首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recently, many studies have been carried out in relation to 900 MHz radiofrequency radiation (RF) emitted from a mobile phone on the brain. However, there is little data concerning possible mechanisms between long-term exposure of RF radiation and biomolecules in brain. Therefore, we aimed to investigate long-term effects of 900 MHz radiofrequency radiation on beta amyloid protein, protein carbonyl, and malondialdehyde in the rat brain. The study was carried out on 17 Wistar Albino adult male rats. The rat heads in a carousel were exposed to 900 MHz radiofrequency radiation emitted from a generator, simulating mobile phones. For the study group (n: 10), rats were exposed to the radiation 2 h per day (7 days a week) for 10 months. For the sham group (n: 7), rats were placed into the carousel and the same procedure was applied except that the generator was turned off. In this study, rats were euthanized after 10 months of exposure and their brains were removed. Beta amyloid protein, protein carbonyl, and malondialdehyde levels were found to be higher in the brain of rats exposed to 900 MHz radiofrequency radiation. However, only the increase of protein carbonyl in the brain of rats exposed to 900 MHz radiofrequency radiation was found to be statistically significant (p<0.001). In conclusion, 900 MHz radiation emitted from mobile/cellular phones can be an agent to alter some biomolecules such as protein. However, further studies are necessary.  相似文献   

2.
Recently, many studies have been carried out in relation to 900 MHz radiofrequency radiation (RF) emitted from a mobile phone on the brain. However, there is little data concerning possible mechanisms between long-term exposure of RF radiation and biomolecules in brain. Therefore, we aimed to investigate long-term effects of 900 MHz radiofrequency radiation on beta amyloid protein, protein carbonyl, and malondialdehyde in the rat brain. The study was carried out on 17 Wistar Albino adult male rats. The rat heads in a carousel were exposed to 900 MHz radiofrequency radiation emitted from a generator, simulating mobile phones. For the study group (n: 10), rats were exposed to the radiation 2 h per day (7 days a week) for 10 months. For the sham group (n: 7), rats were placed into the carousel and the same procedure was applied except that the generator was turned off. In this study, rats were euthanized after 10 months of exposure and their brains were removed. Beta amyloid protein, protein carbonyl, and malondialdehyde levels were found to be higher in the brain of rats exposed to 900 MHz radiofrequency radiation. However, only the increase of protein carbonyl in the brain of rats exposed to 900 MHz radiofrequency radiation was found to be statistically significant (p < 0.001).

In conclusion, 900 MHz radiation emitted from mobile/cellular phones can be an agent to alter some biomolecules such as protein. However, further studies are necessary.  相似文献   

3.
There are numerous reports on the effects of electromagnetic radiation (EMR) in various cellular systems. Melatonin and caffeic acid phenethyl ester (CAPE), a component of honeybee propolis, were recently found to be potent free radical scavengers and antioxidants. Mechanisms of adverse effects of EMR indicate that reactive oxygen species may play a role in the biological effects of this radiation. The present study was carried out to compare the efficacy of the protective effects of melatonin and CAPE against retinal oxidative stress due to long-term exposure to 900 MHz EMR emitting mobile phones. Melatonin and CAPE were administered daily for 60 days to the rats prior to their EMR exposure during our study. Nitric oxide (NO, an oxidant product) levels and malondialdehyde (MDA, an index of lipid peroxidation), were used as markers of retinal oxidative stress in rats following to use of EMR. Superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px) activities were studied to evaluate the changes of antioxidant status in retinal tissue. Retinal levels of NO and MDA increased in EMR exposed rats while both melatonin and CAPE caused a significant reduction in the levels of NO and MDA. Likewise, retinal SOD, GSH-Px and CAT activities decreased in EMR exposed animals while melatonin and CAPE caused a significant increase in the activities of these antioxidant enzymes. Treatment of EMR exposed rats with melatonin or CAPE increased the activities of SOD, GSH-Px and CAT to higher levels than those of control rats. In conclusion, melatonin and CAPE reduce retinal oxidative stress after long-term exposure to 900 MHz emitting mobile phone. Nevertheless, there was no statistically significant difference between the efficacies of these two antioxidants against to EMR induced oxidative stress in rat retina. The difference was in only GSH-Px activity in rat retina. Melatonin stimulated the retinal GSH-Px activity more efficiently than CAPE did.  相似文献   

4.
Ubiquitous and ever increasing use of mobile phones led to the growing concern about the effects of radiofrequency radiation (RFR) emitted by cell phones on biological systems. The aim of this study is to explore whether long-term RFR exposure at different frequencies affects DNA damage and oxidant-antioxidant parameters in the blood and brain tissue of rats. 28 male Sprague Dawley rats were randomly divided into four equal groups (n = 7). They were identified as Group 1: sham-control, Group 2: 900 MHz, Group 3: 1800 MHz, and Group 4: 2100 MHz. Experimental groups of rats were exposed to RFR 2 h/day for 6 months. The sham-control group of rats was subjected to the same experimental condition but generator was turned off. Specific absorption rates (SARs) at brain with 1 g average were calculated as 0.0845 W/kg, 0.04563 W/kg, and 0.03957, at 900 MHz, 1800 MHz, and 2100 MHz, respectively. Additionally, malondialdehyde (MDA), 8-hydroxydeoxyguanosine (8-OHdG), total antioxidant status (TAS), and total oxidant status (TOS) analyses were conducted in the brain tissue samples. Results of the study showed that DNA damage and oxidative stress indicators were found higher in the RFR exposure groups than in the sham-control group. In conclusion, 900-, 1800-, and 2100-MHz RFR emitted from mobile phones may cause oxidative damage, induce increase in lipid peroxidation, and increase oxidative DNA damage formation in the frontal lobe of the rat brain tissues. Furthermore, 2100-MHz RFR may cause formation of DNA single-strand breaks.  相似文献   

5.
Book Review     
Abstract

To investigate the potential adverse effects of mobile phone radiation, we studied reactive oxygen species (ROS), DNA damage and apoptosis in mouse embryonic fibroblasts (NIH/3T3) after intermittent exposure (5?min on/10?min off, for various durations from 0.5 to 8?h) to an 1800-MHz GSM-talk mode electromagnetic radiation (EMR) at an average specific absorption rate of 2?W/kg. A 2′,7′-dichlorofluorescin diacetate fluorescence probe was used to detect intracellular ROS levels, immunofluorescence was used to detect γH2AX foci as a marker for DNA damage, and flow cytometry was used to measure apoptosis. Our results showed a significant increase in intracellular ROS levels after EMR exposure and it reached the highest level at an exposure time of 1?h (p?p?相似文献   

6.
Objective: To study the impacts of exposure to electromagnetic radiation(EMR) on liver function in rats. Methods: Twenty adult male Sprague-Dawley rats were randomly divided into normal group and radiated group. The rats in normal group were not radiated, those in radiated group were exposed to EMR 4 h/d for 18 consecutive days. Rats were sacrificed immediately after the end of the experiment. The serum levels of alanine aminotransferase(ALT) and aspartate aminotransferase(AST), and those of malondialdehyde(MDA) and glutathione(GSH) in liver tissue were evaluated by colorimetric method. The liver histopathological changes were observed by hematoxylin and eosin staining and the protein expression of bax and bcl-2 in liver tissue were detected by immunohistochemical method. Terminal-deoxynucleotidyl transferase mediated nick and labelling(TUNEL) method was used for analysis of apoptosis in liver. Results: Compared with the normal rats, the serum levels of ALT and AST in the radiated group had no obvious changes(P0.05), while the contents of MDA increased(P0.01) and those of GSH decreased(P0.01) in liver tissues. The histopathology examination showed diffuse hepatocyte swelling and vacuolation, small pieces and focal necrosis. The immunohistochemical results displayed that the expression of the bax protein was higher and that of bcl-2 protein was lower in radiated group. The hepatocyte apoptosis rates in radiated group was higher than that in normal group(all P0.01). Conclusion: The exposure to 900 MHz mobile phone 4 h/d for 18 days could induce the liver histological changes, which may be partly due to the apoptosis and oxidative stress induced in liver tissue by electromagnetic radiation.  相似文献   

7.
The relationship between radiofrequency electromagnetic fields emitted from mobile phone and infertility is a matter of continuing debate. It is postulated that these radiations may affect the reproduction pattern spell by targeting biochemistry of sperm. In an attempt to expedite the issue, 70 days old Wistar rats (n?=?6) were exposed to mobile phone radiofrequency (RF) radiation for 2?h per day for 45 days and data compared with sham exposed (n?=?6) group. A significant decrease (P?相似文献   

8.
The radiofrequency electromagnetic radiation emitted by smart phones on biological systems has wide media coverage and public concern in recent years. The aim of this study was to explore the effects of fourth-generation cell phone radiation exposure on hematological (Total leukocyte count, Total erythrocyte count, and hemoglobin %), biochemical (Serum creatinine) parameters, and histopathological changes in the kidney and testis of Swiss albino mice. A total of 30 male Swiss albino mice weighing 45–65 g was randomly divided into three groups (n = 10). The first group A was the control group, the second group B, was exposed to 40 minutes of mobile phone radiation daily, the third group C was exposed to 60 minutes of radiation daily from two 2400 Megahertz fourth-generation connected mobile phones for 60 days, respectively. The electromagnetic radiation frequency radiometer measured the frequency of electromagnetic radiation emitted from cell phones. The specific absorption rate was calculated as 0.087 W/kg. The control group was kept under similar conditions, but the electromagnetic field was not given for the same period. All the mice were sacrificed at the end of the experiment. The blood samples were collected for hematobiochemical study, and then kidney and testis tissues were collected for histopathological study. Results of the study showed that the body weight and total erythrocyte count values were significantly (p < 0.05) decreased while total leukocyte count, hemoglobin %, and serum creatinine values were significantly (p < 0.05) increased in both the radiation exposure groups relative to the control group. Histopathological observation showed the kidney of 60 minutes exposed mice interstitial inflammation that causes marked mononuclear cellular infiltration compared to the 40 minutes and control mice. Compared to control mice, histopathological examinations of testicular tissue from the exposed mice, showed irregular in shapes and non-uniform sizes and fewer spermatogenic cells layer that leads to the larger lumen in the seminiferous tubules. It is concluded that fourth-generation cell phone radiation exposure may affect blood hemostasis and inflammation of mice's kidney and testis tissue. Based on these studies, it is important to increase public consciousness of potential adverse effects of mobile phone radiofrequency electromagnetic radiation exposure.  相似文献   

9.
ABSTRACT

Despite their benefits, technological devices such as cell phones may also have deleterious effects on human health. Considerable debate continues concerning the effects of the electromagnetic field (EMF) emitted during cell phone use on human health. We investigated the effects of exposure to 900 megahertz (MHz) EMF during mid to late adolescence on the rat liver. Control (ContGr), sham (ShmGr) and EMF (EMFGr) groups of female rats were established. We exposed the EMFGr rats daily to 900 MHz EMF on postnatal days 35?59. ShmGr rats underwent sham procedures. No procedure was performed on ContGr rats. Rats were sacrificed on postnatal day 60 and the livers were extracted. One part of the liver was stained with Masson’s trichrome or hematoxylin and eosin. The remaining tissue was used to measure oxidative stress markers including malondialdehyde, glutathione, catalase, superoxide dismutase, 8-hydroxydeoxyguanosine (8-OHdG) and nitrotyrosine. Total antioxidant status and total oxidant status were used to calculate the oxidative stress index. We found normal hepatic morphology in the ContGr and ShmGr groups. The EMFGr group exhibited occasional irregularities in the radial arrangement of hepatocytes, cytoplasmic vacuolization, hemorrhage, sinusoid expansion, hepatocyte morphology and edema. Biochemical analysis revealed that 8-OHdG and SOD levels in EMFGr decreased significantly compared to the ContGr and ShmGr groups. Exposure to a continuous 900 MHz EMF for 1 h daily during mid to late adolescence may cause histopathological and biochemical alterations in hepatic tissue.  相似文献   

10.
Considering the frequent use of mobile phones, we have directed attention to possible implications on cognitive functions. In this study we investigated in a rat model the long-term effects of protracted exposure to Global System for Mobile Communication-900 MHz (GSM-900) radiation. Out of a total of 56 rats, 32 were exposed for 2 h each week for 55 weeks to radio-frequency electromagnetic radiation at different SAR levels (0.6 and 60 mW/kg at the initiation of the experimental period) emitted by a (GSM-900) test phone. Sixteen animals were sham exposed and eight animals were cage controls, which never left the animal house. After this protracted exposure, GSM-900 exposed rats were compared to sham exposed controls. Effects on exploratory behaviour were evaluated in the open-field test, in which no difference was seen. Effects on cognitive functions were evaluated in the episodic-like memory test. In our study, GSM exposed rats had impaired memory for objects and their temporal order of presentation, compared to sham exposed controls (P = 0.02). Detecting the place in which an object was presented was not affected by GSM exposure. Our results suggest significantly reduced memory functions in rats after GSM microwave exposure (P = 0.02).  相似文献   

11.
Electromagnetic radiation (EMR) from wireless devices, particularly mobile phones, is a potentially growing public health concern. In this study, the neuronal effects of EMR on primary cortical neurons (PCNs) from neonatal rat cerebral cortex and the protective role of hispolon (HIS) and its derivatives were investigated as a measure of cranial exposure during mobile phone use. PCNs were isolated and cultured from day-old neonatal rats, then exposed for 2 h to EMR emitted by a mobile phone operating at a frequency of 2100 MHz with 1.6 W/Kg specific absorption rate (SAR) in call-answered mode treated with HIS and its derivatives. The induction of apoptosis through modulation of pro and anti-apoptotic genes via mitochondrial pathway and the protection by the test compounds was assessed. Pyrazole derivatives decreased apoptosis by modulating the levels of pro and anti-apoptotic genes by reducing the levels of reactive oxygen species (ROS) via mitochondrial damage, which was observed in the EMR exposed PCNs. The pyrazole compounds were found to have antioxidative and anti-apoptotic properties. Thus, the neuroprotective mechanisms of the pyrazole derivatives can be investigated further, which may make them appropriate as lead compounds in developing neuroprotective formulations.  相似文献   

12.
The increasing use of mobile telephones raises the question of possible adverse effects of the electromagnetic fields (EMF) that these phones produce. In this study, we examined the oxidative stress in the brain tissue and serum of rats that resulted from exposure to a 900-MHz EMF at a whole body average specific absorption rate (SAR) of 1.08 W/kg for 1 h/day for 3 weeks. We also examined the antioxidant effect of garlic powder (500 mg/kg/day) given orally to EMF-exposed rats. We found that malondialdehyde (MDA) (p < 0.001) and advanced oxidation protein product (AOPP) (p < 0.05) increased in rat brain tissue exposed to the EMF and that garlic reduced these effects (p < 0.05). There was no significant difference in the nitric oxide (NO) levels in the brain. Paraoxonase (PON) was not detected in the brain. There was a significant increase in the levels of NO (p < 0.001) detected in the serum after EMF exposure, and garlic intake did not affect this increase in NO. Our results suggest that there is a significant increase in brain lipid and protein oxidation after electromagnetic radiation (EMR) exposure and that garlic has a protective effect against this oxidative stress.  相似文献   

13.
Electromagnetic field exposure to the nervous system can cause neurological changes. The effects of extremely low-frequency electromagnetic fields, such as second-generation and third-generation radiation, have been studied in most studies. The current study aimed to explore fourth-generation cellular phone radiation on hippocampal morphology and behavior in mice. Swiss albino male mice (n = 30) were randomly categorized into 3 groups; control, 40 min, and 60 min exposure to 2400 MHz radiofrequency electromagnetic radiation (RF-EMR) daily for 60 days. The control mice were housed in the same environments but were not exposed to anything. Anxiety-like behaviors were tested using the elevated plus-maze. For histological and stereological examination, the brain was dissected from the cranial cavity. On Cresyl violet stained brain slices, the number of pyramidal neurons in the cornu ammonis of the hippocampus were counted. In exposed mice compared to control mice, a significant increase in anxiety-like behavior has been observed. Histological observations have shown many black and dark blue cytoplasmic cells with shrunken morphology degenerative alterations in the neuronal hippocampus in the radiation exposed mice. In the RF-EMR mouse hippocampus, stereological analyses revealed a significant decrease in pyramidal and granule neurons compared to controls. Our findings suggest that 2400-MHz RF-EMR cell phone radiation affects the structural integrity of the hippocampus, which would lead to behavioral changes such as anxiety. However, it alerts us to the possible long-term detrimental effects of exposure to RF-EMR.  相似文献   

14.
Electromagnetic field exposure to the nervous system can cause neurological changes. The effects of extremely low-frequency electromagnetic fields, such as second-generation and third-generation radiation, have been studied in most studies. The current study aimed to explore fourth-generation cellular phone radiation on hippocampal morphology and behavior in mice. Swiss albino male mice (n = 30) were randomly categorized into 3 groups; control, 40 min, and 60 min exposure to 2400 MHz radiofrequency electromagnetic radiation (RF-EMR) daily for 60 days. The control mice were housed in the same environments but were not exposed to anything. Anxiety-like behaviors were tested using the elevated plus-maze. For histological and stereological examination, the brain was dissected from the cranial cavity. On Cresyl violet stained brain slices, the number of pyramidal neurons in the cornu ammonis of the hippocampus were counted. In exposed mice compared to control mice, a significant increase in anxiety-like behavior has been observed. Histological observations have shown many black and dark blue cytoplasmic cells with shrunken morphology degenerative alterations in the neuronal hippocampus in the radiation exposed mice. In the RF-EMR mouse hippocampus, stereological analyses revealed a significant decrease in pyramidal and granule neurons compared to controls. Our findings suggest that 2400-MHz RF-EMR cell phone radiation affects the structural integrity of the hippocampus, which would lead to behavioral changes such as anxiety. However, it alerts us to the possible long-term detrimental effects of exposure to RF-EMR.  相似文献   

15.
Abstract

The growing spread of mobile phone use is raising concerns about the effect on human health of the electromagnetic field (EMF) these devices emit. The purpose of this study was to investigate the effects on rat pup heart tissue of prenatal exposure to a 900 megahertz (MHz) EMF. For this purpose, pregnant rats were divided into experimental and control groups. Experimental group rats were exposed to a 900?MHz EMF (1?h/d) on days 13–21 of pregnancy. Measurements were performed with rats inside the exposure box in order to determine the distribution of EMF intensity. Our measurements showed that pregnant experimental group rats were exposed to a mean electrical field intensity of 13.77?V/m inside the box (0.50?W/m2). This study continued with male rat pups obtained from both groups. Pups were sacrificed on postnatal day 21, and the heart tissues were extracted. Malondialdehyde, superoxide dismutase and catalase values were significantly higher in the experimental group rats, while glutathione values were lower. Light microscopy revealed irregularities in heart muscle fibers and apoptotic changes in the experimental group. Electron microscopy revealed crista loss and swelling in the mitochondria, degeneration in myofibrils and structural impairments in Z bands. Our study results suggest that exposure to EMF in the prenatal period causes oxidative stress and histopathological changes in male rat pup heart tissue.  相似文献   

16.
Caffeic acid phenethyl ester (CAPE), a flavonoid like compound, is one of the major components of honeybee propolis. It has been used in folk medicine for many years in Middle East countries. It was found to be a potent free radical scavenger and antioxidant recently. The aim of this study was to examine long-term applied 900 MHz emitting mobile phone-induced oxidative stress that promotes production of reactive oxygen species (ROS) and, was to investigate the role of CAPE on kidney tissue against the possible electromagnetic radiation (EMR)-induced renal impairment in rats. In particular, the ROS such as superoxide and nitric oxide (NO) may contribute to the pathophysiology of EMR-induced renal impairment. Malondialdehyde (MDA, an index of lipid peroxidation) levels, urinary N-acetyl-β-d-glucosaminidase (NAG, a marker of renal tubular injury) and nitric oxide (NO, an oxidant product) levels were used as markers of oxidative stress-induced renal impairment and the success of CAPE treatment. The activities of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px) in renal tissue were determined to evaluate the changes of antioxidant status. The rats used in the study were randomly grouped (10 each) as follows: i) Control group (without stress and EMR), ii) Sham-operated rats stayed without exposure to EMR (exposure device off), iii) Rats exposed to 900 MHz EMR (EMR group), and iv) A 900 MHz EMR exposed + CAPE treated group (EMR + CAPE group). In the EMR exposed group, while tissue MDA, NO levels and urinary NAG levels increased (p < 0.0001), the activities of SOD, CAT, and GSH-Px in renal tissue were reduced (p < 0.001). CAPE treatment reversed these effects as well (p < 0.0001, p < 0.001 respectively). In conclusion, the increase in NO and MDA levels of renal tissue, and in urinary NAG with the decrease in renal SOD, CAT, GSH-Px activities demonstrate the role of oxidative mechanisms in 900 MHz mobile phone-induced renal tissue damage, and CAPE, via its free radical scavenging and antioxidant properties, ameliorates oxidative renal damage. These results strongly suggest that CAPE exhibits a protective effect on mobile phone-induced and free radical mediated oxidative renal impairment in rats.  相似文献   

17.
The present study was designed to determine the effects of both Wi-Fi (2.45 GHz)- and mobile phone (900 and 1800 MHz)-induced electromagnetic radiation (EMR) on oxidative stress and trace element levels in the kidney and testis of growing rats from pregnancy to 6 weeks of age. Thirty-two rats and their 96 newborn offspring were equally divided into four different groups, namely, control, 2.45 GHz, 900 MHz, and 1800 MHz groups. The 2.45 GHz, 900 MHz, and 1,800 MHz groups were exposed to EMR for 60 min/day during pregnancy and growth. During the fourth, fifth, and sixth weeks of the experiment, kidney and testis samples were taken from decapitated rats. Results from the fourth week showed that the level of lipid peroxidation in the kidney and testis and the copper, zinc, reduced glutathione (GSH), glutathione peroxidase (GSH-Px), and total antioxidant status (TAS) values in the kidney decreased in the EMR groups, while iron concentrations in the kidney as well as vitamin A and vitamin E concentrations in the testis increased in the EMR groups. Results for fifth-week samples showed that iron, vitamin A, and β-carotene concentrations in the kidney increased in the EMR groups, while the GSH and TAS levels decreased. The sixth week results showed that iron concentrations in the kidney and the extent of lipid peroxidation in the kidney and testis increased in the EMR groups, while copper, TAS, and GSH concentrations decreased. There were no statistically significant differences in kidney chromium, magnesium, and manganese concentrations among the four groups. In conclusion, Wi-Fi- and mobile phone-induced EMR caused oxidative damage by increasing the extent of lipid peroxidation and the iron level, while decreasing total antioxidant status, copper, and GSH values. Wi-Fi- and mobile phone-induced EMR may cause precocious puberty and oxidative kidney and testis injury in growing rats.  相似文献   

18.
Recently, there have been several reports referring to detrimental effects due to radio frequency electromagnetic fields (RF-EMF) exposure. Special attention was given to investigate the effect of mobile phone exposure on the rat brain. Since the integrative mechanism of the entire body lies in the brain, it is suggestive to analyze its biochemical aspects. For this, 35-day old Wistar rats were exposed to a mobile phone for 2?h per day for a duration of 45 days where specific absorption rate (SAR) was 0.9?W/Kg. Animals were divided in two groups: sham exposed (n?=?6) and exposed group (n?=?6). Our observations indicate a significant decrease (P?相似文献   

19.
The purpose of this study is to bridge this gap by investigating effects of long term 900?MHz mobile phone exposure on reproductive organs of male rats. The study was carried out on 14 adult Wistar Albino rats by dividing them randomly into two groups (n: 7) as sham group and exposure group. Rats were exposed to 900?MHz radiofrequency (RF) radiation emitted from a GSM signal generator. Point, 1?g and 10?g specific absorption rate (SAR) levels of testis and prostate were found as 0.0623?W/kg, 0.0445?W/kg and 0.0373?W/kg, respectively. The rats in the exposure group were subject to RF radiation 3?h per day (7?d a week) for one year. For the sham group, the same procedure was applied, except the generator was turned off. At the end of the study, epididymal sperm concentration, progressive sperm motility, abnormal sperm rate, all-genital organs weights and testis histopathology were evaluated. Any differences were not observed in sperm motility and concentration (p?>?0.05). However, the morphologically normal spermatozoa rates were found higher in the exposure group (p?p?p?相似文献   

20.
We investigated the possible combined genotoxic effects of radiofrequency (RF) electromagnetic fields (900 MHz, amplitude modulated at 217 Hz, mobile phone signal) with the drinking water mutagen and carcinogen 3-chloro-4-(dichloromethyl)-5-hydroxy-2(5H)-furanone (MX). Female rats were exposed to RF fields for a period of 2 years for 2 h per day, 5 days per week at average whole-body specific absorption rates of 0.3 or 0.9 W/kg. MX was given in the drinking water at a concentration of 19 microg/ml. Blood samples were taken at 3, 6 and 24 months of exposure and brain and liver samples were taken at the end of the study (24 months). DNA damage was assessed in all samples using the alkaline comet assay, and micronuclei were determined in erythrocytes. We did not find significant genotoxic activity of MX in blood and liver cells. However, MX induced DNA damage in rat brain. Co-exposures to MX and RF radiation did not significantly increase the response of blood, liver and brain cells compared to MX exposure only. In conclusion, this 2-year animal study involving long-term exposures to RF radiation and MX did not provide any evidence for enhanced genotoxicity in rats exposed to RF radiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号