首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A series of N,N'-bis(2-pyridinylmethyl)diamines was synthesized and characterized for their inhibition effects towards plant copper-containing amine oxidase (EC 1.4.3.6) and polyamine oxidase (EC 1.5.3.11), which mediate the catabolic regulation of cellular polyamines. Even though these enzymes catalyze related reactions and, among others, act upon two common substrates (spermidine and spermine), their molecular and kinetic properties are different. They also show a different spectrum of inhibitors. It is therefore of interest to look for compounds providing a dual inhibition (i.e. inhibiting both enzymes with the same inhibition potency), which would be useful in physiological studies involving modulations of polyamine catabolism. The synthesized diamine derivatives comprised from two to eight carbon atoms in the alkyl spacer chain. Kinetic measurements with pea (Pisum sativum) diamine oxidase and oat (Avena sativa) polyamine oxidase demonstrated reversible binding of the compounds at the active sites of the enzymes as they were almost exclusively competitive inhibitors with K(i) values ranging from 10(-5) to 10(-3)M. In case of oat polyamine oxidase, the K(i) values were significantly influenced by the number of methylene groups in the inhibitor molecule. The measured inhibition data are discussed with respect to enzyme structure. For that reason, the oat enzyme was analyzed by de novo peptide sequencing using mass spectrometry and shown to be homologous to polyamine oxidases from barley (isoform 1) and maize. We conclude that some of the studied N,N'-bis(2-pyridinylmethyl)diamines might have a potential to be starting structures in design of metabolic modulators targeted to both types of amine oxidases.  相似文献   

2.
Abstract

Kinetic properties of novel amine oxidases isolated from a mold Aspergillus niger AKU 3302 were compared to those of typical plant amine oxidase from pea seedling (EC 1.4.3.6). Pea amine oxidase showed highest affinity with diamines, such as putrescine and cadaverine, while fungal enzymes oxidized preferably n-hexylamine and tyramine. All enzymes were inhibited by carbonyl reagents, copper chelating agents, some substrate analogs and alkaloids, but there were quite significant differences in the sensitivity and inhibition modes. Aminoguanidine, which strongly inhibited pea amine oxidases showed only little effect on fungal enzymes. Substrate analogs such as 1,5-diamino-3-pentanone and l-amino-3-phenyl-3-propanone, which were potent competitive inhibitors of pea amine oxidases, inhibited fungal enzymes much more weakly and non competitively. Also various alkaloids behaving as competitive inhibitors of pea amine oxidases inhibited the fungal enzymes non competitively. Very surprising was the potent inhibition of fungal enzymes by artificial substrates of pea amine oxidases, E- and Z-1,4-diamino-2-butene. The relationships between the different inhibition modes and possible binding at the active site are discussed.  相似文献   

3.
Two microbial oxidases of acidic -amino acids have been purified to homogeneity. One is a -aspartate oxidase of the yeast Cryptococcus humicolus UJ1 that was induced markedly with -aspartate and is far more active toward -aspartate than -glutamate. The other is a -glutamate oxidase of Candida boidinii 2201 that preferred -glutamate to -aspartate as a substrate in terms of kcat/Km, but was not induced very effectively by -glutamate. The most potent competitive inhibitor of the C. humicolus -aspartate oxidase was malonate, and that of the C. boidinii -glutamate oxidase was -malate. The former enzyme was a homotetramer of 160 kDa consisting of subunits of 40 kDa, each of which contained 1 mol of FAD, while the latter was a monomer of 45 kDa. The N-terminal sequences of both enzymes were similar to those of other FAD enzymes and contained a consensus sequence common to most enzymes binding ADP-containing nucleotides. Peroxisomal localization of the C. humicolus -aspartate oxidase was shown by subcellular fractionation and morphological analysis via electron microscopy of C. humicolus cells, where induction of the enzyme was accompanied by induction of catalase and development of peroxisomes. The apo-form of C. humicolus -aspartate oxidase, prepared by removal of FAD was a monomeric protein of 40 kDa, and its binding with FAD proceeded in two stages. The Kd for the apoprotein-FAD complex was very low (8.2×10−12 M) consistent with the observed tight binding. The C. humicolus -aspartate oxidase was essentially similar to other flavoprotein oxidases of acidic and neutral -amino acids with respect to its spectral properties and sensitivity to specific modifying reagents for arginyl and histidyl residues.  相似文献   

4.
The effects on mitochondrial respiration and complex I NADH oxidase activity of cubebin and derivatives were evaluated. The compounds inhibited the state 3 glutamate/malate-supported respiration of hamster liver mitochondria with IC50 values ranging from 12.16 to 83.96 μM. NADH oxidase reaction was evaluated in submitochondrial particles. The compounds also inhibited this activity, showing the same order of potency observed for effects on state 3 respiration, as well as a tendency towards a non-competitive type of inhibition (KI values ranging from 0.62 to 16.1 μM). A potential binding mode of these compounds with complex I subunit B8, assessed by docking calculations, is proposed.  相似文献   

5.
Catabolism of polyamines   总被引:10,自引:0,他引:10  
Seiler N 《Amino acids》2004,26(3):217-233
Summary. Owing to the establishment of cells and transgenic animals which either lack or over-express acetylCoA:spermidine N1-acetyltransferase a major progress was made in our understanding of the role of polyamine acetylation. Cloning of polyamine oxidases of mammalian cell origin revealed the existence of several enzymes with different substrate and molecular properties. One appears to be identical with the polyamine oxidase that was postulated to catalyse the conversion of spermidine to putrescine within the interconversion cycle. The other oxidases are presumably spermine oxidases, because they prefer free spermine to its acetyl derivatives as substrate. Transgenic mice and cells which lack spermine synthase revealed that spermine is not of vital importance for the mammalian organism, but its transformation into spermidine is a vitally important reaction, since in the absence of active polyamine oxidase, spermine accumulates in blood and causes lethal toxic effects.Numerous metabolites of putrescine, spermidine and spermine, which are presumably the result of diamine oxidase-catalysed oxidative deaminations, are known as normal constituents of organs of vertebrates and of urine. Reasons for the apparent contradiction that spermine is in vitro a poor substrate of diamine oxidase, but is readily transformed into N8-(2-carboxyethyl)spermidine in vivo, will need clarification.Several attempts were made to establish diamine oxidase as a regulatory enzyme of polyamine metabolism. However, diamine oxidase has a slow turnover. This, together with the efficacy of the homeostatic regulation of the polyamines via the interconversion reactions and by transport pathways renders a role of diamine oxidase in the regulation of polyamine concentrations unlikely. 4-Aminobutyric acid, the product of putrescine catabolism has been reported to have antiproliferative properties. Since ornithine decarboxylase and diamine oxidase activities are frequently elevated in tumours, it may be hypothesised that diamine oxidase converts excessive putrescine into 4-aminobutyric acid and thus restricts tumour growth and prevents malignant transformation. This function of diamine oxidase is to be considered as part of a general defence function, of which the prevention of histamine and cadaverine accumulation from the gastrointestinal tract is a well-known aspect.  相似文献   

6.
1. Cell-free extracts of the marine bacterium Beneckea natriegens, derived by sonication, were separated into particulate and supernatant fractions by centrifugation at 150 000 × g.2. NADH, succinate, d(?)- and l(+)-lactate oxidase and dehydrogenase activities were located in the particles, with 2- to 3-fold increases in specific activity over the cell free extract. The d(?)- and l(+)-lactate dehydrogenases were NAD+ and NADP+ independent. Ascorbate-N,N,N′,N′-tetramethylphenylenediamine (TMPD) oxidase was also present in the particulate fraction; it was 7–12 times more active than the physiological substrate oxidases.3. Ascorbate-TMPD oxidase was completely inhibited by 10 μM cyanide. Succinate, NADH, d(?)-lactate and l(+)-lactate oxidases were inhibited in a biphasic manner, with 10 μM cyanide causing only 10–50 % inhibition; further inhibition required more than 0.5 mM cyanide, and 10 mM cyanide caused over 90 % inhibition. Low sulphide (5 μM) and azide (2 mM) concentrations also totally inhibited ascorbate-TMPD oxidase, but only partially inhibited the other oxidases. High concentrations of sulphide but not azide caused a second phase inhibition of NADH, succinate, d(?)-lactate and l(+)-lactate oxidases.4. Low oxidase activities of the physiological substrates, obtained by using non-saturating substrate concentrations, were more inhibited by 10 μM cyanide and 2 mM azide than high oxidase rates, yet ascorbate-TMPD oxidase was completely inhibited by 10 μM cyanide over a wide range of rates of oxidation.5. These results indicate terminal branching of the respiratory system. Ascorbate-TMPD is oxidised by one pathway only, whilst NADH, succinate, d(?)-lactate and l(+)-lactate are oxidised via both pathways. Respiration of the latter substrates occurs preferentially by the pathway associated with ascorbate-TMPD oxidase and which is sensitive to low concentrations of cyanide, azide and sulphide.6. The apparent Km for O2 for each of the two pathways was detected using ascorbate-TMPD and NADH or succinate plus 10 μM cyanide respectively. The former pathway had an apparent Km of 8–17 (average 10.6) μM and the latter 2.2–4.0 (average 3.0) μM O2.  相似文献   

7.
Polyamine oxidases are key enzymes responsible of the polyamine interconversion metabolism in animal cells. Recently, a novel enzyme belonging to this class of enzymes has been characterized for its capability to oxidize preferentially spermine and designated as spermine oxidase. This is a flavin adenine dinucleotide-containing enzyme, and it has been expressed both in vitro and in vivo systems. The primary structure of mouse spermine oxidase (mSMO) was deduced from a cDNA clone (Image Clone 264769) recovered by a data base search utilizing the human counterpart of polyamine oxidases, PAOh1. The open reading frame predicts a 555-amino acid protein with a calculated M(r) of 61,852.30, which shows a 95.1% identity with PAOh1. To understand the biochemical properties of mSMO and its structure/function relationship, the mSMO cDNA has been subcloned and expressed in secreted and secreted-tagged forms into Escherichia coli BL21 DE3 cells. The recombinant enzyme shows an optimal pH value of 8.0 and is able to oxidize rapidly spermine to spermidine and 3-aminopropanal and fails to act upon spermidine and N(1)-acetylpolyamines. The purified recombinant-tagged form enzyme (M(r) approximately 68,000) has K(m) and k(cat) values of 90 microm and 4.5 s(-1), respectively, using spermine as substrate at pH 8.0. Molecular modeling of mSMO protein based on maize polyamine oxidase three-dimensional structure suggests that the general features of maize polyamine oxidase active site are conserved in mSMO.  相似文献   

8.
The aim of this study was to evaluate new natural inhibitor sources for the enzymes urease and xanthine oxidase (XO). Chestnut, oak and polyfloral honey extracts were used to determine inhibition effects of both enzymes. In addition to investigate inhibition, the antioxidant capacities of these honeys were determined using total phenolic content (TPC), ferric reducing antioxidant power (FRAP), and DPPH radical scavenging activity assays. Due to their high phenolic content, chestnut and oak honeys are found to be a powerful source for inhibition of both enzymes. Especially, oak honeys were efficient for urease inhibition with 0.012–0.021?g/mL IC50 values, and also chestnut honeys were powerful for XO inhibition with 0.028–0.039?g/mL IC50 values. Regular daily consumption of these honeys can prevent gastric ulcers deriving from Helicobacter pylori and pathological disorders mediated by reactive oxygen species.  相似文献   

9.
Choline oxidase catalyzes the oxidation of choline to glycine-betaine, with betaine-aldehyde as intermediate and molecular oxygen as primary electron acceptor. This study reports on the inhibitory effects of triarylmethanes (cationic malachite green; neutral leukomalachite green), phenoxazines (cationic, meldola blue and nile blue; neutral nile red) and a structurally-related phenothiazine (methylene blue) on choline oxidase, assayed at 25°C in 50 mM MOPS buffer, pH 7, using choline as substrate. Methylene B acted as a competitive inhibitor with Ki = 74 ± 7.2 μM, pointing to the choline–binding site of the enzyme as a target site. Nile B caused noncompetitive inhibition of enzyme activity with Ki = 20 ± 4.5 μM. In contrast to methylene B and nile B, malachite G and meldola B caused complex, nonlinear inhibition of choline oxidase, with estimated Ki values in the micromolar range. The difference in kinetic pattern was ascribed to the differential ability of the dyes to interact (and interfere) with the flavin cofactor, generating different perturbations in the steady-state balance of the catalytic process.  相似文献   

10.
Spermine oxidase (SMO) and acetylpolyamine oxidase (APAO) are FAD-dependent enzymes that are involved in the highly regulated pathways of polyamine biosynthesis and degradation. Polyamine content is strictly related to cell growth, and dysfunctions in polyamine metabolism have been linked with cancer. Specific inhibitors of SMO and APAO would allow analyzing the precise role of these enzymes in polyamine metabolism and related pathologies. However, none of the available polyamine oxidase inhibitors displays the desired characteristics of selective affinity and specificity. In addition, repeated efforts to obtain structural details at the atomic level on these two enzymes have all failed. In the present study, in an effort to better understand structure–function relationships, SMO enzyme–substrate complex has been probed through a combination of molecular modeling, site-directed mutagenesis and biochemical studies. Results obtained indicate that SMO binds spermine in a similar conformation as that observed in the yeast polyamine oxidase FMS1-spermine complex and demonstrate a major role for residues His82 and Lys367 in substrate binding and catalysis. In addition, the SMO enzyme–substrate complex highlights the presence of an active site pocket with highly polar characteristics, which may explain the different substrate specificity of SMO with respect to APAO and provide the basis for the design of specific inhibitors for SMO and APAO.  相似文献   

11.
The interactions of cyanide with two copper-containing amine oxidases (CuAOs) from pea seedlings (PSAO) and the soil bacterium Arthrobacter globiformis (AGAO) have been investigated by spectroscopic and kinetic techniques. Previously, we rationalized the effects of azide and cyanide for several CuAOs in terms of copper coordination by these exogenous ligands and their effects on the internal redox equilibrium TPQamr-Cu(II)TPQsq-Cu(I). The mechanism of cyanide inhibition was proposed to occur through complexation to Cu(I), thereby directly competing with O2 for reoxidation of TPQ. Although cyanide readily and reversibly reacts with quinones, no direct spectroscopic evidence for cyanohydrin derivatization of TPQ has been previously documented for CuAOs. This work describes the first direct spectroscopic evidence, using both model and enzyme systems, for cyanohydrin derivatization of TPQ. Kd values for Cu(II)-CN and Cu(I)-CN, as well as the Ki for cyanide inhibition versus substrate amine, are reported for PSAO and AGAO. In spite of cyanohydrin derivatization of the TPQ cofactor in these enzymes, the uncompetitive inhibition of amine oxidation is determined to arise almost exclusively through CN complexation of Cu(I).Abbreviations AGAO Arthrobacter globiformis amine oxidase - APAO Arthrobacter P1 amine oxidase - APT attached proton test - BPAO bovine plasma amine oxidase - CuAO quinone-copper containing amine oxidase - LTQ lysyl tyrosylquinone - MAO monoamine oxidase - PKAO porcine kidney amine oxidase - PPAO porcine plasma amine oxidase - PSAO pea seedling amine oxidase - TPQ 2,4,5-trihydroxyphenylalaninequinone - TPQamr TPQ aminoresorcinol - TPQimq TPQ iminoquinone - TPQox TPQ oxidized - TPQsq TPQ semiquinone - WT wild-typeE.M. Shepard and G.A. Juda contributed equally to this workThis revised version was published online in February 2004: Hansenula polymorpha was not italicised at the end of the Introduction, Equation 3 appeared twice, and the resolution of Scheme 3 was insufficient.An erratum to this article can be found at  相似文献   

12.
The polyamines spermine, spermidine and putrescine are ubiquitous cell components. These molecules are substrates of a class of enzymes that includes monoamine oxidases, diamine oxidases, polyamine oxidases and copper-containing amine oxidases. Amine oxidases are important because they contribute to regulate levels of mono- and polyamines. In tumors, polyamines and amine oxidases are increased as compared to normal tissues. Cytotoxicity induced by bovine serum amine oxidase (BSAO) and spermine is attributed to H2O2 and aldehydes produced by the reaction. This study demonstrated that multidrug-resistant (MDR) cancer cells (colon adenocarcinoma and melanoma) are significantly more sensitive than the corresponding wild-type (WT) ones to H2O2 and aldehydes, the products of BSAO-catalyzed oxidation of spermine. Transmission electron microscopy (TEM) observations showed major ultrastructural alterations of the mitochondria. These were more pronounced in MDR than in WT cells. Increasing the incubation temperature from 37 to 42°C enhances cytotoxicity in cells exposed to spermine metabolites. The combination BSAO/spermine prevents tumor growth, particularly well if the enzyme has been conjugated to a biocompatible hydrogel polymers. Since both wild-type and MDR cancer cells after pre-treatment with MDL 72527, a lysosomotropic compound, are sensitized to subsequent exposure to BSAO/spermine, it is conceivable that combined treatment with a lysosomotropic compound and BSAO/spermine would be effective against tumor cells. It is of interest to search for such novel compounds, which might be promising for application in a therapeutic setting.  相似文献   

13.
The binding of spermine and ifenprodil to the amino terminal regulatory (R) domain of the N‐methyl‐D ‐aspartate receptor was studied using purified regulatory domains of the NR1, NR2A and NR2B subunits, termed NR1‐R, NR2A‐R and NR2B‐R. The R domains were over‐expressed in Escherichia coli and purified to near homogeneity. The Kd values for binding of [14C]spermine to NR1‐R, NR2A‐R and NR2B‐R were 19, 140, and 33 μM, respectively. [3H]Ifenprodil bound to NR1‐R (Kd, 0.18 μM) and NR2B‐R (Kd, 0.21 μM), but not to NR2A‐R at the concentrations tested (0.1–0.8 μM). These Kd values were confirmed by circular dichroism measurements. The Kd values reflected their effective concentrations at intact NR1/NR2A and NR1/NR2B receptors. The results suggest that effects of spermine and ifenprodil on NMDA receptors occur through binding to the regulatory domains of the NR1, NR2A and NR2B subunits. The binding capacity of spermine or ifenprodil to a mixture of NR1‐R and NR2A‐R or NR1‐R and NR2B‐R was additive with that of each individual R domain. Binding of spermine to NR1‐R and NR2B‐R was not inhibited by ifenprodil and vice versa, indicating that the binding sites for spermine and ifenprodil on NR1‐R and NR2B‐R are distinct.  相似文献   

14.
The uptake of spermine into mammalian mitochondria indicated the need to identify its catabolic pathway in these organelles. Bovine liver mitochondria were therefore purified and their capacity for natural polyamine uptake was verified. A kinetic approach was then used to determine the presence of an MDL 72527-sensitive enzyme with spermine oxidase activity in the matrix of bovine liver mitochondria. Western blot analysis of mitochondrial fractions and immunogold electron microscopy observations of purified mitochondria unequivocally confirmed the presence of a protein recognized by anti-spermine oxidase antibodies in the mitochondrial matrix. Preliminary kinetic characterization showed that spermine is the preferred substrate of this enzyme; lower activity was detected with spermidine and acetylated polyamines. Catalytic efficiency comparable to that of spermine was also found for 1-aminododecane. The considerable effect of ionic strength on the Vmax/KM ratio suggested the presence of more than one negatively charged zone inside the active site cavity of this mitochondrial enzyme, which is probably involved in the docking of positively charged substrates. These findings indicate that the bovine liver mitochondrial matrix contains an enzyme belonging to the spermine oxidase class. Because H2O2 is generated by spermine oxidase activity, the possible involvement of the latter as an important signaling transducer under both physiological and pathological conditions should be considered.  相似文献   

15.
The chemolithoautotroph, Arthrobacter sp.15b oxidizes arsenite to arsenate using a membrane bound arsenite oxidase. The enzyme arsenite oxidase is purified to its homogeneity and identified using MALDI-TOF MS analysis. Upon further characterization, it was observed that the enzyme is a heterodimer showing native molecular mass as ~100 kDa and appeared as two subunits of ~85 kDa LSU and 14 kDa SSU on SDS–PAGE. The V max and K m values of the enzyme was found to be 2.45 μM (AsIII)/min/mg) and 26 μM, respectively. The purified enzyme could withstand wide range of pH and temperature changes. The enzyme, however, gets deactivated in the presence of 1 mM of DEPC suggesting the involvement of histidine at the binding site of the enzyme. The peptide analysis of large sub unit of the enzyme showed close match with the arsenite oxidases of Burkholderia sp. YI019A and arsenite oxidase, Mo-pterin containing subunit of Alcaligenes faecalis. The small subunit, however, differed from other arsenite oxidases and matched only with 2Fe–2S binding protein of Anaplasma phagocytophilum. This indicates that Rieske subunits containing the iron–sulfur clusters present in the large as well as small subunits of the enzyme are integral part of the protein.  相似文献   

16.
Slocum RD  Furey MJ 《Planta》1991,183(3):443-450
An electron-microscopic cytochemical method was used to localize diamine oxidase (DAO) in pea and polyamine oxidase (PAO) in maize (Zea mays L.). The method, based on the precipitation of amine-oxidase-generated H2O2 by CeCl3, was shown to be specific for DAO and PAO and permitted their localization in plant tissues with a high degree of resolution. Both enzymes are localized exclusively in the cell wall. Both DAO- and PAO-activity staining is most intense in the middle lamellar region of the wall and in cells exhibiting highly lignified walls. The oxidases could provide H2O2 for peroxidase-mediated cross-linking reactions in the cell wall and may, in this capacity, play a role in the regulation of plant growth.Abbreviations AG 1-aminoguanidine - AT 3-amino-1,2,4-triazole - -HEH -hydroxyethylhydrazine - DAO(s) diamine oxidase(s) - PAO(s) polyamine oxidase(s) - Put putrescine - Spd spermidine - Spm spermine The authors wish to thank Nancy Piatczyc for the technical assistance with electron-microscopy studies. We are grateful to Dr. Stanley J. Roux, University of Texas at Austin, for providing us with samples of maize cell-wall exudates. This work was supported by grants to R.D.S from the National Aeronautics and Space Administration (NAGW-1049 and NAGW-1382).  相似文献   

17.
The facultative piezophile Shewanella violacea DSS12 is known to have respiratory components that alter under the influence of hydrostatic pressure during growth, suggesting that its respiratory system is adapted to high pressure. We analyzed the expression of the genes encoding terminal oxidases and some respiratory components of DSS12 under various growth conditions. The expression of some of the genes during growth was regulated by both the O2 concentration and hydrostatic pressure. Additionally, the activities of cytochrome c oxidase and quinol oxidase of the membrane fraction of DSS12 grown under various conditions were measured under high pressure. The piezotolerance of cytochrome c oxidase activity was dependent on the O2 concentration during growth, while that of quinol oxidase was influenced by pressure during growth. The activity of quinol oxidase was more piezotolerant than that of cytochrome c oxidase under all growth conditions. Even in the membranes of the non-piezophile Shewanella amazonensis, quinol oxidase was more piezotolerant than cytochrome c oxidase, although both were highly piezosensitive as compared to the activities in DSS12. By phylogenetic analysis, piezophile-specific cytochrome c oxidase, which is also found in the genome of DSS12, was identified in piezophilic Shewanella and related genera. Our observations suggest that DSS12 constitutively expresses piezotolerant respiratory terminal oxidases, and that lower O2 concentrations and higher hydrostatic pressures induce higher piezotolerance in both types of terminal oxidases. Quinol oxidase might be the dominant terminal oxidase in high-pressure environments, while cytochrome c oxidase might also contribute. These features should contribute to adaptation of DSS12 in deep-sea environments.  相似文献   

18.
Sulfite is produced as a toxic intermediate during Acidithiobacillus ferrooxidans sulfur oxidation. A. ferrooxidans D3-2, which posseses the highest copper bioleaching activity, is more resistant to sulfite than other A. ferrooxidans strains, including ATCC 23270. When sulfite oxidase was purified homogeneously from strain D3-2, the oxidized and reduced forms of the purified sulfite oxidase absorption spectra corresponded to those of A. ferrooxidans aa 3-type cytochrome c oxidase. The confirmed molecular weights of the α-subunit (52.5 kDa), the β-subunit (25 kDa), and the γ-subunit (20 kDa) of the purified sulfite oxidase and the N-terminal amino acid sequences of the γ-subunit of sulfite oxidase (AAKKG) corresponded to those of A. ferrooxidans ATCC 23270 cytochrome c oxidase. The sulfite oxidase activities of the iron- and sulfur-grown A. ferrooxidans D3-2 were much higher than those cytochrome c oxidases purified from A. ferrooxidans strains ATCC 23270, MON-1 and AP19-3. The activities of sulfite oxidase purified from iron- and sulfur-grown strain D3-2 were completely inhibited by an antibody raised against a purified A. ferrooxidans MON-1 aa 3-type cytochrome c oxidase. This is the first report to indicate that aa 3-type cytochrome c oxidase catalyzed sulfite oxidation in A. ferrooxidans.  相似文献   

19.
《Free radical research》2013,47(1):215-220
The effects of cimetidine, ranitidine, histamine and histidine. as well as of their copper complexes, have been examined in an enzymic and chemical O?2 generated systems. Copper complexes like CuZnSOD inhibited both the reduction of cytochrome c and NBT2+ in xanthine-xanthine oxidase systems, but their inhibitory action was due to a certain extent to the copper-induced inhibition of xanthine oxidase. EDTA abolished the inhibitory effect of all copper complexes studied. Luminol chemiluminescence in NADH,-PMS system was inhibited by CuZnSOD while it was enhanced by copper complexes. The copper-accelerating effect gradually increased up to about I μM Cu and decreased, reaching the control values up to 10 μM Cu. In the presence of low copper concentrations chemiluminescence was inhibited by CuZnSOD only, while in the presence of high copper concentrations it was inhibited by catalase and mannitol. but not by CuZnSOD. The ligands however, have been ineffective in the two O?2; generated systems.  相似文献   

20.
Rhodospirillum rubrum CAF10, a spontaneous cytochrome oxidase defective mutant, was isolated from strain S1 and used to analyze the aerobic respiratory system of this bacterium. In spite of its lack of cytochrome oxidase activity, strain CAF10 grew aerobically in the dark although at a decreased rate and with a reduced final yield. Furthermore, aerobically grown mutant cells took up O2 at high rates and membranes isolated from those cells exhibited levels of NADH and succinate oxidase activities which were similar to those of wild type membranes. It was observed also that whereas in both strains O2 uptake (intact cells) and NADH and succinate oxidase activities (isolated membranes) were not affected by 0.2 mM KCN, the cytochrome oxidase activity of the wild type strain was inhibited about 90% by 0.2 mM KCN. These data indicate the simultaneous presence of two terminal oxidases in the respiratory system of R. rubrum, a cytochrome oxidase and an alternate oxidase, and suggest that the rate of respiratory electron transfer is not limited at the level of the terminal oxidases. It was also found that the aerobic oxidation of cellular cytochrome c 2 required the presence of a functional cytochrome oxidase activity. Therefore it seems that this electron carrier, which only had been shown to participate in photosynthetic electron transfer, is also a constituent of the respiratory cytochrome oxidase pathway.Abbreviations DCIP 2,6-dichlorophenolindophenol - DMPD N,N-dimethyl-p-phenylenediamine - TMPD N,N,N,N-tetramethyl-p-phenylenediamine - Tricine N-[2-hydroxy-1,1-bis(hydroxymethyl)-ethyl]-glycine  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号