首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Abstract

We have compared at the enzymological level pulmonary angiotensin I-converting enzymes (ACE) purified to electrophoretic homogeneity from four mammalians species: pig, rat, monkey and human. Using both substrates hippuryl-histidyl-Ieucine and furylacryloyi-phenylal-anyl-glycyi-glycine in steady-state conditions, all the ACES exhibited Michaelis kinetics with identical Michaelis constants, maximal velocities, optimal pH and optimal activating chloride-concentrations. The apparent inhibitory constant was higher for Captopril than for Enalaprilat and even more so for Ramiprilat irrespective of the origin of ACE and the substrate used. Although these inhibitors have been described as competitive inhibitors, Lineweaver-Burk plots were not in accordance with a simple competitive model; moreover, Dixon plots were rather characteristic of non-competitive inhibition. These data emphasize the hypothesis that ACE inhibitors act with mixed-type inhibition, which is consistent with their slow-tight binding to the ACE active center, also with binding of chloride on a critical lysine residue leading to a potential conformational change, and finally with the fact that ACE has two domains, each bearing one catalytic site. On the other hand, as identical kinetic parameters were obtained on the different ACE preparations, results from animal models should allow the extrapolation to humans, in particular for investigations on both renin-angiotensin and kallikrein-kinin systems, and on their inhibition.  相似文献   

2.
Angiotensin I-converting enzyme (ACE) inhibitory activity was generated from elastin and collagen by hydrolyzing with thermolysin. The IC50 value of 531.6 µg/mL for ACE inhibition by the elastin hydrolysate was five times less than 2885.1 µg/mL by the collagen hydrolysate. We confirmed the antihypertensive activity of the elastin hydrolysate in vivo by feeding spontaneously hypertensive rats (male) on a diet containing 1% of the elastin hydrolysate for 9 weeks. About 4 week later, the systolic blood pressure of the rats in the elastin hydrolysate group had become significantly lower than that of the control group. We identified novel ACE inhibitory peptides, VGHyp, VVPG and VYPGG, in the elastin hydrolysate by using a protein sequencer and quadrupole linear ion trap (QIT)-LC/MS/MS. VYPGG had the highest IC50 value of 244 µM against ACE and may have potential use as a functional food.  相似文献   

3.
Sesame peptide powder (SPP) exhibited angiotensin I-converting enzyme (ACE) inhibitory activity, and significantly and temporarily decreased the systolic blood pressure (SBP) in spontaneously hypertensive rats (SHRs) by a single administration (1 and 10 mg/kg). Six peptide ACE inhibitors were isolated and identified from SPP. The representative peptides, Leu-Val-Tyr, Leu-Gln-Pro and Leu-Lys-Tyr, could competitively inhibit ACE activity at respective Ki values of 0.92 μM, 0.50 μM, and 0.48 μM. A reconstituted sesame peptide mixture of Leu-Ser-Ala, Leu-Gln-Pro, Leu-Lys-Tyr, Ile-Val-Tyr, Val-Ile-Tyr, Leu-Val-Tyr, and Met-Leu-Pro-Ala-Tyr according to their content ratio in SPP showed a strong antihypertensive effect on SHR at doses of 3.63 and 36.3 μg/kg, which accounted for more than 70% of the corresponding dosage for the SPP-induced hypotensive effect. Repeated oral administration of SPP also lowered both SBP and the aortic ACE activity in SHR. These results demonstrate that SPP would be a beneficial ingredient for preventing and providing therapy against hypertension and its related diseases.  相似文献   

4.
Abstract

The design rationale for a new series of tripeptide derived angiotensin converting enzyme (ACE) inhibitors, which we term “ketomethylureas”, is described. Analogs of tripeptide substrates (i.e. N-benzoyl-Phe-Ala-Pro) in which the nitrogen atom of the scissile amide bond and the adjacent asymmetric carbon atom of the penultimate amino acid residue are formally transposed give rise to this novel class of inhibitors. The most potent ketomethylureas inhibit ACE wtih I50 values in the nM range.  相似文献   

5.
Inhibition of angiotensin converting enzyme (ACE) has been observed with a variety of different peptides, and peptide fragments with inhibitory capabilities have been identified within many different proteins, including milk proteins. The purpose of this study therefore was to identify new short peptides with inhibitory properties from the primary structure of milk proteins and to characterize them in vitro and in vivo, since no milk derived ACE inhibitors have previously been evaluated for their ability to inhibit ACE in vivo. In vitro, 8 of 9 dipeptides were found to be competitive inhibitors of ACE. The IC50 was significantly lower when an angiotensin I-like substrate was used, than when a bradykinin-like substrate was used. Using three different in vivo models for ACE inhibition, a very moderate effect was observed for three of the new peptides, but only for up to 6 or 12 minutes. Nothing was observed with two reference compounds that are reported to be hypotensive ACE-inhibitors derived from milk proteins. This raises the question whether the mechanism of hypotensive action is straightforward inhibition of ACE in vivo.  相似文献   

6.
Abstract

Aminooxymethylphosphonic (AOMP), 1–aminooxyethylphosphonic (1-AOEP) and 2-aminooxyethyl-phosphonic (2-AOEP) acids have been synthesised and were found to be potent slow binding inhibitors of aspartate- and alanine-aminotransferases with Ki ranging from nanomolar to micromolar values. The half-life of the inhibited complexes varied from 8 min (AspAT-2-AOEP) to 11 h (AspAT-AOMP). Kinetic analysis of the interaction of both enzymes with AOMP suggested the formation of an E-I complex in a single slow binding process. In the case of other compounds, attempt to discriminate between a single- or a double-step mechanism, consistent with an E-I intermediate followed by a slow E-I to E-I* isomerisation process could not be clearly resolved. Spectral studies of the complex formed between PLP-bound enzyme and the aminooxy compound resulted in a shift from 362 nm, the absorption maximum of the native enzyme, to 380 nm, characteristic of the oxime produced. The kinetic parameters for aminooxyphosphonates were compared to those for their carboxylic and aminophosphonic analogues.  相似文献   

7.
血管紧张素转换酶纯化与性质研究   总被引:5,自引:0,他引:5  
为了深入了解猪肺血管紧张素转换酶 (angiotensin converting enzyme,ACE)的性质和功能 ,对猪肺 ACE的分离纯化以及部分酶学性质进行了研究 .猪肺组织匀浆经 1 .6~ 2 .6mol/L硫酸铵分级沉淀等步骤后 ,利用亲和胶进行亲和层析分离 .2 0 0 g猪肺组织中提纯出 0 .79mg ACE,比活力 38.8U/mg,SDS- PAGE电泳鉴定为一条带 ,分子量约 1 80 k D,等电点 (p I)为 p H4.5,糖含量约 2 3.6% ,氨基酸组成分析发现猪肺 ACE分子中含有 1 346个氨基酸 ,其中酸性氨基酸含量较高 ,碘乙酸的修饰结果表明猪肺 ACE中巯基基团未参与酶的催化反应 .酶反应动力学结果显示 ,ACE催化 Fa PGG底物反应时的最适 p H大约为 p H 7.6,反应活化能 Ea=4.37× 1 0 4 J/mol,酶活性部位附近的组氨酸和具有类似 α-氨基性质的氨基酸可能参与了 ACE催化反应 .有关猪肺 ACE的基本生化性质、氨基酸组成以及酶学性质的结果 ,为今后深入研究奠定了基础 .  相似文献   

8.
The condensation of several primary amines and diamines with various N1-ethoxycarbonyles N1-tosylhydrazonates (1a-b), triazolones (2) and bis-triazolone (3) resulted in ethanol under ultrasound irradiation. Compared with the conventional methods, the main advantages of the present procedure are milder conditions, shorter reaction time and higher yields. The newly synthesized compounds were evaluated for angiotensin I-converting enzyme (ACE) inhibition. The results were compared to Captopril as a reference drug. Compounds 3b, 2h, 3a, 2d, and 2f showed not only inhibition activity with IC50 values of 0.162, 0.253, 0.253, 0.281 and 0.382 µM, respectively, but also minimal toxicity. The docking of chemical compounds in the ACE active site showed possible inhibitory effect of all compounds on the catalytic activity of the enzyme, which would satisfactorily explain the anti-hypertensive effect of these compounds.  相似文献   

9.
Various angiotensins, bradykinins, and related peptides were examined for their inhibitory activity against several enkephalin-degrading enzymes, including an aminopeptidase and a dipeptidyl aminopeptidase, purified from a membrane-bound fraction of monkey brain, and an endopeptidase, purified from the rabbit kidney membrane fraction. Angiotensin derivatives having a basic or neutral amino acid at the N-terminus showed strong inhibition of the aminopeptidase. Dipeptidyl aminopeptidase was inhibited by angiotensins II and III and their derivatives, whereas the endopeptidase was inhibited by angiotensin I and its derivatives. The most potent inhibitor of aminopeptidase and dipeptidyl aminopeptidase was angiotensin III, which completely inhibited the degradation of enkephalin by enzymes in monkey brain or human CSF. The Ki values for angiotensin III against aminopeptidase, dipeptidyl aminopeptidase, endopeptidase, and angiotensin-converting enzyme, which degraded enkephalin, were 0.66 X 10(-6), 1.03 X 10(-6), 2.3 X 10(-4), and 1.65 X 10(-6) M, respectively. Angiotensin III potentiated the analgesic activity of Met-enkephalin after intracerebroventricular coadministration to mice in the hot plate test. Angiotensin III itself also displayed analgesic activity in that test. These actions were blocked by the specific opiate antagonist naloxone.  相似文献   

10.
血管紧张素转换酶的结构功能及相关抑制剂   总被引:2,自引:0,他引:2  
血管紧张素转化酶(angiotensin converting enzyme, ACE, EC 3.4.15.1)是一种位于细胞膜上, 依赖锌离子的羧二肽酶, 催化水解十肽血管紧张素I羧基末端两个氨基酸, 生成具有血管收缩作用的八肽血管紧张素II。ACE在血压调节系统renin - angiotensin system (RAS系统)中具有重要作用, 从ACE的结构功能、基因多态性及其抑制剂等方面进行了详细综述。发现体细胞ACE两个活性中心催化血管紧张素I和缓激肽的机制不同, 因此以体细胞ACE单个活性中心为靶点的研究, 将会为研制开发副作用更少, 安全性更高的ACE抑制剂提供新的途径。  相似文献   

11.
血管紧张素转换酶2作为肾素—血管紧张素系统的新成员,对心脏功能及心脏节律发挥着重要的调节作用。缺乏ACE2会造成心功能的下降,原因可能是心肌慢性缺氧、血管紧张素Ⅱ水平的提高、血管紧张素(1-7)对心脏保护作用的缺失以及其他肽类底物的增加。但同时ACE2的过度表达又会引起心脏传导紊乱和致死性的心律失常。因此,ACE2精确的生理作用有待进一步明确,但调节ACE2的活性可能为心血管疾病的治疗提出了新的思路。本文主要介绍了ACE2的分布与特性,及其对心功能及心脏节律的影响。  相似文献   

12.
The molecular forms of angiotensin converting enzyme (ACE; EC 3.4.15.1) in preparations of pig brain cortical microvessels and striatal synaptosomal membranes have been identified by immunoelectrophoretic blot analysis. The cortical microvessels contained only the endothelial form of the enzyme, Mr 180,000, which comigrated with pig kidney ACE on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. In contrast, the synaptosomal membranes contained only a smaller form of ACE, Mr 170,000, which represents the neuronal form of the enzyme. No significant differences in inhibitor sensitivity or substrate specificity were detected between the two forms of ACE. In particular, neurokinin A was resistant to hydrolysis by either microvessel or synaptosomal membrane ACE, and the pattern of hydrolysis of substance P by the two preparations was identical.  相似文献   

13.
Angiotensin I-converting enzyme (ACE) inhibitory peptide was isolated from the Styela clava flesh tissue. Nine proteases (Protamex, Kojizyme, Neutrase, Flavourzyme, Alcalase, pepsin, trypsin, α-chymotrypsin and papain) were used, and their respective enzymatic hydrolysates and an aqueous extract were screened to evaluate their potential ACE inhibitory activity. Among all of the test samples, Protamex hydrolysate possessed the highest ACE inhibitory activity, and the Protamex hydrolysate of flesh tissue showed relatively higher ACE inhibitory activity compared with the Protamex hydrolysate of tunic tissue. We attempted to isolate ACE inhibitory peptide from the Protamex hydrolysate of S. clava flesh tissue using ultrafiltration, gel filtration on a Sephadex G-25 column and high performance liquid chromatography (HPLC) on an ODS column. The purified ACE inhibitory peptide exhibited an IC50 value of 37.1 μM and was identified as non-competitive inhibitor of ACE. Amino acid sequence of the peptide was identified as Ala-His-Ile-Ile-Ile, with a molecular weight 565.3 Da. The results of this study suggested that the peptides derived from enzymes-assisted extracts of S. clava would be useful new antihypertension compounds in functional food resource.  相似文献   

14.
Oligo-tyrosine peptides such as Tyr-Tyr having angiotensin I-converting enzyme (ACE) inhibitory activity could be synthesized by α-chymotrypsin-catalyzed reaction with l-tyrosine ethyl ester in aqueous media. However, peptide yield in the reaction was below 10%. Since l-tyrosine amide showed highly nucleophilic activity for the deacylation of enzyme through which a new peptide bond was made, its application to the enzymatic peptide synthesis was evaluated in this study. Addition of tyrosine amide into the reaction produced Tyr-Tyr-NH2, of which yield exceeded 130% on the basis of tyrosine ethyl ester. Although purified Tyr-Tyr-NH2 did not inhibit ACE activity, α-chymotrypsin could act on the dipeptide amide and convert about 40% of it to Tyr-Tyr. The use of both ester and amide forms of tyrosine is expected to be a potent procedure for α-chymotrypsin-catalyzed synthesis of antihypertensive peptides.  相似文献   

15.
Kuo CW  Hung HC  Tong L  Chang GG 《Proteins》2004,54(3):404-411
Human mitochondrial NAD(P)+-dependent malic enzyme was strongly inhibited by Lu3+. The X-ray crystal structures indicated a structural change between the metal-free and Lu3+-containing enzymes (Yang Z, Batra R, Floyd DL, Hung HC, Chang GG, Tong L. Biochem Biophys Res Commun 2000;274:440-444). We characterized the reversible slow-binding mechanism and the structural interconversion between Mn2+- and Lu3+-containing human mitochondrial malic enzymes. When Lu3+ was added, the activity of the human enzyme showed a downward curve over time, similar to that of the pigeon enzyme. The rate of the transformation (k(obs)) from the initial rate to the steady-state rate increased hyperbolically with the concentration of Lu3+, suggesting the involvement of an isomerization step. Lu3+ had a much higher affinity for the isomerized form (K*(i,Lu (app)) = 4.8 microM) than that of the native form (K(i,Lu (app)) = 148 microM). When an excess of Mn2+ was added to the Lu3+-inhibited enzyme, assays of the kinetic activity showed an upward trend, indicating reactivation. This result also indicated that the reactivation was a slow process. Fluorescence quenching experiments confirmed that the Lu3+-induced isomerization was completely reversible. The dynamic quenching constants for the metal-free, Mn2+-containing, and Lu3+-containing enzyme were 3.08, 3.07, and 3.8 M(-1), respectively. When the Lu3+-containing enzyme was treated with excess Mn2+, the dynamic quenching constant returned to the original value (3.09 M(-1)). These results indicated that binding of Mn2+ did not induce any conformational change in the enzyme. The open form transformed to the closed form only after substrate binding. Lu3+, on the other hand, transformed the open form into a catalytically inactive form. Excess Mn2+ could replace Lu3+ in the metal binding site and convert the inactive form back into the open form. This reversible process was slow in both directions because of the same but opposite structural change involved.  相似文献   

16.
Several enzyme inhibitors with various industrial uses were isolated from bacteria and actinomycetes living in the marine environment. These inhibitors are useful in medicine and agriculture. All the compounds, except the monoamine oxidase inhibitors, are novel, and their activities have been characterized.  相似文献   

17.
The electric organ of Torpedo marmorata contains a membrane-bound, captopril-sensitive metallopeptidase that resembles mammalian angiotensin converting enzyme (peptidyl dipeptidase A; EC 3.4.15.1). The Torpedo enzyme has now been purified to apparent homogeneity from electric organ by a procedure involving affinity chromatography using the selective inhibitor lisinopril immobilised to Sepharose via a 28-A spacer arm. The purified protein, like the mammalian enzyme, acted as a peptidyl dipeptidase in cleaving dipeptides from the C-terminus of a variety of peptide substrates, including angiotensin I, bradykinin, [Met5]enkephalin, [Leu5]enkephalin, and the model substrate hippuryl (benzoylglycyl; BzGly)-His-Leu. The hydrolysis of BzGly-His-Leu was activated by Cl-. Enzyme activity was inhibited by classical angiotensin converting enzyme inhibitors, including captopril, enalaprilat (MK422), and lisinopril (MK521). Torpedo angiotensin converting enzyme, like its mammalian counterpart, was also able to act as an endopeptidase in hydrolysing the amidated neuropeptide substance P. Hydrolysis of substance P occurred primarily at the Phe8-Gly9 bond with release of the C-terminal tripeptide, Gly-Leu-MetNH2, and this hydrolysis was blocked by selective inhibitors. The Torpedo enzyme was recognised by a polyclonal antibody to pig kidney angiotensin converting enzyme on immunoelectrophoretic (Western) blot analysis. Thus, on the basis of substrate specificity, inhibitor sensitivity, and immunological criteria, the Torpedo enzyme closely resembles mammalian angiotensin converting enzyme. However, the Torpedo enzyme appears somewhat larger (Mr = 190,000) than the pig kidney enzyme (Mr = 180,000) on sodium dodecyl sulphate-polyacrylamide gel electrophoresis. The endogenous peptide substrate(s) for Torpedo electric organ angiotensin converting enzyme and the physiological role of the enzyme in this tissue remain to be evaluated.  相似文献   

18.
Cultures of dissociated brain cells from 15-day-old fetal mice were grown in the presence and absence of 20 or 50 nM triiodothyronine (T3), 30 or 300 nM cortisol, and 30 nM cortisol plus 50 nM T3 added to chemically defined media or in media supplemented with 15% serum from control and hypothyroid calves. The specific activities of five lysosomal enzymes--N-acetyl galactosaminidase, beta-glucuronidase, beta-galactosidase, cathepsin B, and dipeptidyl aminopeptidase I (DAP-I)--were higher in cells grown in calf serum than in cells grown in defined media. Of these enzymes, only DAP-I was elevated in activity when the cells were grown in hypothyroid calf serum instead of control calf serum. Elevation of DAP-I activity was reversed by addition of 20 nM T3 to hypothyroid calf serum. The enzymatic properties of DAP-I were similar whether the cells were grown in control or hypothyroid calf serum and were similar to those reported for human fibroblasts and the purified enzyme. When the cells were grown in defined media, cortisol decreased the activities of all lysosomal enzymes, with 300 nM cortisol being more effective than 30 nM cortisol. Addition of 50 nM T3 to 30 nM cortisol decreased DAP-I activity more than 30 nM cortisol alone, but 50 nM T3 alone in defined media did not alter DAP-I levels. The reduction of DAP-I activity in these cells by T3 required cortisol, unidentified components in serum, or both.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Some di-peptides have been proven to exert an antihypertensive effect in mild-hypertensive subjects. The aim of this study was to clarify whether combined administration of an ACE inhibitor, captopril, with an antihypertensive di-peptide Val-Tyr (VY) would alter their potent antihypertensive effects in spontaneously hypertensive rats (SHRs). Single oral administration of captopril (2.5 mg/kg), VY (25 mg/kg), or captopril (2.5 mg/kg)+VY (25 mg/kg) to 18-week-old male SHRs was performed. Systolic blood pressure (SBP) was measured up to 9 h, and plasma captopril concentrations were determined. A transport study of captopril and/or VY across living rat jejunum from SHRs was also performed to evaluate the kinetics of absorption. Combined administration of captopril with VY failed to lower the BP during the 9-h experiment. A transport study of captopril or VY revealed that VY inhibited captopril transport, and vice versa, in a competitive manner and exhibited an approximately 1/3-fold lower Ki value for captopril compared with that for VY; indicating that both compounds compete for the same membrane transport pathway. A 50% decrease in plasma captopril levels by combined administration with VY supported that the attenuation of the BP lowering effect was due to inhibition of captopril uptake by VY. Consequently, our findings suggest that subjects treated with ACE inhibitors for hypertension should avoid combined-intake with antihypertensive foods that are rich in small peptides due to the competitive inhibition of drug uptake by these peptides.  相似文献   

20.
Acetes chinensis is an underutilized shrimp species thriving in Bo Hai Gulf of China. Its hydrolysate digested with protease SM98011 has been previously shown to have high angiotensin I-converting enzyme (ACE) inhibitory activity (He et al., J Pept Sci 12:726-733, 2006). In this article, A. chinensis were fermented by Lactobacillus fermentum SM 605 and the fermented sauce presented high ACE inhibitory activity. The minimum IC(50) value (3.37 +/- 0.04 mg/mL) was achieved by response surface methodology with optimized process parameters such as fermentation time of 24.19 h, incubation temperature at 38.10 degrees C, and pH 6.12. Three ACE inhibitory peptides are purified by ultrafiltration, gel filtration, and reverse-phase high performance liquid chromatography. Identified by mass spectrometry, their amino acid sequences are Asp-Pro, Gly-Thr-Gly, and Ser-Thr, with IC(50) values of 2.15 +/- 0.02, 5.54 +/- 0.09, and 4.03 +/- 0.10 microM, respectively. Also, they are all novel ACE inhibitory peptides. Compared with protease digestion, fermentation is a simpler and cheaper method to produce ACE inhibitory peptides from shrimp A. chinensis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号