首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Male Sprague Dawley rats were exposed to EMP irradiation of 100?kV/m peak-to-peak e-field intensity and different numbers of pulses. Rat sperm samples were prepared for analysis of sperm qualities; Testes were assessed by transmission electron microscopy and serum hormone concentrations were examined by radioimmunoassay; Enzymatic activities of Total-superoxide dismutase(T-SOD) and manganese-superoxide dismutase (MnSOD), the mRNA levels of MnSOD and cuprozinc-superoxide dismutase (CuZnSOD), and the density of malondialdehyde (MDA) were also determined. EMP irradiation did not affect spermatozoon morphology, micronucleus formation rate, sperm number or viability, but the acrosin reaction rate decreased at 24?h and 48?h and recovered by 72?h after irradiation as compared to the controls. The ultrastructure of rat testis displayed more serious damage at 24?h than at other time points (6?h, 12?h, 48?h). Serum levels of luteotrophic hormone (LH) and testosterone (T) were elevated in irradiated rats as compared to controls. After irradiation, enzymatic activities of T-SOD and MnSOD were reduced by 24?h, consistent with the changes observed in MnSOD mRNA expression; MDA content increased at 6?h in turn. These studies have quantified the morphological damage and dysfunction in the rat reproductive system induced by EMP. The mechanism of EMP induced damage may be associated with the inhibition of MnSOD expression.  相似文献   

2.
In order to examine if differences in activity and inducibility of antioxidative enzymes in rat cerebral cortex and hippocampus are underlying their different sensitivity to radiation, we exposed four-day-old female Wistar rats to cranial radiation of 3 Gy of gamma-rays. After isolation of hippocampus and cortex 1 h or 24 h following exposure, activities of copper-zinc superoxide dismutase (CuZnSOD), manganese superoxide dismutase (MnSOD) and catalase (CAT) were measured and compared to unirradiated controls. MnSOD protein levels were determined by SDS-PAGE electrophoresis and Western blot analysis. Our results showed that CuZnSOD activity in hippocampus and cortex was significantly decreased 1 h and 24 h after irradiation with 3 Gy of gamma-rays. MnSOD activity in both brain regions was also decreased 1 h after irradiation. 24 h following exposure, manganese SOD activity in hippocampus almost achieved control values, while in cortex it significantly exceeded the activity of the relevant controls. CAT activity in hippocampus and cortex remained stable 1 h, as well as 24 h after irradiation with 3 Gy of gamma-rays. MnSOD protein level in hippocampus and cortex decreased 1 h after irradiation with 3 Gy of gamma-rays. 24 h after exposure, MnSOD protein level in cortex was similar to control values, while in hippocampus it was still significantly decreased. We have concluded that regional differences in MnSOD radioinducibility are regulated at the level of protein synthesis, and that they represent one of the main reasons for region-specific radiosensitivity of the brain.  相似文献   

3.
The activity of mitochondrial superoxide dismutase (MnSOD) and cytosol superoxide dismutase (CuZnSOD) was measured in corresponding subcellular fractions prepared from the thymi of intact and chronically gonadectomized (GX) rats of both sexes, as well as of GX male and female rats injected subcutaneously with a single dose of 5 microg estradiol benzoate (EB) and/or 2 mg progesterone (P). Animals were sacrificed 2 h or 24 h following hormone treatment. In the females, the activity of MnSOD in the thymus was stable during the estrous cycle and did not change after ovariectomy. Treatment of GX females with estradiol benzoate resulted 2 h later in a significant elevation of MnSOD activity, whereas 24 h later the activity returned back to control values. On the other hand, treatment of GX females with progesterone had no effect on the MnSOD activity. However, combined hormone treatment, in which EB injection preceded progesterone injection by one hour, enhanced the effect on MnSOD activity similar to that of estradiol benzoate alone. The activity of CuZnSOD in cycling rats was increased in proestrus, whereas removal of the ovaries kept the values at low diestrus and estrus levels. Contrary to MnSOD, CuZnSOD activity did not change after EB treatment of GX females, while progesterone increased the enzyme activity at 2 h and 24 h after hormone treatment. However, combined EB+P treatment proved to be ineffective. In the males, neither MnSOD nor CuZnSOD activity was affected by the removal of testes or by progesterone treatment of GX animals. Only EB injection to GX rats significantly increased CuZnSOD activity 24 h later.  相似文献   

4.
Retinal ischemia/reperfusion (I/R) results in neuronal death and generation of reactive oxygen species. The aim of this study was to investigate the neuroprotective effect of manganese superoxide dismutase (SOD2) on retinal ganglion cells (RGCs) in an I/R-induced retinal injury model. One eye of each Wistar rat was pretreated with recombinant adeno-associated virus containing the SOD2 gene (AAV-SOD2) or recombinant AAV containing the GFP gene (AAV-GFP) by intravitreal injection 21 days before initiation of I/R injury. Retinal I/R injury was induced by elevating intraocular pressure for 1h, and reperfusion was established immediately afterward. The number of RGCs and the inner plexiform layer (IPL) thickness were measured by Fluorogold retrograde labeling and hematoxylin and eosin staining at 6 h, 24 h, 72 h, and 5 days after injury. Superoxide anion, the number of RGCs, IPL thickness, malondialdehyde (MDA) level, 8-hydroxy-2-deoxyguanosine (8-OHdG) level, MnSOD (manganese superoxide dismutase) activity, and nitrotyrosine level were measured by fluorescence staining, immunohistochemistry, and enzyme-linked immunosorbent analysis at 5 days after I/R injury. Severe RGC loss, reduced IPL thickness, reduced MnSOD activity, and increased superoxide ion, MDA, 8-OHdG, and nitrotyrosine production were observed after I/R injury. Administration of AAV-SOD2 significantly reduced the levels of superoxide ion, MDA, 8-OHdG, and nitrotyrosine and prevented the damage to RGCs and IPL. Delivery of the antioxidant gene inhibited I/R-induced RGC and IPL damage by reducing oxidative stress and nitrative stress, suggesting that MnSOD may be relevant for the neuroprotection of the inner retina from I/R-related diseases.  相似文献   

5.
6.
This study presents the evaluation of the oxidant injury as a function of time following brain irradiation in a rat model. Thirty-five Wistar rats were divided into seven groups. The rats in Group 1 through Group 6 underwent irradiation, whereas the rats in Group 7 underwent sham irradiation. The rats in Group 1 through Group 6 underwent euthanasia at 1 through 48 h following irradiation, whereas the rats in Group 7 underwent euthanasia immediately following sham irradiation. At the time of euthanasia, the brain tissue was dissected for evaluation of the malondialdehyde (MDA) level and the superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GSHPX) activities. The mean MDA levels were increased and the mean SOD, CAT and GSHPX activities were decreased at all of the time points for evaluation for the rats that underwent irradiation as compared to the rats that underwent sham irradiation, substantial for Group 1 and gradually leveling out through Group 6. This study confirms that the oxidant injury is evaluated at its best through the first several hours following brain irradiation.  相似文献   

7.
为探讨电磁脉冲对下丘脑神经细胞损伤的机制,测定了电磁脉冲辐照培养下丘脑神经细胞前后细胞内LDH和培养上清中LDH、AST、CHE、K+、Na+浓度及与时间的关系。对新生的Wistar乳鼠下丘脑神经细胞在6孔板中进行原代培养,在培养14天时,用高场强EMP模拟源(场强为6×104V/m,脉冲上升时间为20ns,脉宽为30滋s,主要频率成分为0—100MHz),以脉冲重复频率为2.5次/min,辐照2min。并于辐照后0h(即刻)、1h、6h、12h和24h应用生化检测试剂盒测定细胞内和培养上清中LDH及培养上清中AST、CHE、K+、Na+浓度。结果表明,电磁脉冲辐照后即刻就可引起培养上清LDH、AST明显升高;辐照后1h细胞内LDH明显降低,而培养上清中LDH、AST、CHE、和K+明显升高;辐照后6h细胞内LDH明显降低,而培养上清中LDH、AST、CHE、K+和Na+明显升高;辐照后12h细胞内LDH明显降低,培养上清中CHE、K+和Na+明显升高;辐照后24h上述所有指标基本恢复。由此可以认为,电磁脉冲辐照后可引起下丘脑神经元细胞膜的损伤。  相似文献   

8.
M F Tsan  J E White  G H Wong 《Cytokine》1992,4(2):101-105
D-Factor (differentiation-inducing factor or leukemia inhibitory factor) and growth hormone are proteins that regulate growth and differentiation of cells. In this study, we demonstrated that recombinant human D-factor and growth hormone caused a slight but significant protection of adult rats against oxygen toxicity without affecting levels of pulmonary manganous superoxide dismutase (MnSOD) mRNA. D-Factor and growth hormone also markedly enhanced tumor necrosis factor (TNF)-induced oxygen tolerance. This latter effect was associated with a marked enhancement of TNF-mediated induction of pulmonary MnSOD mRNA.  相似文献   

9.
目的:观察不同剂量x射线对大鼠精子CRISP2mRNA表达水平的影响,探讨其在电离辐射所致大鼠精子功能改变中的作用。方法:用吸收剂量为1、2、4、和6Gy的x射线分别照射活体SD大鼠的外生殖系统1…4812、24h后,用PCR技术检测精子CRISP2基因mRNA表达水平;用光学显微镜观察精予活力。以未照射组为对照。结果:4、6GyX射线照射不同时间(1、4、8、12、24h时)后大鼠精子的CRISP2mRNA相对表达量均较对照组显著下降(P.〈0.05),其中6Gb,照射24小时后相对表达量最低(P〈0.01),而4Gy照射组与6Gy照射组相比较差异无统计学意义(P〉0.05);2Gyx射线照射8h后CRISP2mRNA相对表达量下降有统计学意义(P〈0.05);2GyX射线照射1、4h后及1GyX射线照射不同时间(1、4、8、12、24la)后大鼠精子的CRISP2mRNA相对表达量较对照组下降,但差异无统计学意义(P〉O.05)。1、2GyX射线照射不同时间(1、4、8、12、24小时)及4GyX射线照射(1、4、8h)后,精子活力与正常对照组相比无明显改变(P〉0.05);4GyX射线照射12、24h后大鼠精子活力显著低于正常对照;6GyX射线照射不同时间(1、4、8、12、24h)后,精子活力明显低于对照组(P〈0.05)。结论:不同剂量X射线照射不同时间可导致SD大鼠精子活力下降,这可能与其下调CRISP2基因的mRNA表达水平有关。  相似文献   

10.
Endothelial cells are primary targets for injury by reactive oxygen species. Endothelial catalase, copper-zinc superoxide dismutase (CuZnSOD), and manganous superoxide dismutase (MnSOD) provide potential antioxidant enzymatic defenses against oxidant-induced cellular damage. Previous studies in vivo and in vitro have demonstrated that in certain cell types exposure to oxidants may increase the expression of one or more of these antioxidant enzymes, thus providing greater intracellular potential to withstand oxidant-induced cell stress. To test whether endothelial antioxidant enzyme expression is influenced by similar oxidant-induced stresses in vitro, we have exposed endothelial cells to tumor necrosis factor-alpha (TNF-alpha) and have measured levels of catalase, CuZnSOD and MnSOD mRNA, and protein. Our results demonstrate a selective increase of MnSOD mRNA, with coordinate increases of both MnSOD protein and enzyme activity in endothelial cells treated for 24/h with TNF-alpha. In contrast, levels of catalase and CuZnSOD mRNA and protein remained unchanged in these cells after TNF-alpha treatment. These observations were made in microvessel endothelial cells derived from murine and bovine sources. Our results indicate that TNF-alpha can act specifically to increase enzymatic antioxidant potential in endothelial cells by induction of a particular antioxidant enzyme encoding mRNA species. These data demonstrate the capacity of endothelial cells to mount an antioxidant defense in response to exposure to an inducer of oxidative damage.  相似文献   

11.
We have demonstrated that tumor necrosis factor-alpha (TNF-alpha) pretreatment protected the rat heart from ischemia-reperfusion injury. This effect was monitored by assaying for lactate dehydrogenase (LDH), an enzyme whose release correlates with loss of cell membrane integrity. Intact hearts removed from rats pretreated with TNF-released significantly lower amounts of LDH compared to control hearts after 20 min. of total global ischemia followed by reperfusion. Hearts from TNF-alpha-pretreated animals contained higher levels of manganous superoxide dismutase (MnSOD) mRNA than hearts from untreated rats. Because oxygen free radicals have been implicated as a major cause of reperfusion damage and the function of MnSOD is to detoxify superoxide anions in the mitochondria, a possible protective mechanism for TNF-alpha may be to induce expression of MnSOD in the heart and thus confer resistance to oxygen free radicals generated during reperfusion.  相似文献   

12.
Apoptotic cell ratio and mRNA expression of caspase-3, cathepsin B (CTSB), heat shock protein 70 (HSP70), manganese superoxide dismutase (MnSOD), catalase (CAT), glutathione peroxidase (GPx) and thioredoxin (TRx) in hemocytes of white shrimp Litopenaeus vannamei exposed to nitrite-N (20 mg/L) was investigated at different stress time (0, 4, 8, 12, 24, 48 and 72 h). The apoptotic cell ratio and mRNA expression level of CTSB were significantly increased in shrimp exposed to nitrite-N for 48 and 72 h. Caspase-3 mRNA expression level significantly increased by 766.50% and 1811.16% for 24 and 48 h exposure, respectively. HSP70 expression level significantly increased at 8 and 72 h exposure. MnSOD mRNA expression in hemocytes up-regulated at 8 and 48 h, while CAT mRNA expression level increased at 24 and 48 h. GPx expression showed a trend that increased first and then decreased. Significant increases of GPx expression were observed at 8 and 12 h exposure. Expression level of TRx reached its highest level after 48 h exposure. These results suggest that nitrite exposure induces expression of apoptosis-related genes in hemocytes, and subsequently caused hemocyte apoptosis. Meanwhile, expression levels of HSP70 and antioxidant enzymes up-regulated to protect the hemocyte against nitrite stress.  相似文献   

13.
Although oxidative damage is known to be involved in inflammatory-mediated tissue destruction, modulation of oxygen free radical production represents a new approach to the treatment of inflammatory diseases. Caffeic acid phenethyl ester (CAPE), an active component of propolis from honeybee hives, has antioxidant, anti-inflammatory and antibacterial properties. For that reason, we aimed to investigate the efficiency of CAPE administration in preventing oxidative damage in pyelonephritis (PYN) caused by Escherichia coli. In this study, 35 Wistar rats were grouped as follows: control, PYN 24 h, PYN 48 h, PYN 72 h, CAPE 24 h, CAPE 48 h and CAPE 72 h. E. coli (1 × 109 c.f.u.) were inoculated into the rats in both PYN and CAPE groups via urethral catheterization. Ten μM/kg-body weight CAPE was injected to the rats in all CAPE groups 24 h before E. coli infection, and injections were repeated at 24-h intervals. Rats were sacrificed 24 h, 48 h and 72 h after infection in both PYN and CAPE groups. Malondialdehyde (MDA) and nitric oxide (NO) levels were significantly increased in kidneys of PYN groups. The activities of the antioxidant enzymes, catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and xanthine oxidase (XO) were also elevated by E. coli. However, CAPE administration reduced MDA and NO levels, as well as XO activity, although it increased SOD and GSH-Px activities. Histopathological examination showed that CAPE reduced the inflammation grade induced by E. coli. In conclusion, CAPE administrations decrease the oxidative damage occurring in PYN and therefore could be used for medical management of bacterial nephropathy.  相似文献   

14.
15.
16.
The mechanisms underlying hepatocellular damage after irradiation are obscure. We identified genes induced by radiation in isolated rat hepatocytes in vitro by cDNA array gene expression analysis and then screened in vivo experiments with those same genes using real-time PCR and Western blotting. Hepatocytes were irradiated and cDNA array analyses were performed 6 h after irradiation. The mRNA of differentially expressed genes was quantitatively analyzed by real-time PCR. cDNA array analyses showed an up-regulation of 10 genes in hepatocytes 6 h after irradiation; this was confirmed by real-time PCR. In vivo, rat livers were irradiated selectively. Treated and sham-irradiated controls were killed humanely 1, 3, 6, 12, 24 and 48 h after irradiation. Liver RNA was analyzed by real-time PCR; expression of in vivo altered genes was also analyzed at the protein level by Western blotting. Up-regulation was confirmed for three of the in vitro altered genes (multidrug resistance protein, proteasome component C3, eukaryotic translation initiation factor 2). Histologically, livers from irradiated animals were characterized by steatosis of hepatocytes. Thus we identified genes that may be involved in liver steatosis after irradiation. The methods shown in this work should help to further clarify the consequences of radiation exposure in the liver.  相似文献   

17.
Zinc deficiency induces oxidative stress and AP-1 activation in 3T3 cells   总被引:6,自引:0,他引:6  
It has been postulated that one mechanism underlying zinc deficiency-induced tissue alterations is excessive cellular oxidative damage. In the present study we investigated if zinc deficiency can induce oxidative stress in 3T3 cells and trigger select intracellular responses that have been associated to oxidative stress. Cells were exposed to control media or to chelated media containing 0.5, 5, or 50 microM zinc for 24 or 48 h. The oxidative status of the cells was evaluated as an increase in the fluorescence of the probe 5(or 6)-carboxy-2'7'-dichlorodihydrofluorescein diacetate (DCDCDHF). After 24 and 48 h of exposure, the fluorescence intensity was significantly higher (4- to 15-fold) in the 0.5 and 5 microM Zn groups compared to the 50 microM Zn and control groups. The activity of the antioxidant enzymes CuZn (CuZnSOD) and Mn (MnSOD) superoxide dismutases was significantly higher in the 0.5 and 5 microM Zn cells compared to the 50 microM Zn and control groups at both the 24 and 48 h time points. These higher activities were associated with higher levels of MnSOD mRNA. After 24 h in culture, the level of activated AP-1 was markedly higher in the 0.5 and 5 microM Zn cells than in the control (72 and 58%, respectively) and 50 microM Zn cells (73 and 60%, respectively). NF-kappaB binding activity was lower in the 0.5 and 5 microM Zn cells than in controls. Thus, oxidative stress is induced by zinc deficiency in 3T3 cells. This oxidative stress results in an upregulation of oxidant defense mechanisms.  相似文献   

18.
In this study we investigated whether pretreatment with melatonin was protective against the injury of the central nervous system (CNS) in rats receiving LD(50) whole body irradiation. The wistar rats were randomized into four groups: i) the control group (CG), ii) melatonin-administered group (MG; 1 mg/kg body weight), iii) irradiated group (RG; 6.75 Gy, one dose), and iv) melatonin-administered and irradiated group (MRG). Blood samples were drawn from the rats 24 h after the treatment and plasma glutathione levels were assayed. Plasma glutathione level was significantly higher in RG than CG. The melatonin pretreatment prevented GSH increase induced by irradiation. Lipid peroxidation and glutathione levels of rat cerebral cortex were determined in all groups after 24 h. Cortical malondialdehyde (MDA) was significantly higher in the RG. The melatonin pretreatment prevented cortical MDA increase induced by irradiation. Cortical GSH was significantly lower in RG than the CG. The melatonin pretreatment prevented cortical GSH decrease induced by irradiation. Tissue samples were obtained from cerebral cortex and hypothalamus which also were affected by ionizing irradiation in the CNS and were evaluated with electron microscopy. Histopathological findings showed that LD(50) whole body irradiation resulted in damage of the neuronal cells of CNS. The results obtained from this study demonstrated that pretreatment with melatonin prevented the damage that develops in CNS following irradiation. The beneficial effect of melatonin can be related to protection of the CNS from oxidative injury and preventing the decrease in the level of cortical glutathione.  相似文献   

19.
为探讨紫外线对晶状体的损伤机制,用RT-PCR方法(reversetranscription-polymerasechainreaction,反转录聚合酶链反应),研究经紫外线照射后大鼠晶状体抗氧化相关酶,包括铜锌-超氧化物歧化酶(copper-zinc-superoxidedismutase,Cu-Zn-SOD),谷胱甘肽过氧化物酶(glu-tathioneperoxidase,GSH-Px)和过氧化氢酶(catalase,CAT)等mRNA的表达.结果显示,短时间的照射(2~5min),抗氧化相关酶的mRNA表达水平有增高表现,随后其mRNA表达水平开始下降,15min时抗氧化相关酶mRNA的表达下降更为明显,与对照组相比有非常显著性差异(P<0.001).照射后24h,抗氧化相关酶的mRNA表达有不同程度的恢复;照射后48h,其mRNA表达水平基本恢复,与对照组相比没有显著性差异.从而从基因水平上初步探讨了紫外线的氧化损伤机制  相似文献   

20.
The study was undertaken to find out whether or not chronic stress-induced alterations in spermatogenesis are accompanied by oxidative damage in the testis and reversibility of these effects. Adult male rats (n?=?10) were subjected to restraint for 1 h and later after a gap of 4 h to forced swimming exercise for 15 min daily for 60 days and controls (n?=?5) were maintained without disturbance. After treatment period, controls and 5 rats in stress group were killed and remaining rats in stress group were maintained without any treatment for 4 months and then autopsied to find out whether effects are reversible or not. The body and testicular weight, total sperm count, and mean number of type A spermatogonia, mid-pachytene spermatocytes, stage 7 spermatids, and elongated spermatids (cellular association in stage VII of spermatogenesis) showed a significant decrease whereas the abnormal sperm count and germ cell apoptosis were increased in stressed and recovery group rats compared to controls. Activities of testicular SOD, CAT, GPx, and GST were significantly decreased whereas MDA levels were significantly increased in stressed rats compared to controls. The SOD, GST, and CAT activities of recovery groups were significantly lower than controls, whereas MDA levels and GPx activity of these rats did not differ from controls. The results, for the first time, reveal that stress-induced loss of germ cells leading to decrease in sperm count may be due to oxidative damage caused by chronic stress and majority of these changes are not reversible.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号