首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The inhibition of α-, β-, γ-, and δ-class carbonic anhydrases (CAs, EC 4.2.1.1) from bacteria (Vibrio cholerae and Porphyromonas gingivalis) and diatoms (Thalassiosira weissflogii) with a panel of N’-aryl-N-hydroxy-ureas is reported. The α-/β-CAs from V. cholerae (VchCAα and VchCAβ) were effectively inhibited by some of these derivatives, with KIs in the range of 97.5?nM – 7.26?µM and 52.5?nM – 1.81?µM, respectively, whereas the γ-class enzyme VchCAγ was less sensitive to inhibition (KIs of 4.75 – 8.87?µM). The β-CA from the pathogenic bacterium Porphyromonas gingivalis (PgiCAβ) was not inhibited by these compounds (KIs?>?10?µM) whereas the corresponding γ-class enzyme (PgiCAγ) was effectively inhibited (KIs of 59.8?nM – 6.42?µM). The δ-CA from the diatom Thalassiosira weissflogii (TweCAδ) showed effective inhibition with these derivatives (KIs of 33.3?nM – 8.74?µM). As most of these N-hydroxyureas are also ineffective as inhibitors of the human (h) widespread isoforms hCA I and II (KIs?>?10?µM), this class of derivatives may lead to the development of CA inhibitors selective for bacterial/diatom enzymes over their human counterparts and thus to anti-infectives or agents with environmental applications.  相似文献   

2.
Glutathione transferase P1-1 is over expressed in some cancer cells and contributes to detoxification of anticancer drugs, leading to drug-resistant tumors. The inhibition of human recombinant GSTP1-1 by natural plant products was investigated using 10 compounds isolated from plants indigenous to Southern and Central Africa. Monochlorobimane and 1-chloro-2,4-dinitrobenzene were used to determine GST activity. Each test compound was screened at 33 and 100 µM. Isofuranonapthoquinone (1) (from Bulbine frutescens) showed 68% inhibition at 33 µM, and sesquiterpene lactone (2) (from Dicoma anomala) showed 75% inhibition at 33 μM. The IC50 value of 1 was 6.8 μM. The mode of inhibition was mixed, partial (G site) and noncompetitive (H site) with Ki values of 8.8 and 0.21 µM, respectively. Sesquiterpene 2 did not inhibit the CDNB reaction. Therefore, isofuranonapthoquinone 1 needs further investigations in vivo because of its potent inhibition of GSTP1-1 in vitro.  相似文献   

3.
The growth of Mycobacterium tuberculosis is strongly inhibited by weak acids although the mechanism by which these compounds act is not completely understood. A series of substituted benzoic acids, nipecotic acid, ortho- and para-coumaric acid, caffeic acid and ferulic acid were investigated as inhibitors of three β-class carbonic anhydrases (CAs, EC 4.2.1.1) from this pathogen, mtCA 1 (Rv1284), mtCA 2 (Rv3588c) and mtCA 3 (Rv3273). All three enzymes were inhibited with efficacies between the submicromolar to the micromolar one, depending on the scaffold present in the carboxylic acid. mtCA 3 was the isoform mostly inhibited by these compounds (KIs in the range of 0.11–0.97 µM); followed by mtCA 2 (KIs in the range of 0.59–8.10 µM), whereas against mtCA 1, these carboxylic acids showed inhibition constants in the range of 2.25–7.13 µM. This class of relatively underexplored β-CA inhibitors warrant further in vivo studies, as they may have the potential for developing antimycobacterial agents with a diverse mechanism of action compared to the clinically used drugs for which many strains exhibit multi-drug or extensive multi-drug resistance.  相似文献   

4.
Abstract

7-Amino-3,4-dihydro-1H-quinolin-2-one, a compound structurally similar to coumarins, recently discovered class of inhibitors of the α-carbonic anhydrases (CAs, EC 4.2.1.1) was investigated for its interaction with all human (h) CA isoforms, hCA I-XIV. The compound was not an inhibitor of the cytosolic, widespread isoform hCA II (KI?>?10?µM), was a weak inhibitor of hCA I, III, IV, VA, VI and XIII (KIs in the range of 0.90–9.5?µM) but effectively inhibited the cytosolic isoform hCA VII (KI of 480?nM) as well as the transmembrane isoforms hCA IX, XII and XIV (KIs in the range of 16.1–510?nM). Against many CA isoforms this lactam was a better inhibitor compared to the structurally similar 4-methyl-7-aminocoumarin, but unlike this compound, the lactam ring was not hydrolyzed and the inhibition was due to the intact bicyclic amino-quinolinone scaffold. Bicyclic lactams strucurally related to coumarins are thus a new class of CA inhibitors possessing however a distinct inhibition mechanism compared to the coumarins which undergo a hydrolysis of their lactone ring for generating the enzyme inhibitory species.  相似文献   

5.
Abstract

The inhibition of δ- and η-class carbonic anhydrases (CAs; EC 4.2.1.1) was poorly investigated so far. Only one δ-CA, TweCA from the diatom Thalassiosira weissflogii, and one η-CA, PfCA, from Plasmodium falciparum, have been cloned and characterised to date. To enrich δ- and η-CAs inhibition profiles, a panel of 22 phenols was investigated for TweCA and PfCA inhibition. Some derivatives showed effective, sub-micromolar inhibition of TweCA (KIs 0.81–65.4?µM) and PfCA (KIs 0.62–78.7?µM). A subset of compounds demonstrated a significant selectivity for the target CAs over the human physiologically relevant ones. This study promotes the identification of new potent and selective inhibitors of TweCA and PfCA, which could be considered as leads for finding molecular probes in the study of carbon fixation processes (in which TweCA and orthologue enzymes are involved) or drug candidates in the treatment of malaria.  相似文献   

6.
Inhibitory effects of some analgesic and anaesthetic drugs on human erythrocyte glutathione reductase were investigated. For this purpose, human erythrocyte glutathione reductase was initially purified 2139-fold in a yield of 29% by using 2′, 5′-ADP Sepharose 4B affinity gel and Sephadex G-200 gel filtration chromatography. SDS polyacrylamide gel electrophoresis confirmed the purity of the enzyme by sharing a single band. A constant temperature (+4°C) was maintained during the purification process. Diclofenac sodium, ketoprofen, lornoxicam, tenoxicam, etomidate, morphine and propofol exhibited inhibitory effects on the enzyme in vitro using the Beutler assay method.

Ki constants and IC50 values for drugs were determined from Lineweaver-Burk graphs and plotting activity % versus [I] graphs, respectively. The IC50 values of diclofenac sodium, ketoprofen, lornoxicam, propofol, tenoxicam, etomidate and morphine were 7.265, 6.278, 0.3, 0.242, 0.082, 0.0523 and 0.0128 mM and the Ki constants were 23.97 ± 2.1, 22.14 ± 7.6, 0.42 ± 0.18, 0.418 ± 0.056, 0.13 ± 0.025, 0.0725 ± 0.0029 and 0.0165 ± 0.0013 mM, respectively. While diclofenac sodium, ketoprofen, lornoxicam, tenoxicam etomidate and morphine showed competitive inhibition, propofol displayed noncompetitive inhibition.  相似文献   

7.
The single glutathione S-transferase (EC 2.5.1.18) present in rat erythrocytes was purified to apparent homogeneity by affinity chromatography on glutathione-Sepharose and hydroxyapatite chromatography. Approx. 1.86 mg enzyme is found in 100 ml packed erythrocytes and accounts for about 0.01% of total soluble protein. The native enzyme (Mr 48 000) displays a pI of 5.9 and appears to possess a homodimeric structure with a subunit of Mr 23 500. Enzyme activities with ethacrynic acid and cumene hydroperoxide were 24 and 3%, respectively, of that with 1-chloro-2,4-dinitrobenzene. The Km values for 1-chloro-2,4-dinitrobenzene and glutathione were 1.0 and 0.142 mM, respectively. The concentrations of certain compounds required to produce 50% inhibition (I50) were as follows: 12 μM bromosulphophthalein, 34 μM S-hexylglutathione, 339 μM oxidized glutathione and 1.5 mM cholate. Bromosulphophthalein was a noncompetitive inhibitor with respect to 1-chloro-2,4-dinitrobenzene (Ki = 8 μM) and glutathione (Kis = 4 μM; Kii = 11.5 μM) while S-hexylglutathione was competitive with glutathione (Ki = 5 μM).  相似文献   

8.
Cholinesterases catalyze the breakdown of the neurotransmitter acetylcholine (ACh), a naturally occurring neurotransmitter, into choline and acetic acid, allowing the nervous system to function properly. In the human body, cholinesterases come in two types, including acetylcholinesterase (AChE; E.C.3.1.1.7) and butyrylcholinesterase (BChE; E.C.3.1.1.8). Both cholinergic enzyme inhibitors are essential in the biochemical processes of the human body, notably in the brain. On the other hand, GSTs are found all across nature and are the principal Phase II detoxifying enzymes in eukaryotes and prokaryotes. Specific isozymes are identified as therapeutic targets because they are overexpressed in various malignancies and may have a role in the genesis of other diseases such as neurological disorders, multiple sclerosis, asthma, and especially cancer cell. Piperazine chemicals have a role in many biological processes and have fascinating pharmacological properties. As a result, therapeutically effective piperazine research is becoming more prominent. Half maximal inhibition concentrations (IC50) of piperazine derivatives were found in ranging of 4.59–6.48 µM for AChE, 4.85–8.35 µM for BChE, and 3.94-8.66 µM for GST. Also, piperazine derivatives exhibited Ki values of 8.04 ± 5.73–61.94 ± 54.56, 0.24 ± 0.03–32.14 ± 16.20, and 7.73 ± 1.13–22.97 ± 9.10 µM toward AChE, BChE, and GST, respectively. Consequently, the inhibitory properties of the AChE/BChE and GST enzymes have been compared to Tacrine (for AChE and BChE) and Etacrynic acid (for GST).  相似文献   

9.
The human liver cytochrome P450 (CYP) 2A6 and the respiratory CYP2A13 enzymes play role in nicotine metabolism and activation of tobacco-specific nitrosamine carcinogens. Inhibition of both enzymes could offer a strategy for smoking abstinence and decreased risks of respiratory diseases and lung cancer. In this study, activity-guided isolation identified four flavonoids 14 (apigenin, luteolin, chrysoeriol, quercetin) from Vernonia cinerea and Pluchea indica, four hirsutinolide-type sesquiterpene lactones 58 from V. cinerea, and acetylenic thiophenes 911 from P. indica that inhibited CYP2A6- and CYP2A13-mediated coumarin 7-hydroxylation. Flavonoids were most effective in inhibition against CYP2A6 and CYP2A13, followed by thiophenes, and hirsutinolides. Hirsutinolides and thiophenes exhibited mechanism-based inhibition and in irreversible mode against both enzymes. The inactivation kinetic KI values of hirsutinolides against CYP2A6 and CYP2A13 were 5.32–15.4 and 0.92–8.67 µM, respectively, while those of thiophenes were 0.11–1.01 and 0.67–0.97 µM, respectively.  相似文献   

10.
The possible sulfatase activity of several carbonic anhydrase (CA, EC 4.2.1.1) isoforms have been investigated with a series of synthesized methanesulfonate derivatives of phenols. Four α-CA isozymes, i.e. hCA I, hCA II, hCA IV and hCA VI (h?=?human isoform), were included in the study. We evidenced that the original sulfonate esters are being hydrolyzed effectively to the corresponding phenols which there after act as CA inhibitors. The KI-s of these compounds ranged from 10.24 to 4012 µM against hCA I, 0.10 to 35.42 µM against hCA II, 0.49 to 45.06 µM against hCA IV and 3.27 to 608 µM against CA VI, respectively. The relevant sulfatase activity of CA with these esters is amazing considering the fact that 4-nitrophenyl-sulfate, an activated ester, is not a substrate of these enzymes.  相似文献   

11.
《Phytomedicine》2015,22(1):56-65
Maslinic acid (MA), the main pentacyclic triterpene of Olea europaea L. fruit, possesses a variety of pharmacological actions, including hypoglycemic, antioxidant, cardioprotective and antitumoral activities. Despite its importance, little is known about its effects on the cytochrome P450 (CYP) activity in both humans and animals. Therefore, the aim of this study was to investigate the effects of MA on the CYP 1A2, 2C9/11, 2D1/6, 2E1 and 3A2/4 activities by human and rat liver microsomes and specific CYP isoforms. In humans, MA only weakly inhibited CYP3A4 activity in human liver microsomes and specific CYP3A4 isoform with IC50 value at 46.1 and 62.3 µM, respectively. In rats, MA also exhibited weak inhibition on CYP2C11, CYP2E1 and CYP3A2 activities with IC50 values more than 100 µM. Enzyme kinetic studies showed that the MA was not only a competitive inhibitor of CYP3A4 in humans, but also a competitive inhibitor of CYP2C11 and 3A2 in rats, with Ki of 18.4, 98.7 and 66.3 µM, respectively. Moreover, the presence of hydroxyl group at C-2 position of triterpenic acid in MA compared with oleanolic acid could magnify its competitive inhibition on human CYP3A4 activity. The relatively high Ki values of MA would have a low potential to cause the possible toxicity and drug interactions involving CYP enzymes, thus suggesting a sufficient safety for its putative use as a nutraceutical taken together with drugs.  相似文献   

12.
Cancer is a serious problem affecting the health of all human societies. Chemotherapy refers to the use of drugs to kill cancer or the origin of cancer. In the past three decades, researchers have studied about proteins and their roles in the production of cancer cells. Glutathione S-transferases (GSTs) are a superfamily of enzymes that play a key role in cellular detoxification, protecting against reactive electrophiles attacks, including chemotherapeutic agents. Glutathione reductase (GR) is an important antioxidant enzyme involved in protecting the cell against oxidative stress. In this current study, GST and GR enzymes were purified from human erythrocytes using affinity chromatography. GR was obtained with a specific activity of 5.95 EU/mg protein and a 52.38 % yield. GST was obtained with a specific activity of 4.88 EU/mg protein and a 74.88 % yield. The effect of fluorophenylthiourea derivatives on the purified enzymes was investigated. Afterward, KI values were found to range from 23.04±4.37 μM–59.97±13.45 μM for GR and 7.22±1.64 μM–41.24±2.55 μM for GST. 1-(2,6-difluorophenyl)thiourea was showed the best inhibition effect for both GST and GR enzymes. The relationships of inhibitors with 3D structures of GST and GR were explained by molecular docking studies.  相似文献   

13.
A series of vinyl functionalized 5,6-dimethylbenzimidazolium salts are synthesized. All compounds were fully characterized by elemental analyses, MS, 1H-NMR, 13C-NMR, and IR spectroscopy techniques. Enzyme inhibition is a very active area of research in drug design and development. In this study, the synthesized novel benzimidazolium salts were evaluated toward the human erythrocyte carbonic anhydrase I (hCA I), and II (hCA II) isoenzymes, acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) enzymes. They demonstrated highly potent inhibition ability against hCA I with Ki values of 484.8 ± 62.6–1389.7 ± 243.2 nM, hCA II with Ki values of 298.9 ± 55.7–926.1 ± 330.0 nM, α-glycosidase with Ki values of 170.3 ± 27–760.1 ± 269 μM, AChE with Ki values of 27.1 ± 3–77.6 ± 1.7 nM, and BChE with Ki values of 21.0 ± 5–61.3 ± 15 nM. As a result, novel vinyl functionalized 5,6-dimethylbenzimidazolium salts (1a–g) exhibited effective inhibition profiles toward studied metabolic enzymes. Therefore, we believe that these results may contribute to the development of new drugs particularly to treat some global disorders including glaucoma, Alzheimer's disease, and diabetes.  相似文献   

14.
The effects of ketotifen, meloxicam, phenyramidol–HCl and gadopentetic acid on the enzyme activity of GR were studied using human erythrocyte glutathione reductase (GR) enzymes in vitro. The enzyme was purified 209-fold from human erythrocytes in a yield of 19% with 0.31?U/mg. The purification procedure involved the preparation of haemolysate, ammonium sulphate precipitation, 2′′,5′-ADP Sepharose 4B affinity chromatography and Sephadex G-200 gel filtration chromatography. Purified enzyme was used in the in vitro studies. In the in vitro studies, IC50 values and Ki constants were 0.012?mM and 0.0008?±?0.00021?mM for ketotifen; 0.029?mM and 0.0061?±?0.00127?mM for meloxicam; 0.99?mM and 0.4340?±?0.0890?mM for phenyramidol–HCl; 138?mM and 28.84?±?4.69?mM for gadopentetic acid, respectively, showing the inhibition effects on the purified enzyme. Phenyramidol–HCl showed competitive inhibition, whereas the others showed non-competitive inhibition.  相似文献   

15.
Glutathione S-transferases (GSTs) are multi-functional enzymes, known to conjugate xenobiotics and degrade peroxides. Herein, we report on the potential of four Zea mays GST isoforms (Zm GST I–I, Zm GST I–II, Zm GST II–II and Zm GST III–III) to act as binding and protection proteins. These isoforms bind protoporphyrin IX (PPIX), mesoporphyrin, coproporphyrin, uroporphyrin and Mg-protoporpyhrin, but do not form a glutathione conjugate. The binding is non-covalent and inhibits GSTs enzymatic activity, dependent on the type of the porphyrin and GST isoform tested. I50 values are in the range of 1 to 10 μM for PPIX, the inhibition by mesoporphyrin and Mg-protoporphyrin (Mg-PPIX) is two to five times less. The mode of binding is non-competitive for the hydrophobic substrate and competitive for glutathione. Binding affinities (KD values) of the GST isoforms are between 0.3 and 0.8 μM for coproporphyrin and about 2 μM for mesoporphyrin.Zm GST III–III prevents the nonenzymatic autoxidation of protoporphyrinogen to the phytotoxic PPIX. Zm GST II–II can reduce the oxidative degradation of hemin. This points to a specific ligand role of distinct GST isoforms to protect tetrapyrroles in the plant cell.  相似文献   

16.
Elevated glutathione transferase (GST) E2 activity is associated with DDT resistance in the mosquito Anopheles gambiae. The search for chemomodulators that inhibit the function of AgGSTE2 would enhance the insecticidal activity of DDT. Therefore, we examined the interaction of novel natural plant products with heterologously expressed An. gambiae GSTE 2 in vitro. Five of the ten compounds, epiphyllocoumarin (Tral-1), knipholone anthrone, isofuranonaphthoquinones (Mr 13/2, Mr13/4) and the polyprenylated benzophenone (GG1) were shown to be potent inhibitors of AgGSTE2 with IC50 values of 1.5 μM, 3.5 μM, 4 μM, 4.3 μM and 4.8 μM respectively. Non-competitive inhibition was obtained for Tral 1 and GG1 with regards to GSH (Ki of 0.24 μM and 0.14 μM respectively). Competitive inhibition for Tral1 was obtained with CDNB (Ki = 0.4 μM) whilst GG1 produced mixed type of inhibition. The Ki and Ki' for GSH for Tral-1 and GG1 were 0.2 μM and 0.1 μM respectively. These results suggest that the novel natural plant products, particularly Tral-1, represent potent AgGSTE2 in vitro inhibitors.  相似文献   

17.
Inhibitors of carbonic anhydrase (CA) have been carried out in many therapeutic applications, especially antiglaucoma activity. In this study, we investigated some uracil derivatives (412) to inhibit human CA I (hCA I) and II (hCA II) isoenzymes. The KI values of the compounds 412 are in the range of 0.085–428?µM for hCA I and of 0.1715–645?µM against hCA II, respectively. It is concluded from the kinetic investigations, all compounds used in the study act as competitive inhibitors with substrate, 4-NPA. Uracil derivatives are emerging agents for the inhibiton of carbonic anhydrase which could be used in biomedicine.  相似文献   

18.
Malaria, particularly in endemic countries remains a threat to the human health and is the leading the cause of mortality in the tropical and sub-tropical areas. Herein, we explored new C2 symmetric hydroxyethylamine analogs as the potential inhibitors of Plasmodium falciparum (P. falciparum; 3D7) in in-vitro cultures. All the listed compounds were also evaluated against crucial drug targets, plasmepsin II (Plm II) and IV (Plm IV), enzymes found in the digestive vacuole of the P. falciparum. Analog 10f showed inhibitory activities against both the enzymes Plm II and Plm IV (Ki, 1.93?±?0.29?µM for Plm II; Ki, 1.99?±?0.05?µM for Plm IV). Among all these analogs, compounds 10g selectively inhibited the activity of Plm IV (Ki, 0.84?±?0.08?µM). In the in vitro screening assay, the growth inhibition of P. falciparum by both the analogs (IC50, 2.27?±?0.95?µM for 10f; IC50, 3.11?±?0.65?µM for 10g) displayed marked killing effect. A significant growth inhibition of the P. falciparum was displayed by analog 12c with IC50 value of 1.35?±?0.85?µM, however, it did not show inhibitory activity against either Plms. The hemolytic assay suggested that the active compounds selectively inhibit the growth of the parasite. Further, potent analogs (10f and 12c) were evaluated for their cytotoxicity towards mammalian HepG2 and vero cells. The selectivity index (SI) values were noticed greater than 10 for both the analogs that suggested their poor toxicity. The present study indicates these analogs as putative lead structures and could serve as crucial for the development of new drug molecules.  相似文献   

19.
The development of multi-drug resistance to existing anticancer drugs is one of the major challenges in cancer treatment. The over-expression of cytochrome P450 1B1 enzyme has been reported to cause resistance to cisplatin. With an objective to discover cisplatin-resistance reversal agents, herein, we report the evaluation of Glycyrrhiza glabra (licorice) extracts and its twelve chemical constituents for inhibition of CYP1B1 (and CYP1A1) enzyme in Sacchrosomes and live human cells. The hydroalcoholic extract showed potent inhibition of CYP1B1 in both Sacchrosomes as well as in live cells with IC50 values of 21 and 16?µg/mL, respectively. Amongst the total of 12 constituents tested, quercetin and glabrol showed inhibition of CYP1B1 in live cell assay with IC50 values of 2.2 and 15?µM, respectively. Both these natural products were found to be selective inhibitors of CYP1B1, and does not inhibit CYP2 and CYP3 family of enzymes (IC50?>?20?µM). The hydroalcoholic extract of G. glabra and quercetin (4) showed complete reversal of cisplatin resistance in CYP1B1 overexpressing triple negative MDA-MB-468 breast cancer cells. The selective inhibition of CYP1B1 by quercetin and glabrol over CYP2 and CYP3 family of enzymes was studied by molecular modeling studies.  相似文献   

20.
The inhibition of the δ-class carbonic anhydrase (CAs, EC 4.2.1.1) from the diatom Thalassiosira weissflogii, TweCAδ, was investigated using a panel of 36 mono- and di-thiocarbamates chemotypes that have recently been shown to inhibit mammalian and pathogenic CAs belonging to the α- and β-classes. TweCAδ was not significantly inhibited by most of such compounds (KI values above 20 µM). However, some aliphatic, heterocyclic, and aromatic mono and di-thiocarbamates inhibited TweCAδ in the low micromolar range. For some compounds incorporating the piperazine ring, TweCAδ was effectively inhibited (KIs from 129 to 791?nM). The most effective inhibitors identified in this study were 3,4-dimethoxyphenyl-ethyl-mono-thiocarbamate (KI of 67.7?nM) and the R-enantiomer of the nipecotic acid di-thiocarbamate (KI of 93.6?nM). Given that the activity and inhibition of this class of enzyme have received limited attention until now, this study provides new molecular probes and information for investigating the role of δ-CAs in the carbon fixation processes in diatoms, which are responsible for significant amounts of CO2 taken from the atmosphere by these marine organisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号