首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Abstract

Carbonic anhydrases (CAs) are widespread metalloenzymes in higher vertebrates including humans. A series of phenolic compounds, including guaiacol, 4-methylguaiacol, 4-propylguaiacol, eugenol, isoeugenol, vanillin, syringaldehyde, catechol, 3-methyl catechol, 4-methyl catechol and 3-methoxy catechol were investigated for their inhibition of all the catalytically active mammalian isozymes of the Zn2+-containing CA (EC 4.2.1.1). All the phenolic compounds effectively inhibited human carbonic anhydrase isoenzymes (hCA I, II, IX and XII), with Kis in the range of 2.20–515.98?μM. The various isozymes showed diverse inhibition profiles. Among the tested phenolic derivatives, compounds 4-methyl catechol and 3-methoxy catechol showed potent activity as inhibitors of the tumour-associated transmembrane isoforms (hCA IX and XII) in the submicromolar range, with high selectivity. The results obtained from this research may lead to the design of more effective carbonic anhydrase isoenzyme inhibitors (CAIs) based on such phenolic compound scaffolds.  相似文献   

2.
In the present work, a new series of thiopyrimidine-benzenesulfonamide conjugates was designed, synthesized and tested as carbonic anhydrase (CA, EC 4.2.1.1) inhibitors. Our design strategy was based on the molecular hybridization of the benzenesulfonamide moiety as a zinc binding group (ZBG), an alkylated thiopyrimidine moiety as a spacer and (un)substituted phenyl moieties with various electronic and hydrophobic environments as a tail. The designed and synthesized compounds were evaluated against four human (h) CA isoforms hCA I, hCA II, hCA IX and hCA XII. Series 6 showed promising activity and selectivity toward the cytosolic isoforms hCA I and hCA II versus the membrane bound isoforms hCA IX and hCA XII. Compounds 6e and 6f showed Ki of 0.04 µM against hCA II with a selectivity of 15.8- to 980-fold towards hCA II over hCA I, hCA IX, hCA XII isoforms. Molecular docking in the hCA II active site attributed the promising inhibitory activity of series 6 to the interaction of their sulfonamide moiety with the active site Zn2+ ion as well as its hydrogen bonding with the key amino acids Thr199 and Thr200. Through hydrophobic interaction, the benzenesulfonamide and the thiopyrimidine moieties interact with the hydrophobic side chains of the amino acids Val121/Leu198 and Ile91/Phe131, respectively. These results indicated that the designed and synthesized series is an interesting scaffold that can be further optimized for the development of selective antiglaucoma drugs.  相似文献   

3.
A series of curcumin inspired sulfonamide derivatives was prepared from various chalcones and 4-sulfamoyl benzaldehyde via Claisen–Schmidt condensation. All new compounds were assayed as inhibitors of four human isoforms of the metalloenzyme carbonic anhydrase (hCA, EC 4.2.1.1) isoforms hCA I, II, IX and XII. Interesting inhibitory activities were observed against all these isoforms. hCA I, an isoform involved in several eye diseases was inhibited moderately with KIs in the range of 191.8–904.2?nM, hCA II, an antiglaucoma drug target was highly inhibited by the new sulfonamides, with KIs in the range of 0.75–8.8?nM. hCA IX, a tumor-associated isoform involved in cancer progression and metastatic spread was potently inhibited by the new sulfonamides, with KIs in the range of 2.3–87.3?nM, whereas hCA XII, and antiglaucoma and anticancer drug target, was inhibited with KIs in the range of 6.1–71.8?nM. It is noteworthy that one of the new compounds, 5d, was found to be almost 9 times more selective against hCA II (KI =?0.89?nM) over hCA IX and hCA XII, whereas 5e was 3 and 70 times more selective against hCA II (KI =?0.75?nM) over hCA IX and hCA XII, respectively.  相似文献   

4.
A series of hydroxylic compounds (1–10, NK-154 and NK-168) have been assayed for the inhibition of three physiologically relevant carbonic anhydrase isozymes, the cytosolic isozymes I, II and tumor-associated isozyme IX. The investigated compounds showed inhibition constants in the range of 0.068–4003, 0.012–9.9 and 0.025–115?μm at the hCA I, hCA II and hCA IX enzymes, respectively. In order to investigate the binding mechanisms of these inhibitors, in silico studies were also applied. Molecular docking scores of the studied compounds are calculated using scoring algorithms, namely Glide/induced fit docking. The inhibitory potencies of the novel compounds were analyzed at the human isoforms hCA I, hCA II and hCA IX as targets and the KI values were calculated.  相似文献   

5.
Four novel scaffolds consisting of total 24 compounds (1a1o, 2a2c, 3a3c and 4a4c) bearing aromatic sulfonamide and coumarin moieties connected through various linkers were synthesized in order to synergize the inhibition potential of both the moieties against four selected human carbonic anhydrase isoforms (hCA I, II, IX & XII). All compounds were found to be potent inhibitors of tumor associated hCA IX & XII while at the same time required large amounts to inhibit off-targeted housekeeping hCA I & II. Selectivity was more pronounced against hCA II over I, and hCA XII over IX. Results were compared with antitumor drug acetazolamide. One derivative 2b of series 2 was found to be a better selective inhibitor of hCA IX and XII.  相似文献   

6.
Novel series of 2-morpholino-4-phenylthiazol-5-yl acrylamide derivatives (8as) have been synthesized and explored as a non-sulfonamide class of carbonic anhydrase (CA, EC 4.2.1.1) inhibitors. The newly synthesized molecules were evaluated for their CA inhibitory potency against four isoforms: the cytosolic isozyme hCA I, II as well as trans-membrane tumor associated isoform hCA IX and hCA XII taking acetazolamide (AAZ) as standard drug. The results revealed that most of the compounds showed good activity against hCA II, IX, and XII whereas none of them were active against hCA I (Ki >100 μM). It is observed that the physiologically most important cytosolic isoform hCA II was inhibited by these molecules in the range of Ki 9.3–77.7 μM. It is also found the both the transmembrane isoforms hCA IX and XII were also inhibited with Kis ranging between 54.7–96.7 μM and 4.6–8.8 μM, respectively. The binding modes of the active compounds within the catalytic pockets of hCA II, IX and XII were evaluated by docking studies. This new non-sulfonamide class of selective inhibitors of hCA II, IX and XII over the hCA I isoform may be used for further understanding the physiological roles of some of these isoforms in various pathologies.  相似文献   

7.
The transmembrane isoforms of carbonic anhydrase (hCA IX and XII) have been shown to be linked to carcinogenesis and their inhibition to arrest primary tumor and metastases growth. In this paper, we present a new class of C-glycosides incorporating the methoxyaryl moiety, that was designed to selectively target and inhibit the extracellular domains of the cancer-relevant CA isozymes. The glycosides have been prepared by aldol reaction of glycosyl ketones with the appropriate aromatic aldehydes. We also present the inhibition profile of our new glycomimetics, against four isozymes of carbonic anhydrase comprising hCAs I and II (cytosolic, ubiquitous isozymes) and hCAs IX and XII (tumor associated isozymes). In this study, per-O-acetylated glycoside 4, 6 and deprotected compounds 7, 9, 10 and 12 were identified as potent and highly selective inhibitors of hCA IX and XII. These results confirm that attaching carbohydrate moieties to CA methoxyaryl pharmacophore improves and enhances its inhibitory activity. These CA inhibitors have developmental potential to selectively target cancer cells, leading to cell death.  相似文献   

8.
A series of S-substituted 4-chloro-2-mercapto-5-methyl-benzenesulfonamides has been investigated as inhibitors of four isoforms of the zinc enzyme carbonic anhydrase (CA, EC 4.2.1.1), that is, the cytosolic, ubiquitous isozymes CA I and II, as well as the transmembrane, tumor-associated isozymes CA IX and XII. The new derivatives were inefficient inhibitors of isoform I (K(I)s in the range of 2.7-18.7 microM) but generally had low nanomolar affinity for the inhibition of the other three isoforms (K(I)s in the range of 2.4-214 nM against hCA II; 1.4-47.5 nM against hCA IX, and 1.7-569 nM against hCA XII, respectively). Some selectivity for the inhibition of the tumor-associated versus the cyctosolic isoform II with some of these compounds has also been evidenced. As CA IX is an important marker of tumor hypoxia and its predictive, prognostic, and druggability potentials for designing antitumor therapies were recently validated, detection of selective, potent CA IX inhibitors may be relevant in the fight against cancers overexpressing CA isozymes.  相似文献   

9.
Imine derivatives were obtained by condensation of sulfanilamide with substituted aromatic aldehydes. The Schiff bases were thereafter reduced with sodium borohydride, leading to the corresponding amines, derivatives of 4-sulfamoylphenyl-benzylamine. These sulfonamides were investigated as inhibitors of the human carbonic anhydrase (hCA, EC 4.2.1.1) isoforms hCA I and II (cytosolic isozymes), as well as hCA IX and XII (transmembrane, tumor-associated enzymes). We noted that the compounds incorporating secondary amine moieties showed a better inhibitory activity against all CA isozymes compared to the corresponding Schiff bases. Low nanomolar CA II, IX and XII inhibitors were detected, whereas the activity against hCA I was less potent. The secondary amines incorporating sulfonamide or similar zinc-binding groups, poorly investigated chemotypes for designing metalloenzyme inhibitors, may offer interesting opportunities in the field due to the facile preparation and possibility to explore a vast chemical space.  相似文献   

10.
Abstract

Carbonic anhydrases (CAs) are widespread and the most studied members of a great family of metalloenzymes in higher vertebrates including humans. CAs were investigated for their inhibition of all of the catalytically active mammalian isozymes of the Zn2+-containing CA, (CA, EC 4.2.1.1). On the other hand, acetylcholinesterase (AChE. EC 3.1.1.7), a serine protease, is responsible for ACh hydrolysis and plays a fundamental role in impulse transmission by terminating the action of the neurotransmitter ACh at the cholinergic synapses and neuromuscular junction. In the present study, the inhibition effect of the hydroquinone (benzene-1,4-diol) on AChE activity was evaluated and effectively inhibited AChE with Ki of 1.22?nM. Also, hydroquinone strongly inhibited some human cytosolic CA isoenzymes (hCA I and II) and tumour-associated transmembrane isoforms (hCA IX, and XII), with Kis in the range between micromolar (415.81?μM) and nanomolar (706.79?nM). The best inhibition was observed in cytosolic CA II.  相似文献   

11.
Abstract

In an in vitro screening for human carbonic anhydrase (hCA) inhibiting agents from higher plants, the petroleum ether and ethyl acetate extracts of Magydaris pastinacea seeds selectively inhibited hCA IX and hCA XII isoforms. The phytochemical investigation of the extracts led to the isolation of ten linear furocoumarins (110), four simple coumarins (1215) and a new angular dihydrofurocoumarin (11). The structures of the isolated compounds were elucidated based on 1?D and 2?D NMR, MS, and ECD data analysis. All isolated compounds were inactive towards the ubiquitous cytosolic isoform hCA I and II (K i?>?10,000?nM) while they were significantly active against the tumour-associated isoforms hCA IX and XII. Umbelliprenin was the most potent coumarin inhibiting hCA XII isoform with a K i of 5.7?nM. The cytotoxicity of the most interesting compounds on HeLa cancer cells was also investigated.  相似文献   

12.
The inhibition of the two transmembrane, tumor-associated isozymes of carbonic anhydrase (CA, EC 4.2.1.1) of human origin, hCA IX and XII, with a library of aromatic and heteroaromatic sulfonamides has been investigated. Most of them were sulfanilamide, homosulfanilamide, and 4-aminoethyl-benzenesulfonamide derivatives, to which tails that should induce diverse physico-chemical properties have been attached at the amino moiety, whereas several of these compounds were derived from metanilamide, benzene-1,3-disulfonamide or the 1,3,4-thiadiazole/thiadiazoline-2-sulfonamides. The tails were of the alkyl/aryl-carboxamido/sulfonamido-, ureido or thioureido type. Against hCA IX the investigated compounds showed inhibition constants in the range of 3-294 nM, whereas against hCA XII in the range of 1.9-348 nM, respectively. The best hCA IX inhibitors were ureas/thioureas incorporating 4-aminoethyl-benzenesulfonamide and metanilamide moieties. The best hCA XII inhibitors were 1,3,4-thiadiazole/thiadiazoline-2-sulfonamides incorporating 5-acylamido or 5-arylsulfonylamido moieties. These compounds also inhibited appreciably the cytosolic isozymes hCA I and II, but some selectivity for the transmembrane, tumor-associated isozymes was observed for some of them, which is an encouraging result for the design of novel therapies targeting hypoxic tumors, in which these carbonic anhydrases are highly overexpressed.  相似文献   

13.
We report the synthesis and characterisation of a novel series of triazole benzenesulfonamide derivatives, which incorporate the general pharmacophore associated with carbonic anhydrase (CA, EC 4.2.1.1) inhibitors. The synthesised compounds were tested in vitro against four human carbonic anhydrase (hCA, EC 4.2.1.1) isozymes, hCA I, hCA II, hCA IV and hCA IX. The obtained results showed that the tumour-associated hCA IX was the most sensitive to inhibition with the synthesised derivatives, with the triazolo-pyridine benzenesulfonamides 14, 16 and 17 being the most effective inhibitors. Some selected compounds were chosen for a single dose anti-proliferative activity testing against a panel of 57 human tumour cell lines and show some anti-proliferative activity ex vivo.  相似文献   

14.
Three series of novel heterocyclic compounds (3a3g, 4a4g and 5a5g) containing benzenesulfonamide moiety and incorporating a 1,2,4-triazole ring, have been synthesized and investigated as inhibitors against four isomers of the α-class carbonic anhydrases (CAs, EC 4.2.1.1), comprising hCAs I and II (cytosolic, ubiquitous isozymes) and hCAs IX and XII (transmembrane, tumor associated isozymes). Against the human isozymes hCA I and II, compounds of two series (3a3g and 4a4g) showed Ki values in the range of 84–868 nM and 5.6–390 nM, respectively whereas compounds of series 5a5g were found to be poor inhibitors (Ki values exceeding 10,000 nM in some cases). Against hCA IX and XII, all the tested compounds exhibited excellent to moderate inhibitory potential with Ki values in the range of 2.8–431 nM and 1.3–63 nM, respectively. Compounds 3d, 3f and 4f exhibited excellent inhibitory potential against all of the four isozymes hCA I, II, IX and XII, even better than the standard drug acetazolamide (AZA) whereas compound of the series 5a5g were comparatively less potent but more selective towards hCA IX and XII.  相似文献   

15.
New ureido benzenesulfonamides incorporating a GABA moiety as a linker between the ureido and the sulfonamide functionalities were synthesized and their inhibition potency determined against both the predominant cytosolic (hCA I and II) and the transmembrane tumor-associated (hCA IX and XII) isoforms of the metalloenzyme carbonic anhydrase (CA, EC 4.2.1.1). The majority of these compounds were medium potency inhibitors of the cytosolic isoform hCA I and effective hCA II inhibitors, whereas they showed strong inhibition of the two transmembrane tumor-associated isoforms hCA IX and XII, with KIs in nanomolar range. Only one derivative had a good selectivity for inhibition of the tumor-associated hCA IX target isoform over the cytosolic and physiologically dominant off-target hCA I and II, being thus a potential tool to develop new anticancer agents.  相似文献   

16.
Abstract

A new series of homosulfocoumarins (3H-1,2-benzoxathiepine 2,2-dioxides) possessing various substitution patterns and moieties in the 7, 8 or 9 position of the heterocylic ring were prepared by original procedures and investigated for the inhibition of four physiologically relevant carbonic anhydrase (CA, EC 4.2.1.1) isoforms, the human (h) hCA I, II, IX and XII. The 8-substituted homosulfocoumarins were the most effective hCA IX/XII inhibitors followed by the 7-substituted derivatives, whereas the substitution pattern in position 9 led to less effective binders for the transmembrane, tumour-associated isoforms IX/XII. The cytosolic isoforms hCA I and II were not inhibited by these compounds, similar to the sulfocoumarins/coumarins investigated earlier. As hCA IX and XII are validated anti-tumour targets, with one sulphonamide (SLC-0111) in Phase Ib/II clinical trials, finding derivatives with better selectivity for inhibiting the tumour-associated isoforms over the cytosolic ones, as the homosulfocoumarins reported here, is of crucial importance.  相似文献   

17.
Carbonic anhydrases (CAs, EC 4.2.1.1) catalyze the fundamental reaction of CO2 hydration in all living organisms, being actively involved in the regulation of a plethora of patho/physiological conditions. A series of benzothiazole-based sulfonamides were synthesized and tested as possible CA inhibitors. Their inhibitory activity was assessed against the cytosolic human isoforms hCA I and hCA II and the transmembrane hCA IX and hCA XII. Several of the investigated derivatives showed interesting inhibition activity and selectivities for inhibiting hCA IX and hCA XII over the off-target ones hCA I and hCA II. Furthermore, computational procedures were used to investigate the binding mode of this class of compounds, within the active site of hCA IX.  相似文献   

18.
Two novel series of phenylacrylamide linked coumarins and sulfocoumarins (6a-p, 8a-i, and 14a-g) were synthesized and evaluated against four physiologically relevant human carbonic anhydrases (hCAs, EC 4.2.1.1), isoforms hCA I, hCA II, hCA IX and hCA XII for their inhibitory action. All new compounds when screened for carbonic anhydrase inhibitory activity have shown selective inhibition towards the tumor associated isoforms hCA IX and XII over CA I and II, with inhibition constants in the submicromolar to low nanomolar range. Compound 6b and 14g exhibited significant inhibition with low nanomolar potency against hCA IX, whereas 6k was effective against hCA XII. Compounds 6b, 14g and 6k may be considered as lead molecules for future development of cancer therapeutics based on a novel mechanism of action.  相似文献   

19.
A series of 2-mercapto-substituted-benzenesulfonamides has been prepared by a unique two-step procedure starting from the corresponding 2-chloro-substituted benzenesulfonamides. Compounds bearing an unsubstituted mercapto group and the corresponding S-benzoyl derivatives were investigated as inhibitors of four isoforms of the zinc enzyme carbonic anhydrase (CA, EC 4.2.1.1), i.e., the cytosolic, ubiquitous isozymes CA I and II, as well as the transmembrane, tumor associated isozymes CA IX and XII. These derivatives were medium potency hCA I inhibitors (KIs in the range of 1.5–5.7 μM), two derivatives were strong hCA II inhibitors (KIs in the range of 15–16 nM), whereas the others showed weak activity. These compounds inhibited hCA IX with inhibition constants in the range 160–1950 nM and hCA XII with inhibition constants in the range 1.2–413 nM. Some of these derivatives showed a certain degree of selectivity for inhibition of the tumor-associated over the cytosolic isoforms, being thus interesting leads for the development of potentially novel applications in the management of hypoxic tumors which overexpress CA IX and XII.  相似文献   

20.
A series of N′-phenyl-N-hydroxyureas has been prepared by reacting hydroxylamine with aromatic isocyanates. These compounds were investigated as inhibitors of human carbonic anhydrases (hCAs, EC 4.2.1.1), considering four physiologically relevant isoforms, the cytosolic isoforms hCA I and II, and tumor associated, transmembrane isoforms hCA IX and XII. The new compounds reported here did not inhibit the widespread cytosolic isoforms hCA I and II, but they inhibited the tumor associated isoforms with interesting potencies. The most effective inhibitors showed KIs ranging between 72.8 and 78.9 nM against hCA IX and between 6.9 and 7.2 against hCA XII, making them of interest as candidates for antitumor studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号