首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Studies on carbonic anhydrase (CA, EC 4.2.1.1) inhibitors have increased due to several therapeutic applications while there are few investigations on activators. Here we investigated CA inhibitory and activatory capacities of a series of dopaminergic compounds on human carbonic anhydrase (hCA) isozymes I, II, and VI. 2-Amino-1,2,3,4-tetrahydronaphthalene-6,7-diol hydrobromide and 2-amino-1,2,3,4-tetrahydronaphthalene-5,6-diol hydrobromide were found to show effective inhibitory action on hCA I and II whereas 2-amino-5,6-dibromoindan hydrobromide and 2-amino-5-bromoindan hydrobromide exhibited only moderate inhibition against both isoforms, being more effective inhibitors of hCA VI. K(i) values of the molecules 3-6 were in the range of 41.12-363 μM against hCA I, of 0.381-470 μM against hCA II and of 0.578-1.152 μM against hCA VI, respectively. Compound 7 behaved as a CA activator with K(A) values of 27.3 μM against hCA I, of 18.4 μM against hCA II and of 8.73 μM against hCA VI, respectively.  相似文献   

2.
The possible sulfatase activity of several carbonic anhydrase (CA, EC 4.2.1.1) isoforms have been investigated with a series of synthesized methanesulfonate derivatives of phenols. Four α-CA isozymes, i.e. hCA I, hCA II, hCA IV and hCA VI (h?=?human isoform), were included in the study. We evidenced that the original sulfonate esters are being hydrolyzed effectively to the corresponding phenols which there after act as CA inhibitors. The KI-s of these compounds ranged from 10.24 to 4012 µM against hCA I, 0.10 to 35.42 µM against hCA II, 0.49 to 45.06 µM against hCA IV and 3.27 to 608 µM against CA VI, respectively. The relevant sulfatase activity of CA with these esters is amazing considering the fact that 4-nitrophenyl-sulfate, an activated ester, is not a substrate of these enzymes.  相似文献   

3.
Inhibitors of carbonic anhydrase (CA) have been carried out in many therapeutic applications, especially antiglaucoma activity. In this study, we investigated some uracil derivatives (412) to inhibit human CA I (hCA I) and II (hCA II) isoenzymes. The KI values of the compounds 412 are in the range of 0.085–428?µM for hCA I and of 0.1715–645?µM against hCA II, respectively. It is concluded from the kinetic investigations, all compounds used in the study act as competitive inhibitors with substrate, 4-NPA. Uracil derivatives are emerging agents for the inhibiton of carbonic anhydrase which could be used in biomedicine.  相似文献   

4.
In this study, we have synthesised (3,4-dihydroxyphenyl)(2,3,4-trihydroxyphenyl)methanone and a series of its derivatives (5, 13–16) and tested the ability of these compounds to inhibit two metalloenzyme human carbonic anhydrase (hCA, EC 4.2.1.1) isozymes, hCA I and hCA II. The synthesised compounds showed inhibitory effect on hCA I and hCA II isozymes. The results showed that synthesised compounds (5, 13–16) demonstrated the best inhibition activity against hCA I (IC50: 3.22–54.28 μM) and hCA II (IC50: 18.52–142.01 μM). The compound 14 showed the highest inhibiton effect against hCA I (IC50: 3.22 μM; Ki: 1.19?±?1.4 μM). On the other hand, the compound 13 showed the highest inhibiton effect against hCA II (IC50: 18.52 μM; Ki: 3.25?±?1.13 μM).  相似文献   

5.
Carbonic anhydrases (CA) catalyze activated ester hydrolysis in addition to the hydration of CO2 to bicarbonate. They also show phosphatase activity with 4-nitrophenyl phosphate as substrate but not sulfatase with the corresponding sulfate. Here we prove that the enzyme is catalyzing the synthesis of cyclic diols from sulfate esters. 5-, 6- and 8-membered ring cyclic sulfates incorporating a neighboring secondary alcohol moiety were treated with CA II and yielded the corresponding cyclic diols. Inhibitory properties of obtained cyclic and original sulfate esters were then investigated on human carbonic anhydrase I (hCA I), hCA II, hCA IV and hCA VI (h?=?human isoform). KI-s of these compounds ranged between 32.7–423 μM against hCA I, 2.13–32.4 μM against hCA II, 13.7–234 μM against hCA IV and 76–278 μM against CA VI, respectively. The sulfatase activity of CA with such esters is amazing considering the fact that 4-nitrophenyl-sulfate is not a substrate of these enzymes.  相似文献   

6.
Here we determined the in vitro inhibitory effects of 5-(2-hydroxyethyl)-3,4-dimethylthiazolium iodide (1), 3-Benzyl-5-(2-hydroxyethyl)-4-methylthiazolium chloride (2) and thiamine (3) on human erythrocyte carbonic anhydrase I, II isozymes (hCA I and hCA II) and secreted isoenzyme CA VI. KI values ranged from 0.38 to 2.27 µM for hCA I, 0.085 to 0.784 µM for hCA II and 0.062 to 0.593 µM for hCA VI, respectively. The compounds displayed relatively strong actions on hCA II, in the same range as the clinically used sulfonamidesethoxzolamide, zonisamide and acetazolamide.  相似文献   

7.
Novel series of 2-morpholino-4-phenylthiazol-5-yl acrylamide derivatives (8as) have been synthesized and explored as a non-sulfonamide class of carbonic anhydrase (CA, EC 4.2.1.1) inhibitors. The newly synthesized molecules were evaluated for their CA inhibitory potency against four isoforms: the cytosolic isozyme hCA I, II as well as trans-membrane tumor associated isoform hCA IX and hCA XII taking acetazolamide (AAZ) as standard drug. The results revealed that most of the compounds showed good activity against hCA II, IX, and XII whereas none of them were active against hCA I (Ki >100 μM). It is observed that the physiologically most important cytosolic isoform hCA II was inhibited by these molecules in the range of Ki 9.3–77.7 μM. It is also found the both the transmembrane isoforms hCA IX and XII were also inhibited with Kis ranging between 54.7–96.7 μM and 4.6–8.8 μM, respectively. The binding modes of the active compounds within the catalytic pockets of hCA II, IX and XII were evaluated by docking studies. This new non-sulfonamide class of selective inhibitors of hCA II, IX and XII over the hCA I isoform may be used for further understanding the physiological roles of some of these isoforms in various pathologies.  相似文献   

8.
Carbonic anhydrase inhibitors (CAIs) are a class of pharmaceuticals used as anti-glaucoma agents, diuretics and anti-epileptics. We report here the inhibitory capacities of benzenesulphonamides, cyclitols and phenolic compounds 1–11 against three human CA isozymes (hCA I, hCA II and hCA VI) and bovine skeletal muscle carbonic anhydrase III (bCA III). The four isozymes showed quite diverse inhibition profiles with Ki values ranging from low micromolar to millimolar concentrations against all isoenzymes. Compound 5 and 6 had more powerful inhibitory action against hCA I and very similar action against hCA II and hCA VI as compared with acetazolamide (AZA) and sulphapyridine (SPD), specific CAIs. Probably the inhibition mechanism of the tested compounds is distinct of the sulphonamides with RSO2NH2 groups and similar to that of the coumarins/lacosamide, i.e. binding to a distinct part of the active site than that where sulphonamides bind. These data may lead to drug design campaigns of effective CAIs possessing a diverse inhibition mechanism compared to other sulphonamide/sulphamate inhibitors.  相似文献   

9.
In search of selective carbonic anhydrase (CA) IX inhibitors endowed with apoptotic inducing properties, we designed and synthesised two subsets of 4- and 3-(5-aryl-(4-phenylsulphonyl)-1H-1,2,3-triazol-1-yl)benzenesulphonamides. All compounds were assayed for human carbonic anhydrase (hCA) isoforms I, II, IV, and IX inhibition. Isoforms hCA I and hCA IV were weakly inhibited by most of the synthesised compounds. Many four-substituted benzenesulphonamides displayed low nanomolar inhibition against isoform hCA II, unlike the three-substituted analogues. All target compounds exhibited good inhibition profile with KI values ranging from 16.4 to 66.0 nM against tumour-associated isoform hCA IX. Some selective and potent inhibitors of hCA IX were assayed for in vitro apoptotic induction in goat testicular cells. Compounds 10d and 10h showed interesting apoptotic induction potential. The present study may provide insights into a strategy for the design of novel anticancer agents based on hCA inhibitors endowed with apoptotic interference.  相似文献   

10.
A series of flavonoids, such as quercetin, catechin, apigenin, luteolin, morin, were investigated for their inhibitory effects against the metalloenzyme carbonic anhydrase (CA). The compounds were tested against four α-CA isozymes purified from human and bovine (hCA I, hCA II, bCA III, hCA IV) tissues. The four isozymes showed quite diverse inhibition profiles with these compounds. The flavonoids inhibited hCA I with KI-s in the range of 2.2–12.8 μM, hCA II with KI-s in the range of 0.74–6.2 μM, bCA III with KI-s in the range of 2.2–21.3 μM, and hCA IV with inhibition constants in the range of 4.4–15.7, with an esterase assay using 4-nitrophenyl acetate as substrate. Some simple phenols/sulfonamides were also investigated as standard inhibitors. The flavonoids incorporate phenol moieties which inhibit these CAs through a diverse, not yet determined inhibition mechanism, compared to classic inhibitors such as the sulfonamide/sulfamate ones.  相似文献   

11.
We report the synthesis and characterisation of a novel series of triazole benzenesulfonamide derivatives, which incorporate the general pharmacophore associated with carbonic anhydrase (CA, EC 4.2.1.1) inhibitors. The synthesised compounds were tested in vitro against four human carbonic anhydrase (hCA, EC 4.2.1.1) isozymes, hCA I, hCA II, hCA IV and hCA IX. The obtained results showed that the tumour-associated hCA IX was the most sensitive to inhibition with the synthesised derivatives, with the triazolo-pyridine benzenesulfonamides 14, 16 and 17 being the most effective inhibitors. Some selected compounds were chosen for a single dose anti-proliferative activity testing against a panel of 57 human tumour cell lines and show some anti-proliferative activity ex vivo.  相似文献   

12.
Abstract

The inhibition of two human cytosolic carbonic anhydrase (hCA, EC 4.2.1.1) isozymes I and II, with some 3,4-dihydroxypyrrolidine-2,5-dione and 3,5-dihydroxybenzoic acid derivatives, were investigated by using the esterase assay, with 4-nitrophenyl acetate (4-NPA) as substrate. Compounds 1013 showed KI values in the range of 112.7–441.5?μM for hCA I and of 3.5–10.76?μM against hCA II, respectively. These hydroxyl group containing compounds generally were competitive inhibitors. Some hydroxyl group containing compounds investigated here showed effective hCA II inhibitory effects, in the same range as the clinically used sulfonamide acetazolamide, and might be used as leads for generating enzyme inhibitors possibly targeting other CA isoforms which have not been yet assayed for their interactions with such agents.  相似文献   

13.
Four human (h) carbonic anhydrase isoforms (CA, EC 4.2.1.1), hCA I, II, IV, and VII, were investigated for their activation profile with piperazines belonging to various classes, such as N-aryl-, N-alkyl-, N-acyl-piperazines as well as 2,4-disubstituted derivatives. As the activation mechanism involves participation of the activator in the proton shuttling between the zinc-coordinated water molecule and the external milieu, these derivatives possessing diverse basicity and different scaffolds were appropriate for being investigated as CA activators (CAAs). Most of these derivatives showed CA activating properties against hCA I, II, and VII (cytosolic isoforms) but were devoid of activity against the membrane-associated hCA IV. For hCA I, the KAs were in the range of 32.6–131?µM; for hCA II of 16.2–116?µM, and for hCA VII of 17.1–131?µM. The structure-activity relationship was intricate and not easy to rationalize, but the most effective activators were 1-(2-piperidinyl)-piperazine (KA of 16.2?µM for hCA II), 2-benzyl-piperazine (KA of 17.1?µM for hCA VII), and 1-(3-benzylpiperazin-1-yl)propan-1-one (KA of 32.6?µM for hCA I). As CAAs may have interesting pharmacologic applications in cognition and for artificial tissue engineering, investigation of new classes of activators may be crucial for this relatively new research field.  相似文献   

14.
A series of vinyl functionalized 5,6-dimethylbenzimidazolium salts are synthesized. All compounds were fully characterized by elemental analyses, MS, 1H-NMR, 13C-NMR, and IR spectroscopy techniques. Enzyme inhibition is a very active area of research in drug design and development. In this study, the synthesized novel benzimidazolium salts were evaluated toward the human erythrocyte carbonic anhydrase I (hCA I), and II (hCA II) isoenzymes, acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) enzymes. They demonstrated highly potent inhibition ability against hCA I with Ki values of 484.8 ± 62.6–1389.7 ± 243.2 nM, hCA II with Ki values of 298.9 ± 55.7–926.1 ± 330.0 nM, α-glycosidase with Ki values of 170.3 ± 27–760.1 ± 269 μM, AChE with Ki values of 27.1 ± 3–77.6 ± 1.7 nM, and BChE with Ki values of 21.0 ± 5–61.3 ± 15 nM. As a result, novel vinyl functionalized 5,6-dimethylbenzimidazolium salts (1a–g) exhibited effective inhibition profiles toward studied metabolic enzymes. Therefore, we believe that these results may contribute to the development of new drugs particularly to treat some global disorders including glaucoma, Alzheimer's disease, and diabetes.  相似文献   

15.
A series of N-cyanomethyl aromatic sulfonamides and bis-sulfonamides was prepared by reaction of arylsulfonyl halides with aminoacetonitrile. The obtained derivatives incorporated various aryl moieties, such as 4-halogeno/alkyl/aryl/nitro-substituted-phenyl, pentafluorophenyl or 2-naphthyl. Moderate inhibitory activity was detected for some compounds against the cytosolic human isoform II of the metalloenzyme carbonic anhydrase (CA, EC 4.2.1.1), hCA II, with inhibition constants of 90, 180 and 560 nM for the 4-nitrophenyl-, 4-iodophenyl- and pentafluorophenyl-N-cyanomethylsulfonamides, respectively. Other derivatives acted as weak inhibitors of isoforms hCA I (KIs of 720 nM–45 μM), hCA II (KIs of 1000–9800 nM) and hCA IX (KIs of 900–10200 nM). Thus, the N-cyanomethylsulfonamide zinc binding group is less effective than the sulfonamide, sulfamate or sulfamide ones for the design of effective CA inhibitors.  相似文献   

16.
A series of sulfonamide derivatives incorporating substituted 3-formylchromone moieties were investigated for the inhibition of three human carbonic anhydrase (hCA, EC 4.2.1.1) isoforms, hCA I, II, and VI. All these compounds, together with the clinically used sulfonamide acetazolamide, were investigated as inhibitors of the physiologically relevant isozymes I, II (cytosolic), and VI (secreted isoform). These sulfonamides showed effective inhibition against all these isoforms with KI’s in the range of 0.228 to 118 µM. Such molecules can be used as leads for discovery of novel effective CA inhibitors against other isoforms with medicinal chemistry applications.  相似文献   

17.
Carbonic anhydrases (CA) catalyze activated ester hydrolysis in addition to the hydration of CO(2) to bicarbonate. They also show phosphatase activity with 4-nitrophenyl phosphate as substrate but not sulfatase with the corresponding sulfate. Here we prove that the enzyme is catalyzing the synthesis of cyclic diols from sulfate esters. 5-, 6- and 8-membered ring cyclic sulfates incorporating a neighboring secondary alcohol moiety were treated with CA II and yielded the corresponding cyclic diols. Inhibitory properties of obtained cyclic and original sulfate esters were then investigated on human carbonic anhydrase I (hCA I), hCA II, hCA IV and hCA VI (h?=?human isoform). K(I)-s of these compounds ranged between 32.7-423 μM against hCA I, 2.13-32.4 μM against hCA II, 13.7-234 μM against hCA IV and 76-278 μM against CA VI, respectively. The sulfatase activity of CA with such esters is amazing considering the fact that 4-nitrophenyl-sulfate is not a substrate of these enzymes.  相似文献   

18.
A series of carbamate derivatives were synthesized and their carbonic anhydrase I and II isoenzymes and acetylcholinesterase enzyme (AChE) inhibitory effects were investigated. All carbamates were synthesized from the corresponding carboxylic acids via the Curtius reactions of the acids with diphenyl phosphoryl azide followed by addition of benzyl alcohol. The carbamates were determined to be very good inhibitors against for AChE and hCA I, and II isoenzymes. AChE inhibition was determined in the range 0.209–0.291?nM. On the other hand, tacrine, which is used in the treatment of Alzheimer’s disease possessed lower inhibition effect (Ki: 0.398?nM). Also, hCA I and II isoenzymes were effectively inhibited by the carbamates, with inhibition constants (Ki) in the range of 4.49–5.61?nM for hCA I, and 4.94–7.66?nM for hCA II, respectively. Acetazolamide, which was clinically used carbonic anhydrase (CA) inhibitor demonstrated Ki values of 281.33?nM for hCA I and 9.07?nM for hCA II. The results clearly showed that AChE and both CA isoenzymes were effectively inhibited by carbamates at the low nanomolar levels.  相似文献   

19.
Abstract

The boron heterocyclic compound dipotassium-trioxohydroxytetrafluorotriborate (K2[B3O3F4OH]) was investigated as inhibitor of the zinc enzyme, carbonic anhydrase (CA, EC 4.2.1.1). Eleven human (h) CA isoforms, hCA I–IV, VA, VI, VII, IX and XII–XIV, were included in the investigations. The anion, similar to tetraborate or phenylboronic acid, inhibited most of them. hCA III was not inhibited by K2[B3O3F4OH], whereas hCA VA, hCA VI, hCA IX and hCA XIII were inhibited in the submillimolar range, with KIs of 0.31–0.63?mM. hCA I and II (cytosolic, widespread isoforms), hCA IV (membrane-bound isoform), hCA XII (tumor-associated, transmembrane) and hCA XIV (transmembrane) were much more effectively inhibited by this anion, with inhibition constants ranging from 25 to 93?µM. hCA VII, a cytosolic enzyme present in the brain and associated to oxidative stress, was very effectively inhibited by K2[B3O3F4OH], with a KI of 8.0?µM. We propose that K2[B3O3F4OH] binds to the metal ion from the enzyme active site, coordinating to the Zn(II) ion monodentately through its B-OH functionality. We hypothesize that some of the beneficial antitumor effects reported for K2[B3O3F4OH] may be due to the inhibition of CAs present in skin tumors.  相似文献   

20.
A series of phenolic and saponin type natural products such as quercetin, rutin, catechin, epicatechin, silymarin, trojanoside H, astragaloside IV, astragaloside VIII and astrasieversianin X, were investigated for their inhibitory effects against the metalloenzyme carbonic anhydrase (CA, EC 4.2.1.1). We here report inhibitory effects of these compounds against five α-CA isozymes (hCA I, hCA II, bCA III, hCA IV and hCA VI). Most of the phenolic and saponin type compounds inhibited the isoenzymes quite effectively at low micromolar KI-s ranging between 0.1 and 4 µM, whereas a few derivatives were ineffective (KI-s > 100 µM). The results were remarkable which might lead to design of novel CAIs with a diverse inhibition mechanism compared to sulfonamide/sulfamate inhibitors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号