首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The goal of the present work was to explore the influence of commercially available cell phone irradiation on the single neuron excitability and memory processes. A Transverse Electromagnetic Cell (TEM Cell) was used to expose single neurons of mollusk to the electromagnetic field.

Finite-Difference Time-Domain (FDTD) method was used for modeling the TEM Cell and the electromagnetic field interactions with living nerve ganglion and neurons. Neuron electrophysiology was investigated using standard microelectrode technique.

The specific absorption rate (SAR) deposited into the single neuron was calculated to be 0.63 W/kg with a temperature increment of 0.1°C. After acute exposure, average firing threshold of the action potentials was not changed. However, the average latent period was significantly decreased. This indicates that together with latent period the threshold and the time of habituation might be altered during exposure. However, these alterations are transient and only latent period remains on the changed level.  相似文献   

2.
The goal of the present work was to explore the influence of commercially available cell phone irradiation on the single neuron excitability and memory processes. A Transverse Electromagnetic Cell (TEM Cell) was used to expose single neurons of mollusk to the electromagnetic field. Finite-Difference Time-Domain (FDTD) method was used for modeling the TEM Cell and the electromagnetic field interactions with living nerve ganglion and neurons. Neuron electrophysiology was investigated using standard microelectrode technique. The specific absorption rate (SAR) deposited into the single neuron was calculated to be 0.63?W/kg with a temperature increment of 0.1°C. After acute exposure, average firing threshold of the action potentials was not changed. However, the average latent period was significantly decreased. This indicates that together with latent period the threshold and the time of habituation might be altered during exposure. However, these alterations are transient and only latent period remains on the changed level.  相似文献   

3.
The increasing use of mobile telephones raises the question of possible adverse effects of the electromagnetic fields (EMF) that these phones produce. In this study, we examined the oxidative stress in the brain tissue and serum of rats that resulted from exposure to a 900-MHz EMF at a whole body average specific absorption rate (SAR) of 1.08 W/kg for 1 h/day for 3 weeks. We also examined the antioxidant effect of garlic powder (500 mg/kg/day) given orally to EMF-exposed rats. We found that malondialdehyde (MDA) (p < 0.001) and advanced oxidation protein product (AOPP) (p < 0.05) increased in rat brain tissue exposed to the EMF and that garlic reduced these effects (p < 0.05). There was no significant difference in the nitric oxide (NO) levels in the brain. Paraoxonase (PON) was not detected in the brain. There was a significant increase in the levels of NO (p < 0.001) detected in the serum after EMF exposure, and garlic intake did not affect this increase in NO. Our results suggest that there is a significant increase in brain lipid and protein oxidation after electromagnetic radiation (EMR) exposure and that garlic has a protective effect against this oxidative stress.  相似文献   

4.
The use of therapeutic electromagnetic fields (EMF) for bone healing has positive clinical effects but may have adverse biologic effects. For this reason, EMF exposure has been repeatedly investigated to exclude the possibility of genotoxic effects and tumour risk. This paper describes the effects of EMFs on cell cultures. We analyzed the effects of EMF (28 gauss, 75 Hz) on growth and metabolic activities in four different cell types: L929 fibro-blasts, osteoblast-like HOS/TE85 cells, human lymphocytes, and rabbit chondrocytes. We found no cytotoxic or mutagenic effects on cultures exposed to EMF compared with unexposed controls. Results of cell proliferation showed a statistically significant increase for all cultures exposed to EMF with respect to controls (L929 +45%, p = 0.002; HOS/TE85 +32%, p = 0.001; chondrocytes +40%, p = 0.0003; lymphocytes +39%, p = 0.0002). Biochemical and enzymatic tests gave different results, depending on cell types: all tested values were increased after EMF exposure, even if only some of them reached statistical significance (total proteins: HOS/TE85 p = 0.004, chondrocytes p = 0.003; alkaline phosphatase: L929p = 0.0003, HOS/RE85 p = 0.0001, chondrocytes p = 0.009, lymphocytes p = 0.006; lactate dehydrogenase: chondrocytes p = 0.0002, lymphocytes p = 0.0005). Biochemical and enzymatic tests and cell proliferation results suggest a more active metabolism in cartilage and bone cells after EMF exposure. These effects could be relevant for bone healing in clinical practice.  相似文献   

5.
A sub‐acute electromagnetic field (EMF) biological effect study was carried out on rats exposed in the Transverse ElectroMagnetic exposure chamber at 171 MHz Continuous Wave (CW). The experiments involved three exposure levels (15, 25, and 35 V/m) for 15 days with triplicate parallel sham‐exposed controls in each series. All exposure conditions were simulated for the evaluation of the electromagnetic energy distribution and specific absorption rate (SAR) in the rat phantoms. Studies have shown a biphasic biological response depending on time and absorbed electromagnetic energy. Under low SAR, approximately 0.006 W/kg, EMF exposure leads to the stimulation of adrenal gland activity. This process is accompanied by an initial increase of daily excretion of corticosterone and Na+, which is seen as a higher Na+/K+ ratio, followed by a decrease of these parameters over time. It is possible that EMF exposure causes a stress response in animals, which is seen as an increased adrenal activity. Bioelectromagnetics. 2019;40:578–587. © 2019 Bioelectromagnetics Society.  相似文献   

6.
According to international guidelines, the assessment of biophysical effects of exposure to electromagnetic fields (EMF) generated by hand-operated sources needs the evaluation of induced electric field (E in) or specific energy absorption rate (SAR) caused by EMF inside a worker's body and is usually done by the numerical simulations with different protocols applied to these two exposure cases. The crucial element of these simulations is the numerical phantom of the human body. Procedures of E in and SAR evaluation due to compliance analysis with exposure limits have been defined in Institute of Electrical and Electronics Engineers standards and International Commission on Non-Ionizing Radiation Protection guidelines, but a detailed specification of human body phantoms has not been described. An analysis of the properties of over 30 human body numerical phantoms was performed which has been used in recently published investigations related to the assessment of EMF exposure by various sources. The differences in applicability of these phantoms in the evaluation of E in and SAR while operating industrial devices and SAR while using mobile communication handsets are discussed. The whole human body numerical phantom dimensions, posture, spatial resolution and electric contact with the ground constitute the key parameters in modeling the exposure related to industrial devices, while modeling the exposure from mobile communication handsets, which needs only to represent the exposed part of the human body nearest to the handset, mainly depends on spatial resolution of the phantom. The specification and standardization of these parameters of numerical human body phantoms are key requirements to achieve comparable and reliable results from numerical simulations carried out for compliance analysis against exposure limits or within the exposure assessment in EMF-related epidemiological studies.  相似文献   

7.
The original article to which this Erratum was published in J. Cell. Physiol. 198:324–332, 2004 It has been recently established that low‐frequency electromagnetic field (EMFs) exposure induces biological changes and could be associated with increased incidence of cancer, while the issue remains unresolved as to whether high‐frequency EMFs can have hazardous effect on health. Epidemiological studies on association between childhood cancers, particularly leukemia and brain cancer, and exposure to low‐ and high‐frequency EMF suggested an etiological role of EMFs in inducing adverse health effects. To investigate whether exposure to high‐frequency EMFs could affect in vitro cell survival, we cultured acute T‐lymphoblastoid leukemia cells (CCRF‐CEM) in the presence of unmodulated 900 MHz EMF, generated by a transverse electromagnetic (TEM) cell, at various exposure times. We evaluated the effects of high‐frequency EMF on cell growth rate and apoptosis induction, by cell viability (MTT) test, FACS analysis and DNA ladder, and we investigated pro‐apoptotic and pro‐survival signaling pathways possibly involved as a function of exposure time by Western blot analysis. At short exposure times (2–12 h), unmodulated 900 MHz EMF induced DNA breaks and early activation of both p53‐dependent and ‐independent apoptotic pathways while longer continuous exposure (24–48 h) determined silencing of pro‐apoptotic signals and activation of genes involved in both intracellular (Bcl‐2) and extracellular (Ras and Akt1) pro‐survival signaling. Overall our results indicate that exposure to 900 MHz continuous wave, after inducing an early self‐defense response triggered by DNA damage, could confer to the survivor CCRF‐CEM cells a further advantage to survive and proliferate. J. Cell. Physiol. 198: 324–332, 2004. © 2003 Wiley‐Liss, Inc.  相似文献   

8.
Exposure to repetitive low‐frequency electromagnetic field (LF‐EMF) shows promise as a non‐invasive approach to treat various sensory and neurological disorders. Despite considerable progress in the development of modern stimulation devices, there is a limited understanding of the mechanisms underlying their biological effects and potential targets at the cellular level. A significant impact of electromagnetic field on voltage‐gated calcium channels and downstream signalling pathways has been convincingly demonstrated in many distinct cell types. However, evidence for clear effects on primary sensory neurons that particularly may be responsible for the analgesic actions of LF‐EMF is still lacking. Here, we used F11 cells derived from dorsal root ganglia neurons as an in vitro model of peripheral sensory neurons and three different protocols of high‐induction magnetic stimulation to determine the effects on chemical responsiveness and spontaneous activity. We show that short‐term (<180 sec.) exposure of F11 cells to LF‐EMF reduces calcium transients in response to bradykinin, a potent pain‐producing inflammatory agent formed at sites of injury. Moreover, we characterize an immediate and reversible potentiating effect of LF‐EMF on neuronal spontaneous activity. Our results provide new evidence that electromagnetic field may directly modulate the activity of sensory neurons and highlight the potential of sensory neuron‐derived cell line as a tool for studying the underlying mechanisms at the cellular and molecular level.  相似文献   

9.
The ability of living organisms to perceive electromagnetic radiation is one of the most intriguing issues that concern the fundamental problem of interaction of living matter with the factors of physical nature. Polyphosphates can be possible receptors. The purpose of the study was to evaluate the role of the polyphosphatases PPN1 and PPX1 in the cell response to exposure to electromagnetic fields (EMFs) of 1871 MHz that were generated by DCS-1800 base stations. Six-week exposure at energy flux densities of 0.1–10 W/m2 was used. The corresponding values of specific adsorption rate (SAR) were 0.0075–1.5 W/kg. Electromagnetic radiation was found to lead to the impairment of a number of physiological and metabolic functions of cells, change their resistance to antibiotics, and result in irreversible changes in their genome. Low doses of the EMF caused the strongest biological responses. It was demonstrated that the deficiency in the ppn1 and ppx1 genes made the strains less adaptive, which resulted in an increase in their sensitivity to EMF exposure. Both polyphosphatases PPN1 and PPX1 were shown to be necessary for the normal cell response to the nonionizing electromagnetic radiation of 1871 MHz.  相似文献   

10.
Lee KS  Choi JS  Hong SY  Son TH  Yu K 《Bioelectromagnetics》2008,29(5):371-379
Mobile phones are widely used in the modern world. However, biological effects of electromagnetic radiation produced by mobile phones are largely unknown. In this report, we show biological effects of the mobile phone 835 MHz electromagnetic field (EMF) in the Drosophila model system. When flies were exposed to the specific absorption rate (SAR) 1.6 W/kg, which is the proposed exposure limit by the American National Standards Institute (ANSI), more than 90% of the flies were viable even after the 30 h exposure. However, in the SAR 4.0 W/kg strong EMF exposure, viability dropped from the 12 h exposure. These EMF exposures triggered stress response and increased the production of reactive oxygen species. The EMF exposures also activated extracellular signal regulated kinase (ERK) and c-Jun N-terminal kinase (JNK) signaling, but not p38 kinase signaling. Interestingly, SAR 1.6 W/kg activated mainly ERK signaling and expression of an anti-apoptotic gene, whereas SAR 4.0 W/kg strongly activated JNK signaling and expression of apoptotic genes. In addition, SAR 4.0 W/kg amplified the number of apoptotic cells in the fly brain. These findings demonstrate that the exposure limit on electromagnetic radiation proposed by ANSI triggered ERK-survival signaling but the strong electromagnetic radiation activated JNK-apoptotic signaling in Drosophila.  相似文献   

11.
The possible harmful effects of radiofrequency electromagnetic fields (RF EMFs) are controversial. We have used human Mono Mac 6 cells to investigate the influence of RF EMFs in vitro on cell cycle alterations and BrdU uptake, as well as the induction of apoptosis and necrosis in human Mono Mac 6 cells, using flow cytometry after exposure to a 1,800 MHz, 2 W/kg specific absorption rate (SAR), GSM-DTX signal for 12 h. No statistically significant differences in the induction of apoptosis or necrosis, cell cycle kinetics, or BrdU uptake were detected after RF EMF exposure compared to sham or incubator controls. However, in the positive control cells treated with gliotoxin and PMA (phorbol 12 myristate-13 acetate), a significant increase in apoptotic and necrotic cells was seen. Cell cycle analysis or BrdU incorporation for 72 h showed no differences between RF EMF- or sham-exposed cells, whereas PMA treatment induced a significant accumulation of cells in G(0)/G(1)-phase and a reduction in S-phase cells. RF EMF radiation did not induce cell cycle alterations or changes in BrdU incorporation or induce apoptosis and necrosis in Mono Mac 6 cells under the exposure conditions used.  相似文献   

12.
In the present work, the frequency-dependent effects of extremely low-frequency electromagnetic field (ELF EMF) on Escherichia coli K-12 growth have been studied. The frequency-dependent effects of ELF EMF have shown that it can either stimulate or inhibit the growth of microbes. However, the mechanism by which the ELF EMF affects the bacterial cells is not clear yet. It was suggested that the aqua medium can serve as a target through which the biological effect of ELF EMF on microbes may be realized. To check this hypothesis, the frequency-dependent effects (2, 4, 6, 8, 10 Hz, B = 0.4 mT, 30 min) of ELF EMF on the bacterial growth were studied in both cases where the microbes were in the culture media during the exposure and where culture media was preliminarily exposed to the ELF EMF before the addition of bacteria. For investigating the cell proliferation, the radioactive [3H]-thymidine assay was carried out. It has been shown that EMF at 4 Hz exposure has pronounced stimulation while at 8 Hz it has inhibited cell proliferation.  相似文献   

13.
人们对电磁辐射越来越关注,但是工频磁场产生的生物效应并不确定.选用1、5、10 mT的工频磁场照射急性分离的小鼠皮层神经元(15 min),应用全细胞膜片钳技术离线记录瞬时外向钾通道电流,研究工频磁场对离子通道的影响.结果显示:工频磁场抑制通道的电流密度,并且1 mT、5 mT及10 mT工频磁场的抑制率分别为(63.0±2.2)%、(55.0±1.7)%和(38.0±1.8)%.工频磁场影响离子通道的激活和失活特性,半数激活电压和半数失活电压变小.不同强度工频磁场对离子通道产生的影响程度不同,其中1 mT工频磁场对通道电流的抑制率最大,5 mT工频磁场对通道的半数激活电压和半数失活电压影响最大,10 mT工频磁场增大了通道的失活斜率因子.研究结果表明,工频磁场影响了细胞膜上离子通道蛋白质构象的变化,进一步影响了离子通道的正常功能.  相似文献   

14.
Considering often contradictory data on biological effects of mobile phones frequencies on established cell culture lines, our study aimed at evaluating the influence of 864 MHz electromagnetic field on proliferation, colony forming ability and viability of Chinese hamster lung cells continuous line V79. Prior to exposure for 1, 2 and 3 hours in transversal electromagnetic mode cell (TEM-cell) equipped by Philips PM 5508 signal generator cell samples were sub-cultivated for one day. Cell samples were exposed to 864 MHz continuous wave at an average specific absorption rate (SAR) of 0.08 W/kg. To determine cell growth, V79 cells were plated in concentration of 1 × 104 cells per milliliter of nutrient medium RPMI 1640, and raised in a humified atmosphere at 37°C in 5% CO2. Cell proliferation was determined by cell counts for each hour of exposure on post-exposure day 1, 2, 3, 4 and 5. To identify colony-forming ability, cells were cultivated in concentration of 40 cells/mL of RPMI 1640 and incubated according to the deliberated experimental protocol. Colony forming ability for each hour of exposure was defined by colony counts on experimental day 7. Trypan blue exclusion test was used to determine viability of cells. In comparison to sham-exposed cells, growth curve of irradiated cell samples showed significant decrease (p < 0.05) after 2 and 3 hours of exposure on experimental day 3, respectively. Both, the colony forming ability and viability of irradiated cells did not significantly differ from exposed “mock” condition. Under strictly controlled laboratory conditions, applied radiofrequency microwaves (RF/MW) irradiation significantly affected cell proliferation kinetics but not viability or ability of V79 cells to form colonies. Sophisticated mechanism of action is intending to be elucidated in the further research which will include insight into the RF/MW related event at the subcellular level.  相似文献   

15.
The production of spindle disturbances in a human–hamster hybrid (AL) cell line by an electromagnetic field (EMF) with field strength of 90 V/m at a frequency of 900 MHz was studied in greater detail. The experimental setup presented allows investigating whether either the electrical (E) and/or the magnetic (H) field component of EMF can be associated with the effectiveness of the spindle‐disturbing potential. Therefore, both field components of a transversal electromagnetic field (TEM) wave have been separated during exposure of the biological system. This procedure should give more insight on understanding the underlying mechanisms of non‐thermal effects of EMF. A statistical comparison of the proportions of the fractions of ana‐ and telophases with spindle disturbances, obtained for five different exposure conditions with respect to unexposed controls (sham condition), showed that only cells exposed to the H‐field component of the EMF were not different from the control. Therefore, the results of the present study indicate that an exposure of cells to EMF at E‐field strengths of 45 and 90 V/m, as well as to the separated E component of the EMF, induces significant spindle disturbances in ana‐ and telophases of the cell cycle. Bioelectromagnetics 32:291–301, 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

16.
The increased use of mobile phones has generated public concern about the impact of radiofrequency electromagnetic fields (RF‐EMF) on health. In the present study, we investigated whether RF‐EMFs induce molecular changes in amyloid precursor protein (APP) processing and amyloid beta (Aβ)‐related memory impairment in the 5xFAD mouse, which is a widely used amyloid animal model. The 5xFAD mice at the age of 1.5 months were assigned to two groups (RF‐EMF‐ and sham‐exposed groups, eight mice per group). The RF‐EMF group was placed in a reverberation chamber and exposed to 1950 MHz electromagnetic fields for 3 months (SAR 5 W/kg, 2 h/day, 5 days/week). The Y‐maze, Morris water maze, and novel object recognition memory test were used to evaluate spatial and non‐spatial memory following 3‐month RF‐EMF exposure. Furthermore, Aβ deposition and APP and carboxyl‐terminal fragment β (CTFβ) levels were evaluated in the hippocampus and cortex of 5xFAD mice, and plasma levels of Aβ peptides were also investigated. In behavioral tests, mice that were exposed to RF‐EMF for 3 months did not exhibit differences in spatial and non‐spatial memory compared to the sham‐exposed group, and no apparent change was evident in locomotor activity. Consistent with behavioral data, RF‐EMF did not alter APP and CTFβ levels or Aβ deposition in the brains of the 5xFAD mice. These findings indicate that 3‐month RF‐EMF exposure did not affect Aβ‐related memory impairment or Aβ accumulation in the 5xFAD Alzheimer's disease model. Bioelectromagnetics. 37:391–399, 2016. © 2016 The Authors Bioelectromagnetics published by Wiley Periodicals, Inc. on behalf of Bioelectromagnetics Society.  相似文献   

17.
It has been recently established that low-frequency electromagnetic field (EMFs) exposure induces biological changes and could be associated with increased incidence of cancer, while the issue remains unresolved as to whether high-frequency EMFs can have hazardous effect on health. Epidemiological studies on association between childhood cancers, particularly leukemia and brain cancer, and exposure to low- and high-frequency EMF suggested an etiological role of EMFs in inducing adverse health effects. To investigate whether exposure to high-frequency EMFs could affect in vitro cell survival, we cultured acute T-lymphoblastoid leukemia cells (CCRF-CEM) in the presence of unmodulated 900 MHz EMF, generated by a transverse electromagnetic (TEM) cell, at various exposure times. We evaluated the effects of high-frequency EMF on cell growth rate and apoptosis induction, by cell viability (MTT) test, FACS analysis and DNA ladder, and we investigated pro-apoptotic and pro-survival signaling pathways possibly involved as a function of exposure time by Western blot analysis. At short exposure times (2-12 h), unmodulated 900 MHz EMF induced DNA breaks and early activation of both p53-dependent and -independent apoptotic pathways while longer continuous exposure (24-48 h) determined silencing of pro-apoptotic signals and activation of genes involved in both intracellular (Bcl-2) and extracellular (Ras and Akt1) pro-survival signaling. Overall our results indicate that exposure to 900 MHz continuous wave, after inducing an early self-defense response triggered by DNA damage, could confer to the survivor CCRF-CEM cells a further advantage to survive and proliferate.  相似文献   

18.
Abstract

The biochemical status in the saliva of 12 males before/after using mobile phone has been evaluated. Radio frequency signals of 1800 MHz (continuous wave transmission, 217?Hz modulate and Global System for Mobile Communications [GSM – non-DTX]) with 1.09 w/kg specific absorption rate (SAR) value were used for 15 and 30?min. Cell phone radiation induced a significant increase of superoxide dismutase (SOD); there was a statistically significant effect of talking time on the levels of SOD, F(2, 33)?=?8.084, p?<?0.05, ω?=?0.53. The trend analysis suggests a significant quadratic trend, F(1, 33)?=?4.891, p?<?0.05; indicating that after 15?min of talking the levels of SOD increased, but as talking time increased the SOD activity started to drop. In contrast to this, there was no statistically significant effect of talking time on the level of salivary albumin, cytochrome c, catalase or uric acid. Results suggest that exposure to electromagnetic radiation may exert an oxidative stress on human cells as evidenced by the increase in the concentration of the superoxide radical anion released in the saliva of cell phone users.  相似文献   

19.
No apoptosis is induced in rat cortical neurons exposed to GSM phone fields   总被引:1,自引:0,他引:1  
The aim of this study was to investigate the radiofrequency (RF) electromagnetic fields (EMF) effects on neuronal apoptosis in vitro. Primary cultured neurons from cortices of embryonic Wistar rats were exposed to a 900-MHz global system for mobile communication (GSM) RF field for 24 h in a wire-patch cell. The average-specific absorption rate (SAR) used was 0.25 W/kg. Apoptosis rate was assessed immediately or 24 h after exposure using three methods: (i) DAPI staining; (ii) flow cytometry using double staining with TdT-mediated dUTP nick-end labeling (TUNEL) and propidium iodide (PI); and (iii) measurement of caspase-3 activity by fluorimetry. No statistically significant difference in the apoptosis rate was observed between controls and 24 h GSM-exposed neurons, either 0 h or 24 h post-exposure. All three methods used to assess apoptosis were concordant. These results showed that, under the conditions of experiment used, GSM-exposure does not significantly increase the apoptosis rate in rat primary neuronal cultures. This work is in accordance with other studies performed on cell lines and, to our knowledge, is the first one performed on cultured cortical neurons.  相似文献   

20.
Introduction: Recent studies have shown that pulsed electromagnetic field (EMF) has therapeutic potential for dementia, but the associated neurobiological effects are unclear. This study aimed to determine the effects of pulsed EMF on Streptozotocin (STZ)-induced dementia rats.Methods: Forty Sprague-Dawley rats were randomly allocated to one of the four groups: (i) control, (ii) normal saline injection (sham group), (iii) STZ injection (STZ group) and (iv) STZ injection with pulsed EMF exposure (PEMF, 10 mT at 20 Hz) (STZ + MF group). Morris water maze was used to assess the learning and memory abilities. Insulin growth factors 1 and 2 (IGF-1 and IGF-2) gene expression were determined by quantitative PCR. Results: The results showed that the mean escape latency in STZ-induced dementia rats was reduced by 66% under the exposure of pulsed EMF. Compared with the STZ group, the swimming distance and the time for first crossing the platform decreased by 55 and 41.6% in STZ + MF group, respectively. Furthermore, the IGF-2 gene expression significantly increased compared to that of the STZ group. Conclusions: Our findings indicate that the pulsed EMF exposure can improve the ability of learning and memory in STZ-induced dementia rats and this effect may be related to the process of IGF signal transduction, suggesting a potential role for the pulsed EMF for the amelioration of cognition impairment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号