首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

7-Amino-3,4-dihydro-1H-quinolin-2-one, a compound structurally similar to coumarins, recently discovered class of inhibitors of the α-carbonic anhydrases (CAs, EC 4.2.1.1) was investigated for its interaction with all human (h) CA isoforms, hCA I-XIV. The compound was not an inhibitor of the cytosolic, widespread isoform hCA II (KI?>?10?µM), was a weak inhibitor of hCA I, III, IV, VA, VI and XIII (KIs in the range of 0.90–9.5?µM) but effectively inhibited the cytosolic isoform hCA VII (KI of 480?nM) as well as the transmembrane isoforms hCA IX, XII and XIV (KIs in the range of 16.1–510?nM). Against many CA isoforms this lactam was a better inhibitor compared to the structurally similar 4-methyl-7-aminocoumarin, but unlike this compound, the lactam ring was not hydrolyzed and the inhibition was due to the intact bicyclic amino-quinolinone scaffold. Bicyclic lactams strucurally related to coumarins are thus a new class of CA inhibitors possessing however a distinct inhibition mechanism compared to the coumarins which undergo a hydrolysis of their lactone ring for generating the enzyme inhibitory species.  相似文献   

2.
A series of N-alkylated saccharin derivatives were synthesized and tested for the inhibition of four different isoforms of human carbonic anhydrase (CA, EC 4. 2.1.1): the transmembrane tumor-associated CA IX and XII, and the cytosolic CA I and II. Most of the reported derivatives inhibited CA XII in the nanomolar/low micromolar range, hCA IX with KIs ranging between 11 and 390 nM, whereas they were inactive against both CA I (KIs >50 μM) and II (KIs ranging between 39.1 nM and 50 μM). Since CA I and II are off-targets of antitumor carbonic anhydrase inhibitors (CAIs), the obtained results represent an encouraging achievement for the development of new anticancer candidates without the common side effects of non-selective CAIs. Moreover, the lack of an explicit zinc binding function on these inhibitors opens the way towards the exploration of novel mechanisms of inhibition that could explain the high selectivity of these compounds for the inhibition of the transmembrane, tumor-associated isoforms over the cytosolic ones.  相似文献   

3.
Abstract

The boron heterocyclic compound dipotassium-trioxohydroxytetrafluorotriborate (K2[B3O3F4OH]) was investigated as inhibitor of the zinc enzyme, carbonic anhydrase (CA, EC 4.2.1.1). Eleven human (h) CA isoforms, hCA I–IV, VA, VI, VII, IX and XII–XIV, were included in the investigations. The anion, similar to tetraborate or phenylboronic acid, inhibited most of them. hCA III was not inhibited by K2[B3O3F4OH], whereas hCA VA, hCA VI, hCA IX and hCA XIII were inhibited in the submillimolar range, with KIs of 0.31–0.63?mM. hCA I and II (cytosolic, widespread isoforms), hCA IV (membrane-bound isoform), hCA XII (tumor-associated, transmembrane) and hCA XIV (transmembrane) were much more effectively inhibited by this anion, with inhibition constants ranging from 25 to 93?µM. hCA VII, a cytosolic enzyme present in the brain and associated to oxidative stress, was very effectively inhibited by K2[B3O3F4OH], with a KI of 8.0?µM. We propose that K2[B3O3F4OH] binds to the metal ion from the enzyme active site, coordinating to the Zn(II) ion monodentately through its B-OH functionality. We hypothesize that some of the beneficial antitumor effects reported for K2[B3O3F4OH] may be due to the inhibition of CAs present in skin tumors.  相似文献   

4.
Abstract

A series of coumarins and benzocoumarins incorporating methyl and hydroxyl moieties in the heterocyclic ring were investigated for the inhibition of the zinc enzyme carbonic anhydrase (CA, EC 4.2.1.1). These coumarins were very weak or ineffective as inhibitors of the house-keeping, offtarget isoforms CA I and II, but showed effective, submicromolar inhibition of the transmembrane, tumor-associated isoforms CA IX and to a slightly less extent, CA XII. The nature and position of the groups substituting the coumarin ring influenced CA inhibitory properties. 4-Methyl-5,7-dihydroydroxycoumarin showed KIs >200?µM against CA I and II, of 0.19?µM against CA IX and of 6.4?µM against CA XII, being thus a selective, efficient inhibitor for the tumor-associated over cytosolic CA isoforms. These compounds are interesting leads for designing isoform-selective enzyme inhibitors.  相似文献   

5.
A series of sulfonamide derivatives incorporating substituted 3-formylchromone moieties were investigated for the inhibition of three human carbonic anhydrase (hCA, EC 4.2.1.1) isoforms, hCA I, II, and VI. All these compounds, together with the clinically used sulfonamide acetazolamide, were investigated as inhibitors of the physiologically relevant isozymes I, II (cytosolic), and VI (secreted isoform). These sulfonamides showed effective inhibition against all these isoforms with KI’s in the range of 0.228 to 118 µM. Such molecules can be used as leads for discovery of novel effective CA inhibitors against other isoforms with medicinal chemistry applications.  相似文献   

6.
Herein we report for the first time an efficient synthetic procedure for the preparation of N-aryl-N’-ureido-O-sulfamates (AUSs) as a new class of Carbonic Anhydrase Inhibitors (CAIs). The compounds were tested for the inhibition of several human (h) Carbonic Anhydrase (CA; EC 4.2.1.1) isoforms. Interesting inhibition activity and high selectivity against CA VII and XII versus CA I and II, with KIs in the low nanomolar range, were observed. Molecular modeling studies allowed us to decipher the structural features underpinning the selective inhibitory profile of AUSs towards isoforms CAs VII and XII. A selection of sulfamates showed promising neuropathic pain modulating effects in an in vivo animal model of oxaliplatin induced pain.  相似文献   

7.
Abstract

A small series of 2,4-dioxothiazolidinyl acetic acids was prepared from thiourea, chloroacetic acid, aromatic aldehydes, and ethyl-2-bromoacetate. They were assayed for the inhibition of four physiologically relevant carbonic anhydrase (CA, EC 4.2.1.1) isoforms of human (h) origin, the cytosolic hCA I and II, and the transmembrane hCA IX and XII, involved among others in tumorigenesis (hCA IX and XII) and glaucoma (hCA II and XII). The two cytosolic isoforms were not inhibited by these carboxylates, which were also rather ineffective as hCA IX inhibitors. On the other hand, they showed submicromolar hCA XII inhibition, with KIs in the range of 0.30–0.93?µM, making them highly CA XII-selective inhibitors.  相似文献   

8.
A series of phenolic and saponin type natural products such as quercetin, rutin, catechin, epicatechin, silymarin, trojanoside H, astragaloside IV, astragaloside VIII and astrasieversianin X, were investigated for their inhibitory effects against the metalloenzyme carbonic anhydrase (CA, EC 4.2.1.1). We here report inhibitory effects of these compounds against five α-CA isozymes (hCA I, hCA II, bCA III, hCA IV and hCA VI). Most of the phenolic and saponin type compounds inhibited the isoenzymes quite effectively at low micromolar KI-s ranging between 0.1 and 4 µM, whereas a few derivatives were ineffective (KI-s > 100 µM). The results were remarkable which might lead to design of novel CAIs with a diverse inhibition mechanism compared to sulfonamide/sulfamate inhibitors.  相似文献   

9.
The natural product dodoneine (a dihydropyranone phenolic compound), extracted from African mistletoe Agelanthus dodoneifolius, has been investigated as inhibitor of several human carbonic anhydrase (hCA, EC 4.2.1.1) isoforms. By using superacid chemistry, analogues of the lactone phenolic hybrid lead compound have been synthesized and tested as CA inhibitors. Small chemical modifications of the basic scaffold revealed strong changes in the selectivity profile against different CA isoforms. These new compounds selectively inhibited isoforms CA I (KIs in the range of 0.13–0.76 μM), III (KIs in the range of 5.13–10.80 μM), XIII (KIs in the range of 0.34–0.96 μM) and XIV (KIs in the range of 2.44–7.24 μM), and can be considered as new leads, probably acting as non-zinc-binders, similar to other phenols/lactones investigated earlier.  相似文献   

10.
Review Article     
Carbonic anhydrases (CAs, EC 4.2.1.1) are wide-spread enzymes, present in mammals in at least 14 different isoforms. Some of these isozymes are cytosolic (CA I, CA II, CA III, CA VII, CA XIII), others are membrane-bound (CA IV, CA IX, CA XII and CA XIV), CA V is mitochondrial and CA VI is secreted in the saliva and milk. Three cytosolic acatalytic forms are also known (CARP VIII, CARP X and CARP XI). The catalytically active isoforms, which play important physiological and patho-physiological functions, are strongly inhibited by aromatic and heterocyclic sulfonamides. The catalytic and inhibition mechanisms of these enzymes are understood in great detail, and this greatly helped the design of potent inhibitors, some of which possess important clinical applications. The use of such CA inhibitors (CAIs) as antiglaucoma drugs are discussed in detail, together with the recent developments that led to isozyme-specific and organ-selective inhibitors. A recent discovery is connected with the involvement of CAs and their sulfonamide inhibitors in cancer: many potent CAIs were shown to inhibit the growth of several tumor cell lines in vitro and in vivo, thus constituting interesting leads for developing novel antitumor therapies. Future prospects for drug design of inhibitors of these ubiquitous enzymes are dealt with. Although activation of CAs has been a controversial issue for some time, recent kinetic, spectroscopic and X-ray crystallographic experiments offered an explanation of this phenomenon, based on the catalytic mechanism. It has been demonstrated recently, that molecules that act as carbonic anhydrase activators (CAAs) bind at the entrance of the enzyme active site participating in facilitated proton transfer processes between the active site and the reaction medium. In addition to CA II-activator adducts, X-ray crystallographic studies have been also reported for ternary complexes of this isozyme with activators and anion (azide) inhibitors. Structure-activity correlations for diverse classes of activators is discussed for the isozymes for which the phenomenon has been studied, i.e, CA I, II, III and IV. The possible physiological relevance of CA activation/inhibition is also addressed, together with recent pharmacological/biomedical applications of such compounds in different fields of life sciences.  相似文献   

11.
We investigated the inhibitory activity of sulfonamides incorporating adamantyl moieties against the physiologically relevant human (h) CA (EC 4.2.1.1) isoforms hCA I, II III (cytosolic), IX and XII (transmembrane, tumor-associated). The presence of a benzenesulfonamide instead of an 1,3,4-thiadiazole-sulfonamide fragment in the molecule of CA inhibitors (CAIs) drastically affects both inhibition efficacy and binding within the enzyme active site, as rationalized by means of X-ray crystallography of the adduct of hCA II with 4-(1-adamantylcarboxamidomethyl)benzenesulfonamide. Comparing the present X-ray structure with that of the corresponding 1,3,4-thiadiazole-sulfonamide compound possessing the 1-adamantylcarboxamide moiety, important differences of binding emerged, which explain the highly different inhibition profile of the two compounds against the investigated CA isoforms, most of which (CA I, II, IX and XII) are important drug targets.  相似文献   

12.
Three series of polycyclic compounds possessing either primary sulfonamide or carboxylic acid moieties as zinc-binding groups were investigated as inhibitors of four physiologically relevant CA isoforms, the cytosolic hCA I and II, as well as the transmembrane hCA IX and XII. Most of the new sulfonamides reported here showed excellent inhibitory effects against isoforms hCA II, IX and XII, but no highly isoform-selective inhibition profiles. On the other hand, the carboxylates selectively inhibited hCA IX (KIs ranging between 40.8 and 92.7 nM) without inhibiting significantly the other isoforms. Sulfonamides/carboxylates incorporating polycyclic ring systems such as benzothiopyranopyrimidine, pyridothiopyranopyrimidine or dihydrobenzothiopyrano[4,3-c]pyrazole may be considered as interesting candidates for exploring the design of isoform-selective CAIs with various pharmacologic applications.  相似文献   

13.
The new antitumor sulfamate EMD 486019 was investigated for its interaction with twelve catalytically active mammalian carbonic anhydrase (CA, EC 4.2.1.1) isozymes, hCA I – XIV. Similarly to 667-Coumate, a structurally related compound in phase II clinical trials as steroid sulfatase/CA inhibitor with potent antitumor properties, EMD 486019 acts as a strong inhibitor of isozymes CA II, VB, VII, IX, XII, and XIV (KIs in the range of 13–19 nM) being less effective against other isozymes (KIs in the range of 66–3600 nM against hCA I, IV, VA, VI, and mCA XIII, respectively). The complete inhibition profile of 667-Coumate against these mammalian CAs is also reported here for the first time. Comparing the X-ray crystal structures of the two adducts of CA II with EMD 486019 and 667-Coumate, distinct orientations of the bound sulfamates within the enzyme cavity were observed, which account for their distinct inhibition profiles. CA II/IX potent inhibitors belonging to the sulfamate class are thus valuable clinical candidates with potential for development as antitumor agents with a multifactorial mechanism of action.  相似文献   

14.
Carbonic anhydrases (CAs, EC 4.2.1.1) are wide-spread enzymes, present in mammals in at least 14 different isoforms. Some of these isozymes are cytosolic (CA I, CA II, CA III, CA VII, CA XIII), others are membrane-bound (CA IV, CA IX, CA XII and CA XIV), CA V is mitochondrial and CA VI is secreted in the saliva and milk. Three cytosolic acatalytic forms are also known (CARP VIII, CARP X and CARP XI). The catalytically active isoforms, which play important physiological and patho-physiological functions, are strongly inhibited by aromatic and heterocyclic sulfonamides. The catalytic and inhibition mechanisms of these enzymes are understood in great detail, and this greatly helped the design of potent inhibitors, some of which possess important clinical applications. The use of such CA inhibitors (CAIs) as antiglaucoma drugs are discussed in detail, together with the recent developments that led to isozyme-specific and organ-selective inhibitors. A recent discovery is connected with the involvement of CAs and their sulfonamide inhibitors in cancer: many potent CAIs were shown to inhibit the growth of several tumor cell lines in vitro and in vivo, thus constituting interesting leads for developing novel antitumor therapies. Future prospects for drug design of inhibitors of these ubiquitous enzymes are dealt with. Although activation of CAs has been a controversial issue for some time, recent kinetic, spectroscopic and X-ray crystallographic experiments offered an explanation of this phenomenon, based on the catalytic mechanism. It has been demonstrated recently, that molecules that act as carbonic anhydrase activators (CAAs) bind at the entrance of the enzyme active site participating in facilitated proton transfer processes between the active site and the reaction medium. In addition to CA II-activator adducts, X-ray crystallographic studies have been also reported for ternary complexes of this isozyme with activators and anion (azide) inhibitors. Structure-activity correlations for diverse classes of activators is discussed for the isozymes for which the phenomenon has been studied, i.e., CA I, II, III and IV. The possible physiological relevance of CA activation/inhibition is also addressed, together with recent pharmacological/ biomedical applications of such compounds in different fields of life sciences.  相似文献   

15.
Here, we investigate 28 structurally new sulfonamides and their subsequent testing for enzyme inhibition of cytosolic and tumor-associated carbonic anhydrases (CAs, EC 4.2.1.1). The compounds showed very potent inhibition of four physiologically relevant human (h) CA isoforms, namely hCA I, II, IX and XII. Interestingly, the KI values were in the nanomolar range for the tumor-associated hCA IX and hCA XII. Docking studies have revealed details regarding the very favorable interactions between the scaffolds of this new class of inhibitors and the active sites of the investigated CA isoforms. As there are reported cases of tumors overexpressing both CA II and IX, such potent inhibitors for the two isoforms as those detected in this work, may have applications for targeting more than one CA present in tumors.  相似文献   

16.
Carbonic anhydrases (CA, EC 4.2.1.1) are Zinc metalloenzymes and are present throughout most living organisms. Among the catalytically active isoforms are the cytosolic CA I and II, and tumor-associated CA IX and CA XII. The carbonic anhydrase (CA) inhibitory activities of newly synthesized pyrazoline-linked benzenesulfonamides 1833 against human CA (hCA) isoforms I, II, IX, and XII were measured and compared with that of acetazolamide (AAZ), a standard inhibitor. Potent inhibitory activity against hCA I was exerted by compounds 1825, with inhibition constant (KI) values of 87.8–244.1 nM, which were greater than that of AAZ (KI, 250.0 nM). Compounds 19, 21, 22, 29, 30, and 32 were proven to have inhibitory activities against hCA IX with KI values (5.5–37.0 nM) that were more effective than or nearly equal to that of AAZ (KI, 25.0 nM). Compounds 2022, and 30 exerted potent inhibitory activities (KIs, 7.1–10.1 nM) against hCA XII, in comparison with AAZ (KI, 5.7 nM).  相似文献   

17.
A sulfonamide derivative of the antihelmintic drug thiabendazole was prepared and investigated for inhibition of the zinc enzyme carbonic anhydrase CA (EC 4.2.1.1). Mammalian isoforms CA I–XIV and the nematode enzyme of Caenorhabditis elegans CAH-4b were included in this study. Thiabendazole-5-sulfonamide was a very effective inhibitor of CAH-4b and CA IX (KIs of 6.4–9.5 nm) and also inhibited effectively isozymes CA I, II, IV–VII, and XII, with KIs in the range of 17.8–73.2 nM. The high resolution X-ray crystal structure of its adduct with isozyme II evidenced the structural elements responsible for this potent inhibitory activity.  相似文献   

18.
A series of 2-mercapto-substituted-benzenesulfonamides has been prepared by a unique two-step procedure starting from the corresponding 2-chloro-substituted benzenesulfonamides. Compounds bearing an unsubstituted mercapto group and the corresponding S-benzoyl derivatives were investigated as inhibitors of four isoforms of the zinc enzyme carbonic anhydrase (CA, EC 4.2.1.1), i.e., the cytosolic, ubiquitous isozymes CA I and II, as well as the transmembrane, tumor associated isozymes CA IX and XII. These derivatives were medium potency hCA I inhibitors (KIs in the range of 1.5–5.7 μM), two derivatives were strong hCA II inhibitors (KIs in the range of 15–16 nM), whereas the others showed weak activity. These compounds inhibited hCA IX with inhibition constants in the range 160–1950 nM and hCA XII with inhibition constants in the range 1.2–413 nM. Some of these derivatives showed a certain degree of selectivity for inhibition of the tumor-associated over the cytosolic isoforms, being thus interesting leads for the development of potentially novel applications in the management of hypoxic tumors which overexpress CA IX and XII.  相似文献   

19.
A series of polyphenolic derivatives, including resveratrol, dobutamine, curcumin, catechin and silymarine were investigated for the inhibition of all the catalytically active mammalian isozymes of the metalloprotein carbonic anhydrase (CA, EC 4.2.1.1), that is, CA I–CA XV. These polyphenols effectively inhibited CAs, with KIs in the range of 380 nM–12.02 μM. The various isozymes showed quite diverse inhibition profiles with these compounds, which possess scaffolds not present in other investigated CA inhibitors (CAIs). These data may lead to drug design campaigns of effective CAIs possessing a diverse inhibition mechanism compared to sulfonamide/sulfamate inhibitors, based on such less investigated scaffolds.  相似文献   

20.
A series of aromatic, arylalkenyl- and arylalkyl boronic acids were assayed as inhibitors of four physiologically relevant carbonic anhydrase (CA, EC 4.2.1.1) isoforms, the cytosolic human (h) hCA I and II, and the transmembrane, tumor-associated hCA IX and XII. The best hCA I and II inhibitor was biphenyl boronic acid with, a KI of 3.7–4.5 μM, whereas the remaining derivatives showed inhibition constants in the range of 6.0–1560 μM for hCA I and of 6.0–1050 μM for hCA II, respectively. hCA IX and XII were effectively inhibited by most of the aromatic boronic acids (KIs of 7.6–12.3 μM) whereas the arylalkenyl and aryl–alkyl derivatives generally showed weaker inhibitory properties (KIs of 34–531 μM). The nature of the moiety substituting the boronic acid group strongly influenced the CA inhibitory activity, with inhibitors possessing low micromolar to millimolar activity being detected in this small series of investigated compounds. This study proves that the B(OH)2 moiety represents a new zinc-binding group for the generation of effective CA inhibitors targeting isoforms with medicinal chemistry applications. The boronic acids probably bind to the Zn(II) ion within the CA active site leading to a tetrahedral geometry of the metal ion and of the B(III) derivative.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号