首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
The carbonic anhydrases (CAs, EC 4.2.1.1) represent a superfamily of widespread enzymes, which catalyze a crucial biochemical reaction, the reversible hydration of carbon dioxide to bicarbonate and protons. Human CA isoenzymes I and II (hCA I and hCA II) are ubiquitous cytosolic isoforms. In this study, a series of hydroperoxides, alcohols, and acetates were tested for the inhibition of the cytosolic hCA I and II isoenzymes. These compounds inhibited both hCA isozymes in the low nanomolar ranges. These compounds were good hCA I inhibitors (Kis in the range of 24.93–97.99?nM) and hCA II inhibitors (Kis in the range of 26.04–68.56?nM) compared to acetazolamide as CA inhibitor (Ki: 34.50?nM for hCA I and Ki: 28.93?nM for hCA II).  相似文献   

2.
Aim of the study was evaluation of anxiolytic, antidepressant, anticonvulsant and analgesic activity in a series of a consistent group of compounds. A series of eleven new N-(phenoxyalkyl)- or N-{2-[2-(phenoxy)ethoxy]ethyl}piperazine derivatives has been obtained. Their affinity towards 5-HT1A, 5-HT2A, 5-HT6, 5-HT7, D2 and α1 receptors has been assessed, and then functional assays were performed. The compounds were evaluated in mice, i.p. for their antidepressant-like (forced swim test), locomotor, anxiolytic-like (four-plate test) activities as well as – at higher doses – for anticonvulsant potential (MES) and neurotoxicity (rotarod). Two compounds (3, 6) were also evaluated for their analgesic activity in neuropathic pain models (streptozocin test, oxaliplatin test) and they were found active against allodynia in diabetic neuropathic pain at 30?mg/kg. Among the compounds, anxiolytic-like, anticonvulsant or analgesic activity was observed but antidepressant-like activity was not. One of the two most interesting compounds is 1-{2-[2-(2,4,6-trimethylphenoxy)ethoxy]ethyl}-4-(2-methoxyphenyl)piperazine dihydrochloride (9), exhibiting anxiolytic and anticonvulsant activity in mice, i.p. 30 min after administration (at 2.5?mg/kg and ED50?=?26.33?mg/kg, respectively), which can be justified by the receptor profile: 5-HT1A Ki?=?5?nM (antagonist), 5-HT7 Ki?=?70?nM, α1 Ki?=?15?nM, D2 Ki?=?189?nM (antagonist). Another interesting compound is 1-[3-(2,4,6-trimethylphenoxy)propyl]-4-(4-methoxyphenyl)piperazine dihydrochloride (3), exhibiting anxiolytic, anticonvulsant and antiallodynic activity in mice, i.p., 30?min after administration (at 10?mg/kg, ED50?=?23.50?mg/kg, at 30?mg/kg, respectively), which can be related with 5-HT1A weak antagonism (Ki?=?146?nM), or other possible mechanism of action, not evaluated within presented study. Additionally, for the most active compound in the four-plate test (7), molecular modeling was performed (docking to receptors 5-HT1A, 5-HT2A, 5-HT7, D2 and α1A).  相似文献   

3.
A small library of (E) α,β-unsaturated fatty acids was prepared, and 20 different saturated and mono-unsaturated fatty acids differing in chain length were subjected to Ellman’s assays to determine their ability to act as inhibitors for AChE or BChE. While the compounds were only very weak inhibitors of BChE, seven molecules were inhibitors of AChE holding IC50?=?4.3–12.8?M with three of them as significant inhibitors of this enzyme. The results have shown trans 2-mono-unsaturated fatty acids are better inhibitors for AChE than their saturated analogs. Furthermore, the screening results indicate that the chain length is crucial for obtaining an inhibitory efficacy. The best results were obtained for (2E) eicosenoic acid (14) showing inhibition constants Ki?=?1.51?±?0.09?M and Ki′?=?7.15?±?0.55?M. All tested compounds were mixed-type inhibitors with a dominating competitive part. Molecular modelling calculations indicate a different binding mode of active/inactive compounds for the enzymes AChE and BChE.  相似文献   

4.
A series of 1- and 2-naphthyloxy derivatives were synthesized and evaluated for histamine H3 receptor affinity. Most compounds showed high affinities with Ki values below 100?nM. The most potent ligand, 1-(5-(naphthalen-1-yloxy)pentyl)azepane (11) displayed high affinity for the histamine H3 receptor with a Ki value of 21.9?nM. The antagonist behaviour of 11 was confirmed both in vitro in the cAMP assay (IC50?=?312?nM) and in vivo in the rat dipsogenia model (ED50?=?3.68?nM). Moreover, compound 11 showed positive effects on scopolamine induced-memory deficits in mice (at doses of 10 and 15?mg/kg) and an analgesic effect in the formalin test in mice with ED50?=?30.6?mg/kg (early phase) and ED50?=?20.8?mg/kg (late phase). Another interesting compound, 1-(5-(Naphthalen-1-yloxy)pentyl)piperidine (13; H3R Ki?=?53.9?nM), was accepted for Anticonvulsant Screening Program at the National Institute of Neurological Disorders and Stroke/National Institute of Health (Rockville, USA). The screening was performed in the maximal electroshock seizure (MES), the subcutaneous pentylenetetrazole (scPTZ) and the 6-Hz psychomotor animal models of epilepsy. Neurologic deficit was evaluated by the rotarod test. Compound 13 inhibited convulsions induced by the MES with ED50 of 19.2?mg/kg (mice, i.p.), 17.8 (rats, i.p.), and 78.1 (rats, p.o.). Moreover, 13 displayed protection against the 6-Hz psychomotor seizures (32?mA) in mice (i.p.) with ED50 of 33.1?mg/kg and (44?mA) ED50 of 57.2?mg/kg.Furthermore, compounds 11 and 13 showed in vitro weak influence on viability of tested cell lines (normal HEK293, neuroblastoma IMR-32, hepatoma HEPG2), weak inhibition of CYP3A4 activity, and no mutagenicity. Thus, these compounds may be used as leads in a further search for histamine H3 receptor ligands with promising in vitro and in vivo activity.  相似文献   

5.
In an effort to develop selective MAO (monoamine oxidase) B inhibitors, structure based virtual screening was initiated on an in-house library. Top 10 HITS were synthesized and evaluated for MAO (A and B) inhibitory activity, both against human and rat enzymes. All the compounds were found selective, reversible and active in nM range (100 times more potent than selegeline) towards MAO-B. Outstanding co-relation between predicted and experimental Ki values were observed.  相似文献   

6.
Benzothiazepine compounds have a wide range of applications such as antibacterial, antidepressants, anticonvulsants, antihypertensives, antibiotics, antifungal, hypnotic, enzyme inhibitors, antitumor, anticancer and anti‐HIV agents. In this study, the synthesis of novel tetralone‐based benzothiazepine derivatives ( 1–16 ) and their in vitro antibacterial activity and human carbonic anhydrase isoenzymes I and II (hCA I and II) inhibitory effects were investigated. Both isoenzymes were purified by sepharose‐4B‐l ‐tyrosine‐sulfanilamide affinity chromatography from fresh human red blood cells. All compounds demonstrated the low nanomolar inhibitory effects on both isoenzymes using esterase activity. Benzothiazepine derivative 2 demonstrated the best hCA I inhibitory effect with Ki value of 18.19 nM. Also, benzothiazepine derivative 7 showed the best hCA II inhibitory effect with Ki value of 11.31 nM. On the other hand, acetazolamide clinically used as CA inhibitor, showed Ki value of 19.92 nM against hCA I and 33.60 nM against hCA II, respectively.  相似文献   

7.
Excessive phosphorylation of eukaryotic translation initiation factor 4E (eIF4E) plays a major role in the dysregulation of mRNA translation and the activation of tumor cell signaling. eIF4E is exclusively phosphorylated by mitogen-activated protein kinase interacting kinases 1 and 2 (MNK1/2) on Ser209. So, MNK1/2 inhibitors could decrease the level of p-eIF4E and regulate tumor-associated signaling pathways. A series of pyridone–aminal derivatives were synthesized and evaluated as MNK1/2 inhibitors. Several compounds exhibited great inhibitory activity against MNK1/2 and selected compounds showed moderate to excellent anti-proliferative potency against hematologic cancer cell lines. In particular, compound 42i (MNK1 IC50?=?7.0?nM; MNK2 IC50?=?6.1?nM) proved to be the most potent compound against TMD-8 cell line with IC50 value of 0.91?μM. Furthermore, 42i could block the phosphorylation level of eIF4E in CT-26 cell line, and 42i inhibited the tumor growth of CT-26 allograft model significantly. These results indicated that compound 42i was a promising MNK1/2 inhibitor for the potent treatment of colon cancer.  相似文献   

8.
GH20 human β-N-acetylhexosaminidases (hsHex) and GH84 human O-GlcNAcase (hOGA) are involved in numerous pathological processes and emerged as promising targets for drug discovery. Based on the catalytic mechanism and structure of the catalytic domains of these β-N-acetylhexosaminidases, a series of novel naphthalimide moiety-bearing thioglycosides with different flexible linkers were designed, and their inhibitory potency against hsHexB and hOGA was evaluated. The strongest potency was found for compound 15j (Ki?=?0.91?µM against hsHexB; Ki?>?100?µM against hOGA) and compound 15b (Ki?=?3.76?µM against hOGA; Ki?=?30.42?µM against hsHexB), which also exhibited significant selectivity between these two enzymes. Besides, inhibitors 15j and 15b exhibited an inverse binding patterns in docking studies. The determined structure–activity relationship as well as the established binding models provide the direction for further structure optimizations and the development of specific β-N-acetylhexosaminidase inhibitors.  相似文献   

9.
A large number of novel secondary sulfonamides based on the open saccharin scaffold were synthesized and evaluated as selective inhibitors of four different isoforms of human carbonic anhydrase (hCA I, II, IX and XII, EC 4.2.1.1). They were obtained by reductive ring opening of the newly synthesized N-alkylated saccharin derivatives and were shown to be inactive against the two cytosolic off-target hCA I and II (Kis?>?10?µM). Interestingly, these compounds inhibited hCA IX in the low nanomolar range with Kis ranging between 20 and 298?nM and were extremely potent inhibitors of hCA XII isoenzyme (Kis ranging between 4.3 and 432?nM). Since hCA IX and XII are the cancer-related isoforms recently validated as drug targets, these results represent an important goal in the development of new anticancer candidates. Finally, a computational approach has been performed to better correlate the biological data to the binding mode of these inhibitors.  相似文献   

10.
Designing small molecule inhibitors targeting cholinesterases (ChEs) is considered as an efficient strategy for the treatment of Alzheimer′s disease (AD). In the present study, based on a shaped-based pharmacophore (SBP) model that we reported previously, virtual screening was performed on four commercial compound databases, from which eight small molecules containing new structurally scaffolds were retained and evaluated. In general, six of these potential hits were identified to be selective ChEs inhibitors. Three compounds exhibited IC50 values and Ki values in micromolar range on acetylcholinesterase (AChE), the most active compound 4 showed IC50 value of 6.31 ± 2.68 μM and Ki value of 4.76 μM. Other three compounds displayed IC50 values and Ki values in micromolar range on butyrylcholinesterase (BChE) with high target selectivity, the most active compound 1 showed IC50 value of 3.87 ± 2.48 μM and Ki value of 1.52 μM. Multiple biological evaluations were performed to determine their cytotoxicity, cyto-protective effects, antioxidant effect as well as druglike properties. These compounds provide new cores for the further design and optimization, with the aim to discover new ChEs inhibitors for the treatment of AD.  相似文献   

11.
Pathogenic Candida albicans yeasts frequently cause infections in hospitals. Antifungal drugs lose effectiveness due to other Candida species and resistance. New medications are thus required. Secreted aspartic protease of C. parapsilosis (Sapp1p) is a promising target. We have thus solved the crystal structures of Sapp1p complexed to four peptidomimetic inhibitors. Three potent inhibitors (Ki: 0.1, 0.4, 6.6 nM) resembled pepstatin A (Ki: 0.3 nM), a general aspartic protease inhibitor, in terms of their interactions with Sapp1p. However, the weaker inhibitor (Ki: 14.6 nM) formed fewer nonpolar contacts with Sapp1p, similarly to the smaller HIV protease inhibitor ritonavir (Ki: 1.9 µM), which, moreover, formed fewer H-bonds. The analyses have revealed the structural determinants of the subnanomolar inhibition of C. parapsilosis aspartic protease. Because of the high similarity between Saps from different Candida species, these results can further be used for the design of potent and specific Sap inhibitor-based antimycotic drugs.  相似文献   

12.
Adenosine kinase (AdK) is a key player in controlling intra- and extracellular concentrations of the signaling molecule adenosine. Extensive evidence points to an important role of AdK in several diseases, and suggests that AdK inhibition might be a promising therapeutic strategy.The development of a new AdK assay and subsequent screening of part of our focused compound library led to the identification of 12 hit compounds (hit rate of 6%) representing six new classes of non-nucleoside human AdK inhibitors. The most potent inhibitor 1 displayed a Ki value of 184 nM. Compound screening with a newly developed assay was useful and efficient for discovering novel AdK inhibitors which may serve as lead structures for developing drugs for adenosine augmentation therapy.  相似文献   

13.
In this study a new set of thiazolo[5,4-d]pyrimidine derivatives was synthesized. These derivatives bear different substituents at positions 2 and 5 of the thiazolopyrimidine core while maintaining a free amino group at position-7. The new compounds were tested for their affinity and potency at human (h) A1, A2A, A2B and A3 adenosine receptors expressed in CHO cells. The results reveal that the higher affinity of these new set of thiazolopyrimidines is toward the hA1 and hA2A adenosine receptors subtypes and is tuned by the substitution pattern at both the 2 and 5 positions of the thiazolopyrimidine nucleus. Functional studies evidenced that the compounds behaved as dual A1/A2A antagonists/inverse agonists. Compound 3, bearing a 5-((2-methoxyphenyl) methylamino) group and a phenyl moiety at position 2, displayed the highest affinity (hA1 Ki?=?10.2?nM; hA2A Ki?=?4.72?nM) and behaved as a potent A1/A2A antagonist/inverse agonist (hA1 IC50?=?13.4?nM; hA2A IC50?=?5.34?nM).  相似文献   

14.
Various 1,2,4 trisubstituted imidazolin-5-one derivatives were synthesized and evaluated for their inhibitory activity against p38 mitogen-activated protein kinase (p38MAPK) and carbonic anhydrase (CA) enzymes aiming to explore potential dual inhibitors. Results revealed that compounds 3c, 3g, 3h, 4a, 6c and 6d were the most effective derivatives against p38αMAPK (IC50 = 0.14, 0.14, 0.056, 0.14, 0.13 and 0.14 μM, respectively) compared to sorafenib (IC50 = 1.58 μM) as standard drug. On the other hand, compound 4a revealed the best inhibitory activity against all the tested carbonic anhydrase isoforms CA I, II, IV and IX with Ki values of 95.0, 0.83, 6.90 and 12.4 nM, respectively compared to acetazolamide with Ki values 250, 12.1, 74 and 12.8 nM, respectively. Therefore, compound 4a can be considered as a potent dual p38αMAPK/CA inhibitor.  相似文献   

15.
We have used a combination of virtual screening (VS) and high-throughput screening (HTS) techniques to identify novel, non-peptidic small molecule inhibitors against human SARS-CoV 3CLpro. A structure-based VS approach integrating docking and pharmacophore based methods was employed to computationally screen 621,000 compounds from the ZINC library. The screening protocol was validated using known 3CLpro inhibitors and was optimized for speed, improved selectivity, and for accommodating receptor flexibility. Subsequently, a fluorescence-based enzymatic HTS assay was developed and optimized to experimentally screen approximately 41,000 compounds from four structurally diverse libraries chosen mainly based on the VS results. False positives from initial HTS hits were eliminated by a secondary orthogonal binding analysis using surface plasmon resonance (SPR). The campaign identified a reversible small molecule inhibitor exhibiting mixed-type inhibition with a Ki value of 11.1 μM. Together, these results validate our protocols as suitable approaches to screen virtual and chemical libraries, and the newly identified compound reported in our study represents a promising structural scaffold to pursue for further SARS-CoV 3CLpro inhibitor development.  相似文献   

16.
In this work, the inhibitory effect of some symmetric sulfamides derived from phenethylamines were determined against human carbonic anhydrase (hCA) I, and II isoenzymes, and compared with standard compound acetazolamide. IC50 values were obtained from the Enzyme activity (%)-[Symmetric sulfamides] graphs. Also, Ki values were calculated from the Lineweaver-Burk graphs. Some symmetric sulfamides compounds ( 11 – 18 ) demonstrated excellent inhibition effects against hCA I, and II isoenzymes. These compounds demonstrated effective inhibitory profiles with IC50 values in ranging from 21.66–28.88 nM against hCA I, 14.44–30.13 nM against hCA II. Among these compounds, the best Ki value for hCA I (Ki: 8.34±1.60 nM) and hCA II (Ki: 16.40±1.00 nM) is compound number 11 . Besides, the IC50 value of acetazolamide used as a standard was determined as hCA I, hCA II 57.75 nM, 49.50 nM, respectively. Moreover, in silico ADME-Tox study showed that all synthesized compounds ( 11 – 18 ) had good oral bioavailability in light of Jorgensen's rule of three, and of Lipinski's rule of five.  相似文献   

17.
A series of 4 and 5 nitro-1,3-dioxoisoindolin-2-yl benzenesulfonamide derivatives (compounds 18) was synthesized by reaction of benzenesulfonamide derivatives with 4 and 3-nitrophthalic anhydrides. These new sulfonamides were investigated as inhibitors of the zinc metalloenzyme carbonic anhydrase (CA, EC 4.2.1.1) and more specifically against the human (h) cytosolic isoforms hCA I and II and the transmembrane, tumor-associated hCA IX and XII. Most of the novel compounds were medium potency-weak hCA I inhibitors (Kis in the range of 295–10,000 nM), but were more effective hCA II inhibitors (Kis of 1.7–887 nM). The tumor-associated hCA IX was also inhibited, with Kis in the micromolar range, whereas against hCA XII the inhibition constants were in the range of 90–3746 nM. The structure–activity relationship (SAR) with this series of sulfonamides is straightforward, with the main features leading to good activity for each isoforms being established. The high sequence hCA alignment homology and molecular docking studies was performed in order to rationalize the activities reported and binding mode to different hCA as inhibitors.  相似文献   

18.
N-Hydroxyindole-2-carboxylates possessing sulfonamide-substituents at either position 5 or 6 were designed and synthesized. The inhibitory activities of these compounds against isoforms 1 and 5 of human lactate dehydrogenase were analysed, and Ki values of the most efficient inhibitors were determined by standard enzyme kinetic studies. Some of these compounds displayed state-of-the-art inhibitory potencies against isoform 5 (Ki values as low as 5.6 μM) and behaved as competitive inhibitors versus both the substrate and the cofactor.  相似文献   

19.
During this investigation, N,N′‐bis‐azidomethylamines, N,N′‐bis‐cyanomethylamine, new alkoxymethylamine and chiral derivatives, which are considered to be a new generation of multifunctional compounds, were synthesized, functional properties were investigated, and anticholinergic and antidiabetic properties of those compounds were studied through the laboratory tests, and it was approved that they contain physiologically active compounds rather than analogues. Novel N‐bis‐cyanomethylamine and alkoxymethylamine derivatives were effective inhibitors of the α‐glycosidase, cytosolic carbonic anhydrase I and II isoforms, butyrylcholinesterase (BChE), and acetylcholinesterase (AChE) with Ki values in the range of 0.15–13.31 nM for α‐glycosidase, 2.77–15.30 nM for human carbonic anhydrase isoenzymes I (hCA I), 3.12–21.90 nM for human carbonic anhydrase isoenzymes II (hCA II), 23.33–73.23 nM for AChE, and 3.84–48.41 nM for BChE, respectively. Indeed, the inhibition of these metabolic enzymes has been considered as a promising factor for pharmacologic intervention in a diversity of disturbances.  相似文献   

20.
Abstract

Two series of derivatives have been prepared and assayed as inhibitors of two physiologically relevant serine proteases, human thrombin and human trypsin. The first series includes alkyl-/ aralkyl-/aryl- and hetarylsulfonyl-aminoguanidines. It was thus observed that sulfanilyl-aminoguanidine possesses moderate but intrinsically selective thrombin inhibitory properties, with Ki values around 90 and 1400 nM against thrombin and trypsin respectively. Further elaboration of this molecule afforded compounds that inhibited thrombin with Ki values in the range 10–50 nM, whereas affinity for trypsin remained relatively low. Such compounds were obtained either by attaching benzyloxycarbonyl- or 4-toluenesulfonylureido-protected amino acids (such as D-Phe, L-Pro) or dipeptides (such as Phe-Pro, Gly-His, β-Ala-His or Pro-Gly) to the N-4 atom of the lead molecule, sulfanilyl-aminoguanidine, or by attaching substituted-pyridinium-propylcarboxamido moieties to this lead. Thus, this study brings novel insights regarding a novel non-basic S1 anchoring moiety (i, e., SO2NHNHC(=NH)NH2), and new types of peptidomimetic scaffolds obtained by incorporating tosylureido-amino acids/pyridinium-substituted-GABA moieties in the hydrophobic binding site(s). Structure-activity correlations of the new serine protease inhibitors are also discussed based on a QSAR model described previously for a large series of structurally-related derivatives (Supuran et al. (1999) J. Med. Chem., in press).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号