that, of all the compounds 25–32 tested, compound 30 exerted strong in vitro antibacterial activity against S. aureus, S. typhii, and Pseudomonas and all the compounds 25–32 were less active against E. coli, whereas all the compounds 25–32 displayed potent in vitro antifungal activity against all the fungal strains used, except compound 30, which was more effectual against Mucor.  相似文献   

9.
A series of novel 2H-chromen-2-one derivatives decorated with 1,2,3-triazole moiety were designed and synthesized using the click reaction of azidoalkyloxy-2H-chromen-2-ones with different propargylamines. Propargylamines were obtained by alkylation of various heterocyclic amines with propargyl bromide. Newly synthesized compounds and intermediates were evaluated for their antifungal activity against four fungi (Aspergillus niger, Aspergillus fumigatus, Aspergillus flavus and Candida albicans). Antibacterial studies were also carried out against three Gram-positive bacteria (Staphylococcus aureus, Bacillus subtilis and Staphylococcus epidermis) and four Gram-negative bacteria (Escherichia coli, Pseudomonas aeruginosa, Salmonella typhi and Klebsiella pneumoniae). In vitro, bioassay results showed that all the synthesized compounds exhibited excellent activity against fungal strains Aspergillus fumigatus, Aspergillus flavus and Candida albicans. Interestingly, all the compounds have shown even superior activity than the reference drug miconazole against Aspergillus fumigatus. Morpholine and N-acetyl piperazine containing compounds 10c and 10e have shown promising activity against various bacterial strains. Compound 10e was found to be most active against Pseudomonas aeruginosa. Based on, in silico pharmacokinetic studies, compounds 10ae were identified as lead compounds for future investigation due to their lower toxicity, high drug score values and good oral bioavailability as per OECD guidelines.  相似文献   

10.
New series of pyrazoles 4a – c and pyrazolopyrimidines 5a – f had been constructed. The newly synthesized compounds were assessed for their antimicrobial activity towards E. coli and P. aeruginosa (gram –ve bacteria), B. subtilis and S. aureus (gram +ve bacteria) and A. flavus and C. albicans (representative of fungi). The pyrazolylpyrimidine-2,4-dione derivative 5b is the most active candidate against B. subtilis (MIC=60 μg/mL) and P. aeruginosa (MIC=45 μg/mL). Regarding antifungal potential, compound 5f was the most effective against A. flavus (MIC=33 μg/mL). Similarly, compound 5c displayed strong antifungal activity towards C. Albicans (MIC=36 μg/mL) in reference to amphotericin B (MIC=60 μg/mL). Finally, the novel compounds had been docked inside dihydropteroate synthase (DHPS) to suggest the binding mode of these compounds.  相似文献   

11.
A series of novel substituted 1-(4-methoxybenzyl)-3-cyclopropyl-1H-pyrazol-5-amine benzamides 9(a–h) were synthesized to determine their antibacterial and antifungal activities as well as possible structure–activity relationships (SARs) to improve therapeutic efficacy. The pyrazol-5-amine benzamides were screened for their antibacterial activity against standard strains of Gram-positive (Streptococcus pyogenes NCIM 2608, Staphylococcus aureus ATCC 29737, Bacillus subtilis NCIM 2010) and Gram-negative (Escherichia coli ATCC 25922, Pseudomonas aeruginosa ATCC 20852, Klebsiella pneumoniae MTCC 618) bacteria by using streptomycin as positive control. They were also tested for their antifungal activities against mycotoxic strains of Fusarium verticillioides, Aspergillus ochraceous, Aspergillus flavus, Alternaria alternata, and Penicillium chrysogenum using nystatin as positive control. Among the synthesized compounds, 9d, 9g, and 9h showed potent antimicrobial activities.  相似文献   

12.
Novel bis cyclohexenone ester derivatives 14–19 were synthesized and characterized by their spectral data. In vitro microbiological evaluations were carried out for all the novel compounds 14–19 against clinically isolated bacterial and fungal strains. Compounds 15, 16, 18 against Staphylococcus aureus, 14, 15 against β-Haemolytic streptococcus, 15, 19 against Micrococcus luteus, 17, 18 against Salmonella typhii, 14, 17 against Shigella flexneri, 15 against Escherichia coli, 16 against Pseudomonas aeruginosa, 15, 18, 19 against Klebsiella pneumonia exhibited potent antibacterial activity at an minimum inhibitory concentration (MIC) value of 6.25 μg/ml, whereas compound 16 against Aspergillus flavus, 17 against A. niger, 16, 18 against Mucor indicus, 15, 17–19 against Microsporum gypseum revealed excellent antifungal activity at an MIC value of 6.25 μg/ml.  相似文献   

13.
Primaquine (PQ) ureidoamides 5a–f were screened for antimicrobial, biofilm eradication and antioxidative activities. Susceptibility of the tested microbial species towards tested compounds showed species- and compound-dependent activity. N-(diphenylmethyl)-2-[({4-[(6-methoxyquinolin-8-yl)amino]pentyl}carbamoyl)amino]-4-methylpentanamide (5a) and 2-(4-chlorophenyl)-N-(diphenylmethyl)-2-[({4-[(6-methoxyquinolin-8-yl)amino]pentyl}carbamoyl)amino]acetamide (5d) showed antibacterial activity against S. aureus strains (MIC?=?6.5?µg/ml). Further, compounds 5c and 5d had weak antibacterial activity against Escherichia coli and Pseudomonas aeruginosa. None of the tested compounds showed a wide spectrum of antifungal activity. In contrast, most of the compounds exerted strong activity in a biofilm eradication assay against E. coli, P. aeruginosa and Candida albicans, comparable to or even higher than gentamycin, amphotericin B or parent PQ. The most active compounds were 5a and 5b. Tested compounds were inactive against biofilm formation by C. parapsylosis, Enterococcus faecalis, C. tropicalis and C. krusei. Compounds 5b–f significantly inhibited lipid peroxidation (80–99%), whereas compound 5c presented interesting LOX inhibition.  相似文献   

14.
A novel series of thiophene derived Schiff bases and their transition metal- [Co(II), Cu(II), Zn(II), Ni(II)] based compounds are reported. The Schiff bases act as tridentate ligands toward metal ions via azomethine-N, deprotonated-N of ammine substituents and S-atom of thienyl moiety. The synthesized ligands along with their metal complexes were screened for their in vitro antibacterial activity against six bacterial pathogens (Escherichia coli, Shigella flexneri, Pseudomonas aeruginosa, Salmonella typhi, Staphylococcus aureus and Bacillus subtilis) and for antifungal activity against six fungal pathogens (Trichophytonlongifusus, Candida albicans, Aspergillus flavus, Microsporum canis, Fusarium solani and Candida glabrata). The results of antimicrobial studies revealed the free ligands to possess potential activity which significantly increased upon chelation.  相似文献   

15.
Abstract

A new series of benzothiazol-2-ylcarbamodithioate functional compounds 5a-f has been designed, synthesized and characterized by spectral data. These compounds were screened for their in vitro antibacterial activity against strains of Staphylococcus aureus (NCIM 5021, NCIM 5022 and methicillin-resistant isolate 43300), Bacillus subtilis (NCIM 2545), Escherichia coli (NCIM 2567), Klebsiella pneumoniae (NCIM 2706) and Psudomonas aeruginosa (NCIM 2036). Compounds 5a and 5d exhibited significant activity against all the tested bacterial strains. Specifically, compounds 5a and 5d showed potent activity against K. pneumoniae (NCIM 2706), while compound 5a also displayed potent activity against S. aureus (NCIM 5021). Compound 5d showed minimum IC50 value of 13.37?μM against S. aureus MurD enzyme. Further, the binding interactions of compounds 5a-f in the catalytic pocket have been investigated using the extra-precision molecular docking and binding free energy calculation by MM-GBSA approach. A 30?ns molecular dynamics simulation of 5d/modeled S. aureus MurD enzyme was performed to determine the stability of the predicted binding conformation.  相似文献   

16.
Sixteen novel depsides were synthesized for the first time. Their chemical structures were clearly determined by 1H NMR, ESI mass spectra, and elemental analyses. All the compounds were assayed for antibacterial activities against three Gram-positive bacterial strains (Bacillus subtilis ATCC 6633, Staphylococcus aureus ATCC 6538, and Streptococcus faecalis ATCC 9790) and three Gram-negative bacterial strains (Escherichia coli ATCC 35218, Pseudomonas aeruginosa ATCC 13525, and Enterobacter cloacae ATCC 13047) by the MTT method. Compound 2-(2-methoxy-2-oxoethyl)phenyl 5-bromonicotinate (5) exhibited significant antibacterial activities against E. coli ATCC 35218 with an MIC of 0.78 μg/mL, which was superior to the positive control kanamycin B. In addition, compound 5 showed potent inhibitory activity against E. coli-induced interleukin-8 production.  相似文献   

17.
Three endiandric acid derivatives, beilschmiedic acids A, B and C were isolated from the stem bark of Beilschmiedia anacardioides together with the known β-sitosterol. Their structures were established by means of modern spectroscopic techniques. The relative configuration of compound 1 was determined by single crystal X-ray analysis. The antibacterial activities of compounds A,B,C were evaluated in vitro against five strains of microbes. Compound C showed strong activity against Bacillus subtilis, Micrococcus luteus and Streptococcus faecalis (MICs below 23 μM). This Compound was more active than the reference antibiotic ampicillin against B. subtilis and M. luteus.  相似文献   

18.
Bauhinia variegata, commonly known as Koiralo is considered as medicinal plant in Nepal and India. The alcoholic extract of this plant was found to have antimicrobial activity against Bacillus subtilis (ATCC 6635) Pseudomonas aeruginosa (ATCC 27853), Salmonella typhi, Shigella dysenteriae, Staphylococcus aureus (ATCC 29213) and Vibrio cholerae. The largest zone of inhibition (18 mm) was found to be exhibited against B. subtilis. For this organism the minimum bactericidal concentration (MBC) of the crude extract was 0.39 mg/ml. The extract was found to be more effective against gram-positive than gram-negative bacteria. The antimicrobial activity of the extract was found to be decreased during purification.  相似文献   

19.
为探寻椿根皮抑菌的物质基础,该研究采用硅胶、Sephadex LH-20等方法对椿根皮甲醇提取物进行分离和纯化,通过理化性质和波谱数据分析单体化合物的结构,并以卡那霉素为对照组采用流式细胞法测试化合物的抑菌活性。结果表明:从椿根皮中得到22个化合物,分别鉴定为pleuchiol (1)、withastramonolide (2)、7-ketositosterol (3)、白桦酯醇(4)、桦木酸甲酯(5)、1, 2, 4-trimethoxybenzene (6)、顺丁烯二酸二甲酯(7)、sonderianol (8)、dibutyl phthalate (9)、pinoresinol (10)、对羟基苯甲酸乙酯(11)、avenalumic acid methyl ester (12)、5,3′-dihydroxy-3,7,4′-trimethoxy-flavone (13)、spathulenol (14)、2-甲基-5-丙基酮-7-羟基色原酮(15)、 7,4′-dihydroxyflavone (16)、annphenone (17)、3-羟基-4-甲氧基苯甲酸(18)、5,3′...  相似文献   

20.
Designed, synthesized a sequence of novel benzimidazol-1-yl-1-phenylpropanone hybrids and assessed for in vitro antimicrobial potential counter to several bacterial strains. Computational Methodology was carried out for designing of the target molecules and structures were confirmed by spectroscopic analysis. Amid the 12 integrated derivatives, (3-(2-((3-fluorobenzylidene)amino)-1H-benzo[d]imidazol-1-yl)-1-phenylpropan-1-one ( 6g ) and 3-(2-((4-fluorobenzylidene)amino)-1H-benzo[d]imidazol-1-yl)-1-phenylpropan-1-one ( 6k ) were found to acquire excellent antibacterial activity against all bacterial strains (Escherichia coli, Pseudomonas aeruginosa, Bacillus subtilis, Staphylococcus aureus), whereas derivative 3-(2-((2-fluorobenzylidene)amino)-1H-benzo[d]imidazol-1-yl)-1-phenylpropan-1-one ( 6c ), was potent against Escherichia coli, Bacillus subtilis, Staphylococcus aureus and displayed moderate action against P. aeruginosa. Derivatives with NO2 substituent at 3rd and 4th position, 3-(2-((3-nitroobenzylidene)amino)-1H-benzo[d]imidazol-1-yl)-1-phenylpropan-1-one ( 6h ) and 3-(2-((4-nitroobenzylidene)amino)-1H-benzo[d]imidazol-1-yl)-1-phenylpropan-1-one ( 6 l ) respectively declared good to moderate results against all bacterial strains. Further, 3-(2-((3-chlorobenzylidene)amino)-1H-benzo[d]imidazol-1-yl)-1-phenylpropan-1-one ( 6f ) and 3-(2-((4-chlorobenzylidene)amino)-1H-benzo[d]imidazol-1-yl)-1-phenylpropan-1-one ( 6j ) were found to be more competent against both fungal strains (C. albicans, A. niger). Serial two-fold dilution method was used for the entire study and standard drugs utilized were ciprofloxacin and clotrimazole. MIC values (μg/ml) of novel synthesized analogs were reported in comparison to standard drugs for antibacterial and antifungal actions. Molecular docking studies showed that designed molecules dynamically bound with effective area of the receptor (DNA gyrase B, Clotrimazole complex of cytochrome P 45046A1) and in vitro results were in accord with in silico studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号