首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Graphical analysis of inhibition kinetics for dextransucrase from Leuconostoc mesenteroides was done with typical inhibitors, competitive and noncompetitive. Based on the plots of Yonetani-Theorell and Semenza-Balthazar, mutual competition between the pairs of inhibitors of identical kinetic type was observed, while combination of competitive and noncompetitive inhibitors gave no significant mutual interactions. By the procedure of Nitta et al., binding sites for competitive and noncompetitive inhibitors were shown to be distant from each other. Moreover, two noncompetitive inhibitors competed with each other for a single binding site on the enzyme. Although biphasic reciprocal plots may suggest rather complicated binding of various inhibitors, the results obtained by the three graphical methods are fully explained when competitive and noncompetitive inhibitors for substrate sucrose bind to the so-called donor- and acceptor-sites of dextransucrase, respectively.  相似文献   

2.
Inhibition of angiotensin converting enzyme (ACE) has been observed with a variety of different peptides, and peptide fragments with inhibitory capabilities have been identified within many different proteins, including milk proteins. The purpose of this study therefore was to identify new short peptides with inhibitory properties from the primary structure of milk proteins and to characterize them in vitro and in vivo, since no milk derived ACE inhibitors have previously been evaluated for their ability to inhibit ACE in vivo. In vitro, 8 of 9 dipeptides were found to be competitive inhibitors of ACE. The IC50 was significantly lower when an angiotensin I-like substrate was used, than when a bradykinin-like substrate was used. Using three different in vivo models for ACE inhibition, a very moderate effect was observed for three of the new peptides, but only for up to 6 or 12 minutes. Nothing was observed with two reference compounds that are reported to be hypotensive ACE-inhibitors derived from milk proteins. This raises the question whether the mechanism of hypotensive action is straightforward inhibition of ACE in vivo.  相似文献   

3.
The kinetic mechanism of the CheR methyltransferase, S-adenosyl-L-methionine (AdoMet): protein-L-glutamate O-methyltransferase (EC 2.1.1.24), from Salmonella typhimurium was investigated. Initial velocity, product inhibition, and binding studies were performed, and from the data obtained, it was determined that the mechanism of the reaction catalyzed by the enzyme is random. Initial velocity rates were measured with varied amounts of both substrates, and double-reciprocal plots gave patterns which converged on or near the abscissa. The products, S-adenosyl-L-homocysteine and methylated receptor, were found to be competitive inhibitors with respect to both AdoMet and receptor. Equilibrium dialysis and immunoprecipitation studies indicated that the two substrates can bind to the enzyme independent of each other. These results are consistent with a random mechanism with no abortive complexes being formed. The Michaelis constants calculated for AdoMet and receptor were 8.62 microM and 2.03 mg/ml total membrane protein (approximately 2.10 microM Tar protein), and the apparent dissociation constants of AdoMet and the receptor were 16.8 microM and 4.07 mg/ml total membrane protein (approximately 4.2 microM Tar protein), respectively. The Kd of AdoMet for the enzyme was 10.9 microM as determined by binding studies.  相似文献   

4.
A series of polyhydroxy benzophenone were synthesized and evaluated as mushroom tyrosinase inhibitors. The results demonstrated that most of the target compounds had remarkable inhibitory activities on mushroom tyrosinase. Among all these compounds, 2,3,4,3′,4′,5′-hexahydroxy-diphenylketone 10 was found to be the most potent tyrosinase inhibitor with IC50 value of 1.4 μM. In addition, the inhibition kinetics analyzed by Lineweaver–Burk plots revealed that such compounds were competitive inhibitors. These results suggested that such compounds might be utilized for the development of new candidate for treatment of dermatological disorders.  相似文献   

5.
One of the efficient modes of treatments of chronic hypertension and cardiovascular disorders has been to restrain the formation of angiotensin-II by inhibiting the action of angiotensin-converting enzyme (ACE) on angiotensin-I. The efforts continue towards achieving superior molecules or drugs with improved affinities, better bioavailability and thus to achieve long duration of action with minimum side effects. Previously, we reported a library of tripeptidomimics of Ornithyl–Proline (Orn–Pro) conjugated with various unnatural amino acids and carboxylic acid derived heterocyclics based on the SAR studies of existing ACE inhibitors. Their synthesis and screening for possible inhibitors of angiotensin-converting enzyme (ACE) revealed that increase in the backbone chain length by one carbon atom results in a sudden decrease in their activity. Therefore, in the present study heterocycles with different chain length were introduced to interact with the hydrophobic S2 sub-site of ACE and screened for their in vitro ACE inhibition activity. Further, their binding interaction with C-domain of somatic ACE was also determined. Docking and consequent LUDI scores showed good correlation with binding of these molecules in the active site of ACE. Results suggest that heterocycles with C3 chain length are more appropriate for the effective binding of the tripeptidomimics within the active site of ACE.  相似文献   

6.
目的 从中药筛选具有潜在抑制严重急性呼吸综合征冠状病毒2 (SARS-CoV-2) 活性的成分,进一步从原子水平揭 示其抑制SARS-CoV-2 表面刺突蛋白(S 蛋白) 受体结合域(RBD) 与血管紧张素转化酶2 (ACE2) 结合的内在机制。 方法 检索新型冠状病毒(简称“新冠肺炎”) 治疗中药处方,构建“新冠肺炎中药候选活性成分数据库”。用具有ACE2 抑制活性的小分子化合物构建HipHop药效团模型,并对“新冠肺炎中药候选活性成分数据库”中活性成分筛选。采用分子 对接和分子动力学模拟方法研究候选活性成分与ACE2 的结合方式及其对SARS-CoV-2 S 蛋白与ACE2 识别的影响。 结果 本文通过中药处方挖掘和分子动力学模拟,从143 个新冠肺炎治疗中药处方中筛选出10 种可与SARS-CoV-2 S 蛋白/ 人源ACE2 识别位点结合的中药成分。其中,枇杷叶主要活性成分23-trans-p-coumaryhormentic acid 与ACE2 具有最高的亲和 力,且23-trans-p-coumaryhormentic acid 的结合可有效阻断SARS-CoV-2 S蛋白与宿主细胞ACE2 的结合。结论 本文通过虚 拟筛选发现了SARS-CoV-2 潜在抑制剂分子23-trans-p-coumaryhormentic acid,同时从原子水平预测了其抑制SARS-CoV-2 S 蛋白与ACE2 结合的内在机制,这将为SARS-CoV-2 特异性抗病毒药物的研发提供理论依据。  相似文献   

7.
Ahmad S  Moinuddin  Ali A 《Life sciences》2012,90(25-26):980-987
AimsTo study the immunogenicity of advanced glycation end product (AGE) modified IgG (AGE-IgG) in experimental animals.Main methodsHuman IgG was subjected to in vitro glycation with glucose and the formation of Nε-(carboxymethyl)lysine (CML) was evaluated by high performance liquid chromatography (HPLC). The immunogenicity of native and AGE-IgG was investigated by raising polyclonal antibodies against them in rabbits. The induced antibodies were purified on a Protein-A agarose affinity column. Specific binding of antibodies was screened by competitive inhibition assay and band shift assay. Cross reactions of induced antibodies with various proteins or amino acids and their glycated conformers were ascertained by competitive inhibition ELISA.Key findingsWe detected the CML formation in AGE-IgG. The AGE-IgG was found to be highly immunogenic due to the generation of neo-epitopes on it. Affinity purified antibodies exhibited high degree of specific binding with AGE-IgG in comparison to the native IgG. Antibodies against AGE-IgG exhibited diverse antigen binding characteristics and the glycated conformers of various proteins and amino acids were found to be effective inhibitors of antibody-immunogen interaction in cross reaction studies. Band shift assay reiterated the results obtained by direct binding and competitive inhibition assay.SignificanceThe induced antibodies against AGE-IgG resembled the diverse antigen binding characteristics of autoantibodies found in rheumatoid arthritis (RA). IgG modified by AGEs under oxidative stress presents unique neo-epitopes which may be one of the factors for the induction of autoantibodies in RA patients.  相似文献   

8.
Rabbit brain purine nucleoside phosphorylase used in this study was purified 6000-fold to apparent homogeneity and a specific activity or 50 μmol min?1 mg ?1 protein. A molecular weight of 70.000 daltons was determined for the native enzyme by gel filtration on Sephadex. Electrophoresis on polyacrylamide gel, in presence of sodium dodecyl sulfate, gave a subunit molecular weight of 34,500 daltons, suggesting that the enzyme is dimeric with, probably, identical subunits. The relationship of the structure of certain biologically active substances to their inhibitory action on the enzyme was examined. Folic acid and the compound d,l-6-methyl 5,6,7,8-tetrahydropterine, with similar substituents on their primary ring structure, were competitive inhibitors of the enzyme. The inhibition constants calculated were 3.37 × 10?5M for folic acid and 3.80 × 10?5m for d,l-6-methyl 5,6,7,8-tetrahydropterine. Aminopterin and the purine analog 8-aza-2,6-diaminopurine, with similar substituents on their primary ring structure, were noncompetitive inhibitors of the enzyme. Their respective inhibition constants were 1.50 × 10?4 and 1.95 × 10?4m. Erythro-9-(2-hydroxy-3-nonyl) adenine, an adenosine deaminase inhibitor, was also examined for inhibitory potency with mammalian purine nucleoside phosphorylase, and was observed to be a competitive inhibitor of this enzyme, with an inhibition constant of 1.90 × 10?4m. The Michaelis constant for the substrate guanosine was near 6.0 × 10?5m. Physical probe of the nature of the functional groups which participate in enzymic catalysis implicated both histidine and cysteine as the essential catalytic species. Photooxidation studies suggested a pH-dependent sensitivity of an essential catalytic group, and its probable location at the active site.  相似文献   

9.
Inhibition of bovine lung and testicular angiotensin-converting enzyme (ACE) by some well-known ACE inhibitors (lisinopril, captopril, enalapril), new substances (Nalpha-carboxyalkyl dipeptides PP-09, PP-35, and PP-36), and phosphoramidon was investigated using Cbz-Phe-His-Leu and FA-Phe-Phe-Arg (C-terminal analogs of angiotensin I and bradykinin, respectively) as the substrates. The somatic (two domains) and testicular (single domain) isoenzymes demonstrated different kinetic parameters for hydrolysis of these substrates. All of the inhibitors were competitive inhibitors of both ACE isoforms, and the Ki values were substrate-independent. The relative potencies of the inhibitors for both enzymes were: lisinopril > captopril > PP-09 > enalapril > PP-36 > PP-35 > phosphoramidon. The inhibition efficiency of PP-09 was comparable with those of the well-known ACE inhibitors. Captopril was more effectively bound to the somatic ACE (Ki = 0.5 nM) than to the testicular isoform (Ki = 6.5 nM).  相似文献   

10.
The transport of [3H]hypoxanthine was studied in monolayer cultures of mutant Chinese hamster lung fibroblasts lacking hypoxanthine-guanine phosphoribosyltransferase. Initial rates of transport were determined by rapid uptake experiments (8 to 20 s); a Michaelis constant of 0.68 ± 0.09 mm for hypoxanthine was derived from linear, monophasic plots of vS against v. Nucleosides are competitive inhibitors of this process; adenosine and thymidine give respective Ki values of 86 and 300 μm. The corresponding bases give much higher inhibition constants with adenine and thymine yielding values of 3100 and 1700 μm, respectively. A similar pattern was observed for competitive inhibition of hypoxanthine transport by inosine, adenine arabinoside, uridine, cytidine, and two ribofuranosylimidazo derivatives of pyrimidin-4-one; in every case the nucleoside exhibited a lower Ki value than the corresponding homologous base. The inhibition constants observed for nucleosides are remarkably similar to their Km values for nucleoside transport by cultured cells recently reported by others. Hypoxanthine transport was also blocked by the 6-(2-hydroxy-5-nitrobenzylthio) derivatives of inosine and guanosine and by dipyridamole; these agents are also inhibitors of nucleoside transport. These results indicate a closer relationship between base and nucleoside transport than previously recognized and suggest that these two transport processes may involve identical or very similar transport proteins.  相似文献   

11.
Human intestinal maltase (HMA) is an α-glucosidase that hydrolyses α-1,4-linkages from the non-reducing end of malto-oligosaccharides. HMA is an important target to discover of new drugs for the treatment of type 2 diabetes. In this study, 308,307 compounds were virtually screened with HMA using Autodock 3.0.5 in a WISDOM production environment to discover novel inhibitors. The 42 top-scoring free binding energy compounds, representing 17 groups containing potential hydrogen bonding with key residues in the active site pocket of HMA, were tested in vitro for their inhibitory activities against recombinant HMA expressed from Pichia pastoris. Compounds 17 and 18 were competitive inhibitors exclusively for HMA without any in vitro inhibition for human pancreatic α-amylase. The K i values were 20 μM for both compound 17 and 18.  相似文献   

12.
A series of polyphenolic curcumin analogs were synthesized and their inhibitory effects on mushroom tyrosinase and the inhibition of 1,1-diphenyl-2-picryl-hydrazyl (DPPH) free radical formation were evaluated. The results indictated that the analogs possessing m-diphenols and o-diphenols exhibited more potent inhibitory activity on tyrosinase than reference compound rojic acid, and that the analogs with o-diphenols exhibited more potent inhibitory activity of DPPH free-radical formation than reference compound vitamin C. The inhibition kinetics, analyzed by Lineweaver–Burk plots, revealed that compounds B2 and C2 bearing o-diphenols were non-competitive inhibitors, while compounds B11 and C11 bearing m-diphenols were competitive inhibitors. In particular, representative compounds C2 and B11 showed no side effects at a dose of 2,000 mg/kg in a preliminary evaluation of acute toxicity in mice. These results suggest that such polyphenolic curcumin analogs might serve as lead compounds for further design of new potential tyrosinase inhibitors.  相似文献   

13.
Three iso-alkyldithiocarbonates (xanthates), as sodium salts, C3H7OCS2Na (I), C4H9OCS2Na (II) and C5H11OCS2Na (III), were synthesized, by the reaction between CS2 with the corresponding iso-alcohol in the presence of NaOH, and examined for inhibition of both cresolase and catecholase activities of mushroom tyrosinase (MT) from a commercial source of Agricus bisporus. 4-[(4-methylbenzo)azo]-1,2-benzendiol (MeBACat) and 4-[(4-methylphenyl)azo]-phenol (MePAPh) were used as synthetic substrates for the enzyme for the catecholase and cresolase reactions, respectively. Lineweaver-Burk plots showed different patterns of mixed and competitive inhibition for the three xanthates and also for cresolase and catecholase activities of MT. For cresolase activity, I and II showed a mixed inhibition pattern but III showed a competitive inhibition pattern. For catecholase activity, I showed mixed inhibition but II and III showed competitive inhibition. These new synthesized compounds are potent inhibitors of MT with Ki values of 9.8, 7.2 and 6.1 μM for cresolase inhibitory activity, and also 12.9, 21.8 and 42.2 μM for catecholase inhibitory activity for I, II and III, respectively. They showed a greater inhibitory potency towards the cresolase activity of MT. Both substrate and inhibitor can be bound to the enzyme with negative cooperativity between the binding sites (α>1) and this negative cooperativity increases with increasing length of the aliphatic tail in these compounds in both cresolase and catecholase activities. The cresolase inhibition is related to the chelating of the copper ions at the active site by a negative head group (S? ) of the anion xanthate, which leads to similar values of Ki for all three xanthates. Different Ki values for catecholase inhibition are related to different interactions of the aliphatic chains of I, II and III with hydrophobic pockets in the active site of the enzyme.  相似文献   

14.
The hypertension is one of the highest risk factors for stroke, myocardial infarction, vascular disease and chronic kidney disease. Angiotensin converting enzyme (ACE) has an important role in the physiological regulation of cardiovascular system. ACE inhibition is a key purpose for hypertension treatment. In this study, two peptides named HL-7 with the sequence of YLYELAR (MW: 927.07 Da) and HL-10 with the sequence of AFPYYGHHLG (MW: 1161.28 Da) were identified from scorpion venom of H. lepturus. The inhibitory activity of HL-7 and HL-10 was examined on rabbit ACE. The inhibition mechanisms were assayed by kinetic and docking studies. The IC50 values for ACE inhibition of HL-7 and HL-10 were 9.37 µM and 17.22 µM, respectively. Lineweaver-Burk plots showed that two peptides inhibited rabbit ACE with competitive manner. The molecular docking conformed experimental results and showed that the two peptides interacted with N-domain and C-domain active sites. Also, docking study revealed that the two peptides can form hydrogen and hydrophobic bonds at their binding sites. Both peptides had higher affinity to N-domain. Our results showed that HL-7 exhibited more strong interactions with amino acids at active site. It seems that HL-10 peptide could occupy more space, thereby inhibiting the substrate entrance to active site.  相似文献   

15.
The Michaelis constant and maximal velocity of alpha-amylase-free amylo-glucosidase decrease with increasing periodate oxidation of amylose. These kinetic features have been explained on the basis of competitive inhibition by the oxidised non-reducing end of the (1→4)-α-d-glucan chain with the active centres of the enzyme. A kinetic model is proposed to demonstrate this special kind of inhibition where the concentration of inhibitor is directly proportional to the substrate concentration. The experimental data fitted this model, and the plots of 1/Km and 1/V against the ratio or oxidised/unoxidised non-reducing end-groups were straight lines.  相似文献   

16.
Inhibition of angiotensin converting enzyme (ACE) has been observed with a variety of different peptides, and peptide fragments with inhibitory capabilities have been identified within many different proteins, including milk proteins. The purpose of this study therefore was to identify new short peptides with inhibitory properties from the primary structure of milk proteins and to characterize them in vitro and in vivo, since no milk derived ACE inhibitors have previously been evaluated for their ability to inhibit ACE in vivo. In vitro, 8 of 9 dipeptides were found to be competitive inhibitors of ACE. The IC50 was significantly lower when an angiotensin I-like substrate was used, than when a bradykinin-like substrate was used. Using three different in vivo models for ACE inhibition, a very moderate effect was observed for three of the new peptides, but only for up to 6 or 12 minutes. Nothing was observed with two reference compounds that are reported to be hypotensive ACE-inhibitors derived from milk proteins. This raises the question whether the mechanism of hypotensive action is straightforward inhibition of ACE in vivo.  相似文献   

17.
Collagen, a structural biopolymer of the extracellular matrix, is known to conceal several bioactive peptides which, when excised, can display physiological actions including angiotensin II-converting enzyme (ACE) inhibition. ACE is a key protease controlling the blood pressure (BP) by cleaving dipeptides from an inactive propeptide to produce angiotensin II, a potent BP regulator. Natural inhibitors of ACE, though less potent, have the advantage of being biocompatible and non-toxic. This study was undertaken to identify such cryptic regions from bovine Achilles tendon collagen. Bacterial collagenase was used to hydrolyze collagen and the hydrolysate was subjected to separation through ion-exchange column chromatography. Fractions were subjected to ACE inhibition assays and further purified by gel permeation chromatography. Two biologically active cryptic peptides were obtained displaying potent inhibition abilities; D1 and E2. The peptides were in the mass range of 1.5–3.5 kDa and the inhibition was found to be competitive. Sequence analysis confirmed a relatively higher % occurrence of amino acids A and N in comparison to collagen and a hydrophobic C-terminal with P as the terminus. Both peptides were found to retain 80% of activity, even after digestive enzyme treatment. IC50 values revealed D1 to be the most potent inhibitor. Docking studies revealed that both peptides were using the C-terminal to interact with ACE-binding site. A comparison with other peptides displaying competitive inhibition hinted at the presence of a unique sequence GX′Y′ where X′ is often P, L, I or A and Y′ often P as the probable C-terminal for effective inhibition.  相似文献   

18.
Novel peptide inhibitors of angiotensin-converting enzyme 2   总被引:23,自引:0,他引:23  
Angiotensin-converting enzyme 2 (ACE2), a recently identified human homolog of ACE, is a novel metallocarboxypeptidase with specificity, tissue distribution, and function distinct from those of ACE. ACE2 may play a unique role in the renin-angiotensin system and mediate cardiovascular and renal function. Here we report the discovery of ACE2 peptide inhibitors through selection of constrained peptide libraries displayed on phage. Six constrained peptide libraries were constructed and selected against FLAG-tagged ACE2 target. ACE2 peptide binders were identified and classified into five groups, based on their effects on ACE2 activity. Peptides from the first three classes exhibited none, weak, or moderate inhibition on ACE2. Peptides from the fourth class exhibited strong inhibition, with equilibrium inhibition constants (K(i) values) from 0.38 to 1.7 microm. Peptides from the fifth class exhibited very strong inhibition, with K(i) values < 0.14 microm. The most potent inhibitor, DX600, had a K(i) of 2.8 nm. Steady-state enzyme kinetic analysis showed that these potent ACE2 inhibitors exhibited a mixed competitive and non-competitive type of inhibition. They were not hydrolyzed by ACE2. Furthermore, they did not inhibit ACE activity, and thus were specific to ACE2. Finally, they also inhibited ACE2 activity toward its natural substrate angiotensin I, suggesting that they would be functional in vivo. As novel ACE2-specific peptide inhibitors, they should be useful in elucidation of ACE2 in vivo function, thus contributing to our better understanding of the biology of cardiovascular regulation. Our results also demonstrate that library selection by phage display technology can be a rapid and efficient way to discover potent and specific protease inhibitors.  相似文献   

19.
Abstract

Obesity is prone to cause a variety of chronic metabolic diseases, and it has aroused people’s attention that the rapid increase in the global population of obese people in the past years. As a kind of weight-loss drug acting in the intestine, lipase inhibitor does not enter the bloodstream without producing central nervous side effects. Because they do not affect the metabolism system, lipase inhibitors and obesity have become one of the hot spots in recent years. Glycolic acid is a new substrate analog inhibitor with the value of the semi-inhibitory concentration of lipase is estimated to be 17.29?±?0.14?mM. Using the plots of Lineweaver-Burk, the inhibition mechanism of lipase by glycolic acid was reversible and the inhibition type belongs to competitive inhibition with a KI value of 19.61?±?0.26?mM. The inhibitory kinetics assay showed that the microscopic velocity constant k+0 of inhibition kinetics is 1.79?×?10?3?mM?1s?1, and k?0 is 0.73?×?10?3 s?1. The results of UV full-wavelength scanning on product cumulative, fluorescence quenching and molecular simulation also indicated that glycolic acid and substrate competitive with lipase by binding to Lys137. Thereby glycolic acid inhibiting the oxidation-catalyzed reaction and reducing the product of the enzyme and substrate. This adds a new direction for the search for lipase inhibitors and provides new ideas about the development of anti-obesity drugs.

Communicated by Ramaswamy H. Sarma  相似文献   

20.
Abstract

Understanding the dual inhibition mechanism of food derivative peptides targeting the enzymes (Renin and Angiotensin Converting enzyme) in the Renin Angiotensin System. Two peptides RALP and WYT were reported to possess antihypertensive activity targeting both renin and ACE, and we have used molecular docking and molecular dynamics simulation, in order to understand the underlying mechanism. The selected peptides (RALP and WYT) from the series of peptides reported were docked to renin and ACE and two binding modes were selected based on the binding energy, interaction pattern and clusters of docking simulation. The enzyme-peptide complexes for renin and ACE (Renin/RALP1,2; ACE/RALP1,2; Renin/WYT1,2 and ACE/WYT1,2) were subjected to molecular dynamics simulation. Our results identified that the peptides inhibiting renin, tends to move out of the binding pockets (S1’ S2’) which is critical for potent binding and occupies the less important pockets (S4 and S3). This could possibly be the reason for its low potency. Whereas, the same peptides targeting ACE, tends to be intact in the pocket because of the metal ion coordination and there is an ample room to improve on its efficacy. Our results further pave way for the biochemist, medicinal chemist to design dual peptides targeting the RAS effectively.

Communicated by Ramaswamy H. Sarma  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号