首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Assessment of probable dose loading due to a broadband quasi-continuous electromagnetic background is presented. A level of the quasi-continuous background in the appropriate frequency intervals could exceed maximum permissible exposure by a factor of several tens. For safety monitoring, it is suggested to use the equipment that allows registering of EMF amplitude and frequency in a wide frequency range, with sensitivity by order of magnitude greater than MPE.  相似文献   

2.
The increased use of mobile phones has raised the question of possible health effects of such devices, particularly the risk of cancer. It seems unlikely that the low-level radiofrequency (RF) radiation emitted by them would damage DNA directly, but its ability to act as a tumor promoter is less well characterized. In the current study, we evaluated the effect of low-level RF radiation on the development of cancer initiated in mice by ionizing radiation. Two hundred female CBA/S mice were randomized into four equal groups at the age of 3 to 5 weeks. The mice in all groups except the cage-control group were exposed to ionizing radiation at the beginning of the study and then to RF radiation for 1.5 h per day, 5 days a week for 78 weeks. One group was exposed to continuous NMT (Nordic Mobile Telephones)-type frequency-modulated RF radiation at a frequency of 902.5 MHz and a nominal average specific absorption rate (SAR) of 1.5 W/kg. Another group was exposed to pulsed GSM (Global System for Mobile)-type RF radiation (carrier-wave frequency 902.4 MHz, pulse frequency 217 Hz) at a nominal average SAR of 0.35 W/kg. The control animals were sham-exposed. Body weight, clinical signs, and food and water consumption were recorded regularly. Hematological examinations and histopathological analyses of all lesions and major tissues were performed on all animals. The RF-radiation exposures did not increase the incidence of any neoplastic lesion significantly. We conclude that the results do not provide evidence for cancer promotion by RF radiation emitted by mobile phones.  相似文献   

3.
We have calculated the distribution of DNA contents in micronuclei (MN) induced by ionizing radiation in human lymphocytes on two assumptions: the MN arise from acentric chromosome fragments (ACF), and the ACF result from the random breakage and rejoining of chromosomes. Measurements show that about 80 per cent of MN have a DNA content in the range of 0.5-6 per cent of the G1 nucleus. This group is consistent with the model and shows little dependence on radiation dose over the dose range of 0.5-4 Gy, or on lymphocyte culture time, varying from 48 to 76 hours. The MN with DNA content from 6 to 20 per cent of the G1 nucleus are probably the result both of spindle defects and of DNA synthesis in MN.  相似文献   

4.
The changes in genome conformational state (GCS) induced by low-dose ionizing radiation in E. coli cells were measured by the method of anomalous viscosity time dependence (AVTD) in cellular lysates. Effects of X-rays at doses 0.1 cGy--1 Gy depended on post-irradiation time. Significant relaxation of DNA loops followed by a decrease in AVTD. The time of maximum relaxation was between 5-80 min depending on the dose of irradiation. U-shaped dose response was observed with increase of AVTD in the range of 0.1-4 Gy and decrease in AVTD at higher doses. No such increase in AVTD was seen upon irradiation of cells at the beginning of cell lysis while the AVTD decrease was the same. Significant differences in the effects of X-rays and gamma-rays at the same doses were observed suggesting a strong dependence of low-dose effects on LET. Effects of 0.01 cGy gamma-rays were studied at different cell densities during irradiation. We show that the radiation-induced changes in GCS lasted longer at higher cell density as compared to lower cell density. Only small amount of cells were hit at this dose and the data suggest cell-to-cell communication in response to low-dose ionizing radiation. This prolonged effect was also observed when cells were irradiated at high cell density and diluted to low cell density immediately after irradiation. These data suggest that cell-to-cell communication occur during irradiation or within 3 min post-irradiation. The cell-density dependent response to low-dose ionizing radiation was compared with previously reported data on exposure of E. coli cells to electromagnetic fields of extremely low frequency and extremely high frequency (millimeter waves). The body of our data show that cells can communicate in response to electromagnetic fields and ionizing radiation, presumably by reemission of secondary photons in infrared-submillimeter frequency range.  相似文献   

5.
Over the past 20 years there has been increasing evidence that cells and the progeny of cells surviving a very low dose of ionizing radiation [micro-mGy] can exhibit a wide range of non-monotonic effects such as adaptive responses, low dose hypersensitivity and other delayed effects. These effects are inconsistent with the expected dose-response, when based on extrapolation of high dose data and cast doubt on the reliability of extrapolating from high dose data to predict low dose effects. Recently the cause of many of these effects has been tentatively ascribed to so-called "bystander effects". These are effects that occur in cells not directly hit by an ionizing track but which are influenced by signals from irradiated cells and are thus highly relevant in situations where the dose is very low. Not all bystander effects may be deleterious although most endpoints measured involve cell damage or death. In this commentary, we consider how these effects impact the historical central dogma of radiobiology and radiation protection, which is that DNA double strand breaks are the primary radiation-induced lesion which can be quantifiably related to received dose and which determine the probability that a cancer will result from a radiation exposure. We explore the low dose issues and the evidence and conclude that in the very low dose region, the primary determinant of radiation exposure outcome is the genetic and epigenetic background of the individual and not solely the dose. What this does is to dissociate dose from effect as a quantitative relationship, but it does not necessarily mean that the effect is ultimately unrelated to DNA damage. The fundamental thesis we present is that at low doses fundamentally different mechanisms underlie radiation action and that at these doses, effect is not quantitatively related to dose.  相似文献   

6.
The cortical thymocytes of rats in whole organism, isolated lobes of thymus and cells suspension were exposed to ionizing radiation in a wide range of doses (0.1-200 cGy). In contrast to relatively high dose radiation (50-200 cGy), exposure to doses of 10 cGy resulted in cell death without DNA degradation. The level of doses lower than 10 cGy (0.5-5 cGy) induced thymocyte death which is independent of DNA degradation, RNA and protein synthesis. With decrease in radiation dose, the increase of latent period preceding cell death took place.  相似文献   

7.
The health risk associated with low levels of ionizing radiation is still a matter of debate. A number of factors, such as non-target effects, adaptive responses and low-dose hypersensitivity, affect the long-term outcome of low-dose exposures. Cytogenetic bio-dosimetry provides a measure of the absorbed dose, taking into account the individual radiation sensitivity. The aim of the present study is to evaluate the value of the micronucleus (MN) test as a bio-dosimeter in hospital workers exposed to low doses of ionizing radiation. Blood samples were obtained from 30 subjects selected among workers exposed to X- and gamma-radiation, and 30 controls matched for sex, age and smoking from the same hospital. Micronucleus frequencies were analyzed by use of the cytokinesis-block method. The MN frequency was compared among the groups considering the confounding factors and the length of employment. No increase in the number of bi-nucleated cells with MN (BNMN), but a significant increase in the number of mono-nucleated cells with micronuclei (MOMN) was observed in exposed subjects compared with the controls. The relationship between MN frequency and accumulated dose (mSv) was evaluated. The length of employment did not affect the extent of MN frequency, but an increase of BNMN and MOMN cells was observed based on the accumulated radiation dose. Our study shows the sensitivity of the MN test in the detection of cytogenetic effects of cumulative exposure levels, suggesting the potential usefulness of this assay in providing a biological index in medical surveillance programs.  相似文献   

8.
Various markers of radiation-induced DNA damage including DNA oxidation were investigated in peripheral lymphocytes of 23 cancer patients prior to and one week after receiving radiotherapy with a cumulative dose of 54-70 Gy. Exposure to ionizing radiation nonsignificantly increased the ratio 2'deoxy-7-dihydro-8-oxoguanosine/2'deoxyguanosine (8-oxodG/dG) from 1.73 x 10(-5) to 3.33 x 10(-5). Frequencies of micronuclei significantly (p = 0.0003) increased from 6.4 to 38.9 per 1000 cells. The frequency of hypoxanthine-guanine-phosphoribosyltransferase (HPRT) mutant lymphocytes measured as 6-thioguanine resistant variant cells by 5-bromodeoxyuridine labeling, was elevated eight-fold, from 4.7 x 10(-6) to 36.2 x 10(-6) (p = 0.008) after termination of the radiotherapy, thus showing a clear response to the radiation treatment. No correlation between levels of oxidative DNA damage and frequencies of HPRT mutant lymphocytes or micronuclei could be established.  相似文献   

9.
Controversy regarding potential health risks from increased use of medical diagnostic radiologic examinations has come to public attention. We evaluated whether chromosome damage, specifically translocations, which are a potentially intermediate biomarker for cancer risk, was increased after exposure to diagnostic X-rays, with particular interest in the ionizing radiation dose–response below the level of approximately 50 mGy. Chromosome translocation frequency data from three separately conducted occupational studies of ionizing radiation were pooled together. Studies 1 and 2 included 79 and 150 medical radiologic technologists, respectively, and study 3 included 83 airline pilots and 50 university faculty members (total = 155 women and 207 men; mean age = 62 years, range 34–90). Information on personal history of radiographic examinations was collected from a detailed questionnaire. We computed a cumulative red bone marrow (RBM) dose score based on the numbers and types of X-ray examinations reported with 1 unit approximating 1 mGy. Poisson regression analyses were adjusted for age and laboratory method. Mean RBM dose scores were 49, 42, and 11 for Studies 1–3, respectively (overall mean = 33.5, range 0–303). Translocation frequencies significantly increased with increasing dose score (P < 0.001). Restricting the analysis to the lowest dose scores of under 50 did not materially change these results. We conclude that chromosome damage is associated with low levels of radiation exposure from diagnostic X-ray examinations, including dose scores of approximately 50 and lower, suggesting the possibility of long-term adverse health effects.  相似文献   

10.
The population has widely used mobile communication for already more than 15 years. It is important to note that the use of mobile communication has sharply changed the conditions of daily exposure of the population to EME We expose our brain daily for the first time in the entire civilization. The mobile phone is an open and uncontrollable source of electromagnetic radiation. The comparative risk estimation for the population of ionizing and non-ionizing radiation was carried out taking into account the real conditions of influence. Comparison of risks for the population of ionizing and non-ionizing radiation leads us to a conclusion that EMF RF exposure in conditions of wide use of mobile communication is potentially more harmful than ionizing radiation influence.  相似文献   

11.
Scoring of unstable chromosomes aberrations (dicentrics, rings and fragments) in circulating lymphocytes is the most extensively studied biologic system for estimating individual exposure to ionizing radiation. In this work, blood samples from 5 patients, with cervical uterine cancer, were analyzed by conventional cytogenetic in order to correlate the frequency of chromosome aberrations in lymphocytes with the dose absorbed by the patient, as a result of radiotherapy with 60Co gamma. The samples were collected in three phases of the treatment: before irradiation, 24 hr after receiving 0.08 Gy and 1.8 Gy, respectively. On the basis of the frequencies of unstable aberrations observed, a good agreement was obtained between doses estimated by calibration curve and the doses previously planned to radiotherapy. This report discusses the methodology employed as an important tool for dose assessment as a result of partial-body exposure to ionizing radiation.  相似文献   

12.
The case for a DNA-damaging action produced by radiofrequency (RF) signals remains controversial despite extensive research. With the advent of the Universal Mobile Telecommunication System (UMTS) the number of RF-radiation-exposed individuals is likely to escalate. Since the epigenetic effects of RF radiation are poorly understood and since the potential modifications of repair efficiency after exposure to known cytotoxic agents such as ionizing radiation have been investigated infrequently thus far, we studied the influence of UMTS exposure on the yield of chromosome aberrations induced by X rays. Human peripheral blood lymphocytes were exposed in vitro to a UMTS signal (frequency carrier of 1.95 GHz) for 24 h at 0.5 and 2.0 W/kg specific absorption rate (SAR) using a previously characterized waveguide system. The frequency of chromosome aberrations was measured on metaphase spreads from cells given 4 Gy of X rays immediately before RF radiation or sham exposures by fluorescence in situ hybridization. Unirradiated controls were RF-radiation- or sham-exposed. No significant variations due to the UMTS exposure were found in the fraction of aberrant cells. However, the frequency of exchanges per cell was affected by the SAR, showing a small but statistically significant increase of 0.11 exchange per cell compared to 0 W/kg SAR. We conclude that, although the 1.95 GHz signal (UMTS modulated) does not exacerbate the yield of aberrant cells caused by ionizing radiation, the overall burden of X-ray-induced chromosomal damage per cell in first-mitosis lymphocytes may be enhanced at 2.0 W/kg SAR. Hence the SAR may either influence the repair of X-ray-induced DNA breaks or alter the cell death pathways of the damage response.  相似文献   

13.
ABSTRACT: Purpose To estimate the effects of heterogeneity on tumour cell sensitivity to radiotherapy combined with radiosensitizing agents attributable to differences in expression levels of Epidermal Growth Factor Receptor (EGFr). Materials and methods Differences in radiosensitivity are not limited to cells of different cancer histotypes but also occur within the same cancer, or appear during radiotherapy if radiosensitizing drugs are combined with ionizing radiation. A modified biologically effective dose (MBED), has been introduced to account for changes in radiosensitivity parameters (alpha and alpha/beta) rather than changes in dose/fraction or total dose as normally done with standard biologically effective dose (BED). The MBED approach was applied to cases of EGFr over-expression and cases where EGFr inhibitors were combined with radiation. Representative examples in clinical practice were considered. RESULTS: Assuming membrane EGFr over-expression corresponds to reduced radiosensitivity (alphaH = 0.15 Gy-1 and alphaH/betaH = 7.5 Gy) relative to normal radiosensitivity (alpha = 0.2 Gy-1 and alpha/beta = 10 Gy), an increased dose per fraction of 2.42 Gy was obtained through the application of MBED, which is equivalent to the effect of a reference schedule with 30 fractions of 2 Gy. An equivalent hypo-fractionated regime with a dose per fraction of 2.80 Gy is obtained if 25 fractions are set. Dose fractionations modulated according to drug pharmacokinetics are estimated for combined treatments with biological drugs. Soft and strong modulated equivalent hypo-fractionations result from subtraction of 5 or 10 fractions, respectively. CONCLUSIONS: During this computational study, a new radiobiological tool has been introduced. The MBED allows the required dose per fraction to be estimated when tumour radiosensitivity is reduced because EGFr is over-expressed. If radiotherapy treatment is combined with EGFr inhibitors, MBED suggests new treatment strategies, with schedules modulated according to drug pharmacokinetics.  相似文献   

14.
B Rydberg 《Radiation research》2012,178(2):AV190-AV197
When mammalian cells are treated with alkali of pH at about 12, the cells are lysed and the released DNA starts to uncoil. This process of DNA strand separation is accelerated if the cells have been exposed to ionizing radiation, and the effect is clearly detectable in the dose range 10-100 rads. The rate of strand separation is also influenced by temperature and ionic strength of the alkaline solution. The kinetics of DNA strand separation in alkali is studied for three conditions in terms of ionic strength and temperature, chosen in such a way that the effect of irradiation may conveniently be studied in the dose range 10 rads to 20 krads. The accelerating effect of ionizing radiation on DNA strand separation is probably due to DNA strand breakage and the technique described is thus a sensitive method of studying such damage to DNA. A model for the strand-separation process, based on the assumption that strand breakage causes the accelerating effect, is proposed and found to describe the experimental data adequately.  相似文献   

15.
Chromosome aberrations frequency was estimated in peripheral lymphocytes from hospital workers occupationally exposed to low levels of ionizing radiation and controls. Chromosome aberrations yield was analyzed by considering the effects of dose equivalent of ionizing radiation over time, and of confounding factors, such as age, gender and smoking status. Frequencies of aberrant cells and chromosome breaks were higher in exposed workers than in controls (P = 0.007, and P = 0.001, respectively). Seven dicentric aberrations were detected in the exposed group and only three in controls, but the mean frequencies were not significantly different. The dose equivalent to whole body of ionizing radiation (Hwb) did appear to influence the spectrum of chromosomal aberrations when the exposed workers were subdivided by a cut off at 50 mSv. The frequencies of chromosome breaks in both subgroups of workers were significantly higher than in controls (< or =50 mSv, P = 0.041; >50 mSv, P = 0.018). On the other hand, the frequency of chromatid breaks observed in workers with Hwb >50 mSv was significantly higher than in controls (P = 0.015) or workers with Hwb < or =50 mSv (P = 0.046). Regarding the influence of confounding factors on genetic damage, smoking status and female gender seem to influence the increase in chromosome aberration frequencies in the study population. Overall, these results suggested that chromosome breaks might provide a good marker for assessing genetic damage in populations exposed to low levels of ionizing radiation.  相似文献   

16.
The aim of this study was to determine whether the exposure to either single or multiple radio‐frequency (RF) radiation frequencies could induce oxidative stress in cell cultures. Exposures of human MCF10A mammary epithelial cells to either a single frequency (837 MHz alone or 1950 MHz alone) or multiple frequencies (837 and 1950 MHz) were conducted at specific absorption rate (SAR) values of 4 W/kg for 2 h. During the exposure period, the temperature in the exposure chamber was maintained isothermally. Intracellular levels of reactive oxygen species (ROS), the antioxidant enzyme activity of superoxide dismutase (SOD), and the ratio of reduced/oxidized glutathione (GSH/GSSG) showed no statistically significant alterations as the result of either single or multiple RF radiation exposures. In contrast, ionizing radiation‐exposed cells, used as a positive control, showed evident changes in all measured biological endpoints. These results indicate that single or multiple RF radiation exposure did not elicit oxidative stress in MCF10A cells under our exposure conditions. Bioelectromagnetics 33:604–611, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

17.
A chemiluminescence study showed that hepatitis B virus (HBV) and hepatitis C virus (HCV) DNA amplicons are capable of induced radiation when exposed to electromagnetic fields (EMFs) that range from 7.5 to 30 Hz in frequency and from 24 to 40 A/m in field strength. An EMF with a frequency of 9 Hz was shown to exert the greatest effect on aqueous solutions of the hepatitis virus DNA amplicons. The hydration shell of the DNA amplicons was observed to change. The change in the DNA hydration shell on exposure to a low-frequency EMF was presumed to restore hydrogen bonds, to induce crosslinks, and to facilitate DNA repair.  相似文献   

18.
The survival of biological activity in irradiated transforming deoxyribonucleic acid (DNA) has been assayed in the wild type and a radiation-sensitive mutant of Micrococcus radiodurans. The frequency of transformation with unirradiated DNA was lower in the mutant to about the same extent as the mutant's increased sensitivity to radiation. However, in both the wild type and the mutant, the irradiated DNA that was incorporated into the bacterial genome was repaired to the same extent as determined by the loss of transforming activity with increasing radiation dose. This applied to DNA irradiated either with ionizing or ultraviolet (UV) radiation. The rate of inactivation of biological activity after UV radiation was the same in any of the DNA preparations tested. For ionizing radiation, the rate of inactivation varied up to 40-fold, depending on the DNA preparation used, but for any one preparation was the same whether assayed in the wild type or the radiation-sensitive mutant. When recipient bacteria were irradiated with ionizing or UV radiation immediately before transformation, the frequency of transformation with unirradiated DNA fell, rapidly and exponentially in the case of the sensitive mutant but in a more complicated fashion in the wild type. The repair of DNA irradiated with ionizing radiation was approximately the same whether assayed in unirradiated or irradiated hosts. Thus, irradiation of the host reduced the integration of DNA but not its repair.  相似文献   

19.
A method to measure the germline mutations induced by cancer treatment in humans is needed. To establish such a method we used a transgenic mouse model consisting of a human DNA repeat locus that has a high spontaneous mutation frequency as a biomarker. Alterations in repeat number were measured in individual sperm from mice hemizygous for an expanded (CTG)(162) human myotonic dystrophy type 1 (DM1) microsatellite repeat using single genome-equivalent (g.e.) PCR and detection by a DNA fragment analyzer. Mutation frequencies were measured in DNA from sperm from controls and sperm derived from stem spermatogonia, differentiating spermatogonia, and spermatocytes exposed to radiation and from spermatocytes of mice treated with cyclophosphamide. There was no increase above control levels in mutations, scored as >1 repeat changes, in any of the treated groups. However, moderately large deletion mutants (between 9 and 20 repeat changes) were observed at frequencies of 2.2% when spermatocytes were treated with cyclophosphamide and, 1.8 and 2.5% when spermatocytes and stem cells, respectively, were treated with radiation, which were significantly higher than the frequency of 0.3% in controls. Thus, radiation and cyclophosphamide induced deletions in the expanded DM1 trinucleotide repeat. PCR artifacts were characterized in sperm DNA from controls and from mice treated with radiation; all artifacts involved losses of more than 20 DM1 repeats, and surprisingly the artifact frequency was higher in treated sperm than in control sperm. The radiation-induced increase in the frequency of PCR artifacts might reflect alterations in sperm DNA that destabilize the genome not only during PCR amplification but also during early embryonic development.  相似文献   

20.
The traditional thinking has been that the biological effects of ionizing radiation occur in irradiated cells as a consequence of the DNA damage they incur. This implies that: 1) biological effects occur only in irratiated cells, 2) radiation traversal through the nucleus of the cell is a prerequisite to produce a biological response, and 3) DNA is the target molecule in the cell. Evidence has been emerging, however, for non-DNA targeted effects of radiation; that is, effects including mutations, chromosomal aberrations, and changes in gene expression which occur in cells that in themselves receive no radiation exposure. Two of these phenomena will be described in this paper. The first is radiation-induced genomic instability whereby biological effects, including elevated frequencies of mutations and chromosomal aberrations, arise in the distant descendants of irradiated cells. The second phenomenon has been termed the "bystander effect", whereby in a mixed population of irradiated and nonirradiated cells, biological effects arise in those cells that receive no radiation exposure. The damage signals are transmitted from cell to cell through gap junction channels, and the genetic effects observed in bystander cells appear to result from an upregulation of oxidative stress. The possible influence of these non-targeted effects of radiation of the respounse to low-dose exposures is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号