首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The protein kinase field is a very active research area in the pharmaceutical industry and many activities are ongoing to identify inhibitors of these proteins. The design of new chemical entities with improved pharmacological properties requires a deeper understanding of the factors that modulate inhibitor-kinase interactions. In this report, we studied the effect of two of these factors--the magnesium ion cofactor and the protein substrate--on inhibitors of the type I insulin-like growth factor receptor. Our results show that the concentration of magnesium ion influences the potency of adenosine triphosphate (ATP) competitive inhibitors, suggesting an explanation for the observation that such compounds retain their nanomolar potency in cells despite the presence of millimolar levels of ATP. We also showed that the peptidic substrate affects the potency of these inhibitors in a different manner, suggesting that the influence of this substrate on compound potency should be taken into consideration during drug discovery.  相似文献   

2.
3.
Yang SY  Goldspink G 《FEBS letters》2002,520(1-3):156-160
The identification of relevant protein kinase–protein substrate partners remains a serious challenge on a genome-wide scale. The design and synthesis of a photo-activatable nucleotide reagent to crosslink protein kinases with their substrates is described in which an azido group is appended to the γ-phosphoryl and purine moieties of ATP. In the absence of UV, compounds of this class were shown to act as competitive inhibitors versus ATP and non-competitive inhibitors versus peptide substrate for the protein tyrosine kinase Csk, suggesting that they can form a ternary complex with kinase and protein substrate. In vitro experiments with protein kinases indicate the bifunctional reagent can induce covalent protein–protein crosslinking that is dependent on UV irradiation. That significant kinase–substrate crosslinking occurs is suggested by the fact that this crosslinking is competitively inhibited by ATP. The crosslinked adducts can be readily cleaved by phosphodiesterase which supports the model for crosslinking and provides a simple method to deconvolute the linked protein partners.  相似文献   

4.
Kinase domain (KD) mutations of Bcr-Abl interfering with imatinib binding are the major mechanism of acquired imatinib resistance in patients with Philadelphia chromosome-positive leukemia. Mutations of the ATP binding loop (p-loop) have been associated with a poor prognosis. We compared the transformation potency of five common KD mutants in various biological assays. Relative to unmutated (native) Bcr-Abl, the ATP binding loop mutants Y253F and E255K exhibited increased transformation potency, M351T and H396P were less potent, and the performance of T315I was assay dependent. The transformation potency of Y253F and M351T correlated with intrinsic Bcr-Abl kinase activity, whereas the kinase activity of E255K, H396P, and T315I did not correlate with transforming capabilities, suggesting that additional factors influence transformation potency. Analysis of the phosphotyrosine proteome by mass spectroscopy showed differential phosphorylation among the mutants, a finding consistent with altered substrate specificity and pathway activation. Mutations in the KD of Bcr-Abl influence kinase activity and signaling in a complex fashion, leading to gain- or loss-of-function variants. The drug resistance and transformation potency of mutants may determine the outcome of patients on therapy with Abl kinase inhibitors.  相似文献   

5.
A novel competitive binding assay for protein kinase inhibitors has been developed for high-throughput screening (HTS). Unlike functional kinase assays, which are based on detection of substrate phosphorylation by the enzyme, this novel method directly measures the binding potency of compounds to the kinase ATP binding site through competition with a conjugated binding probe. The binding interaction is coupled to a signal amplification system based on complementation of beta-galactosidase enzyme fragments, a homogeneous, nonisotopic assay technology platform developed by DiscoveRx Corp. In the present study, staurosporine, a potent, nonselective kinase inhibitor, was chemically conjugated to a small fragment of beta-galactosidase (termed ED-SS). This was used as the binding probe to the kinase ATP binding pocket. The binding potencies of several inhibitors with diverse structures were assessed by displacement of ED-SS from the kinase. The assay format was specifically evaluated with GSK3alpha, an enzyme previously screened in a radioactive kinase assay (i.e., measurement of [(33)P]-gamma-ATP incorporation into the kinase peptide substrate). Under optimized assay conditions, nonconjugated staurosporine inhibited ED-SS binding in a concentration-dependent manner with an apparent potency (IC(50)) of 11 nM, which was similar to the IC(50) value determined in a radioactive assay. Furthermore, 9 kinase inhibitors with diverse structures, previously identified from chemical compound library screening, were screened using the competitive binding assay. The potencies in the binding assay were in very good agreement with those obtained previously in the isotopic functional activity assay. The binding assay was adapted for automated HTS using selected compound libraries in a 384-well microtiter plate format. The HTS assay was observed to be highly robust and reproducible (Z' factors > 0.7) with high interassay precision (R(2) > 0.96). Interference of compounds with the beta-galactosidase signal readout was negligible. In conclusion, the DiscoveRx competitive kinase binding assay, termed ED-NSIP trade mark, provides a novel method for screening kinase inhibitors. The format is homogeneous, robust, and amenable to automation. Because there is no requirement for substrate-specific antibodies, the assay is particularly applicable to Ser/Thr kinase assay, in which difficulties in identifying a suitable substrate and antibody preclude development of nonisotopic assays. Although the nonselective kinase inhibitor, staurosporine, was used here, chemically conjugating the ED fragment to other small molecule enzyme inhibitors is also feasible, suggesting that the format is generally applicable to other enzyme systems.  相似文献   

6.
Extracellular phosphorylation in the parasite, Leishmania major   总被引:2,自引:0,他引:2  
Intact promastigotes or cell-free extracts of the parasite Leishmania major were labelled with adenosine 5'[gamma-32P]-triphosphate (ATP). This resulted in the identification of eleven phosphoproteins. [gamma-32P]ATP incorporation into endogenous and exogenous substrates was insensitive to most of the commonly used protein kinase inhibitors and activators indicating that the leishmanial enzyme(s) may represent a new class of kinase(s). In addition, exogenous substrate specificity was inconsistent with the preferences of second messenger-dependent protein kinases. Cyclic AMP had differential effects on phosphorylation in intact cells and lysates. The majority of kinase activity could be attributed to an externally oriented membrane-associated protein kinase(s), as no specific cytosolic phosphoproteins were found and intact cells phosphorylated exogenous substrates. Labelled ATP did not cross the membrane and [alpha-32P]ATP was an unsuitable substrate for the phosphorylation activity. The ectokinase activity on live Leishmania exhibited a different substrate preference when compared to the protein kinase activity in the particulate fraction, suggesting that more than one protein kinase may be present in L. major. Three serine-labelled phosphoproteins were specifically released into the medium. The presence of an ecto-kinase and these released phosphoproteins may play a significant role in host-parasite interactions.  相似文献   

7.
Tian G  Cory M  Smith AA  Knight WB 《Biochemistry》2001,40(24):7084-7091
The kinetic mechanisms for the inhibition of pp60(c-src) tyrosine kinase (Src TK) by 4-anilinoquinazolines, an important class of chemicals as protein kinase inhibitors, were investigated. 4-Anilinoquinazolines with a bulky group at the 4'-position of the anilino group were shown to be competitive with both ATP and peptide, whereas molecules lacking such a bulky group only displayed an inhibition pattern typical of those competitive with ATP and noncompetitive with peptide. Modifications of the substituents on the carbocyclic ring did not perturb the inhibition pattern although the affinities of these modified inhibitors for Src TK were affected. Structural modeling of Src TK with inhibitor and peptide substrate bound indicated a direct atomic conflict between the bulky 4-position group and the hydroxy of the peptide tyrosyl to which the gamma-phosphate of ATP is transferred during the kinase reaction. This atomic conflict would likely prevent simultaneous binding of both inhibitor and peptide, consistent with the observed kinetic competitiveness of the inhibitor with peptide. The dual site inhibitors appeared to have both enhanced potency and selectivity for Src TK. One such inhibitor, 4-(4'-phenoxyanilino)-6,7-dimethoxyquinazoline, had a 15 nM potency against Src TK and was selective over receptor tyrosine kinases VEGFR2 by 88-fold and C-fms by 190-fold.  相似文献   

8.
A discovery of the huge magnesium isotope effect in enzymatic ATP synthesis provides a new insight into mechanochemistry of enzymes as the molecular machines. It has been found that the catalytic activity values of ATPase, creatine kinase and phosphoglycerate kinase are 2 to 4-fold higher once their active sites contain magnetic (25Mg) not spinless, non-magnetic (24Mg, 26Mg), magnesium cation isotopes. This clearly proves that the ATP synthesis is a spin-selective process involving Mg2+ as the electron accepting reagent. The formation of ATP takes place in an ion-radical pair resulted by two partners, ATP oxyradical and Mg+. The magnesium bivalent cation is a key player in this process, this ion transforms the protein molecule mechanics into a mere chemistry. This ion is a most critical detail of structure of the magnesium dependent phosphorylation enzymes as the mechanochemical molecular machines.  相似文献   

9.
Lithium inhibits (Li(+)) glycogen synthase kinase-3 (GSK-3) by competition for magnesium (Mg(2+)), but not ATP or substrate. Here, we show that the group II metal ion beryllium (Be(2+)) is a potent inhibitor of GSK-3 and competes for both Mg(2+) and ATP. Be(2+) also inhibits the related protein kinase cdc2 at similar potency, but not MAP kinase 2. To compare the actions of Li(+) and Be(2+) on GSK-3, we have devised a novel dual inhibition analysis. When Be(2+) and ADP are present together each interferes with the action of the other, indicating that both agents inhibit GSK-3 at the ATP binding site. In contrast, Li(+) exerts no interference with ADP inhibition or vice versa. We find, however, that Li(+) and Be(2+) do interfere with each other. These results suggest that Be(2+) competes for two distinct Mg(2+) binding sites: one is Li(+)-sensitive and the other, which is Li(+)-insensitive, binds the Mg:ATP complex.  相似文献   

10.
Transforming growth factor beta (TGF-beta) signaling pathways regulate a wide variety of cellular processes including cell proliferation, differentiation, extracellular matrix deposition, development, and apoptosis. TGF-beta type-I receptor (TbetaRI) is the major receptor that triggers several signaling events by activating downstream targets such as the Smad proteins. The intracellular kinase domain of TbetaRI is essential for its function. In this study, we have identified a short phospho-Smad peptide, pSmad3(-3), KVLTQMGSPSIRCSS(PO4)VS as a substrate of TbetaRI kinase for in vitro kinase assays. This peptide is uniquely phosphorylated by TbetaRI kinase at the C-terminal serine residue, the phosphorylation site of its parent Smad protein in vivo. Specificity analysis demonstrated that the peptide is phosphorylated by only TbetaRI and not TGF-beta type-II receptor kinase, indicating that the peptide is a physiologically relevant substrate suitable for kinetic analysis and screening of TbetaRI kinase inhibitors. Utilizing pSmad3(-3) as a substrate, we have shown that novel pyrazole compounds are potent inhibitors of TbetaRI kinase with K(i) value as low as 15 nM. Kinetic analysis revealed that these pyrazoles act through the ATP-binding site and are typical ATP competitive inhibitors with tight binding kinetics. More importantly, these compounds were shown to inhibit TGF-beta-induced Smad2 phosphorylation in vivo in NMuMg mammary epithelial cells with potency equivalent to the inhibitory activity in the in vitro kinase assay. Cellular selectivity analysis demonstrated that these pyrazoles are capable of inhibiting activin signaling but not bone morphogenic protein or platelet-derived growth factor signal transduction pathways. Further functional analysis revealed that pyrazoles are capable of blocking the TGF-beta-induced epithelial-mesenchymal transition in NMuMg cells, a process involved in the progression of cancer, fibrosis, and other human diseases. These pyrazoles provide a foundation for future development of potent and selective TbetaRI kinase inhibitors to treat human disease.  相似文献   

11.
Kinases are attractive drug targets because of the central roles they play in signal transduction pathways and human diseases. Their well-formed adenosine triphosphate (ATP)-binding pockets make ideal targets for small-molecule inhibitors. For drug discovery purposes, many peptide-based kinase assays have been developed that measure substrate phosphorylation using fluorescence-based readouts. However, for some kinases these assays may not be appropriate. In the case of the LIM kinases (LIMK), an inability to phosphorylate peptide substrates resulted in previous high-throughput screens (HTS) using radioactive labeling of recombinant cofilin protein as the readout. We describe the development of an HTS-compatible assay that measures relative ATP levels using luciferase-generated luminescence as a function of LIMK activity. The assay was inexpensive to perform, and proof-of-principle screening of kinase inhibitors demonstrated that compound potency against LIMK could be determined; ultimately, the assay was used for successful prosecution of automated HTS. Following HTS, the secondary assay format was changed to obtain more accurate measures of potency and mechanism of action using more complex (and expensive) assays. The luciferase assay nonetheless provides an inexpensive and reliable primary assay for HTS that allowed for the identification of LIMK inhibitors to initiate discovery programs for the eventual treatment of human diseases.  相似文献   

12.
Lithium inhibits glycogen synthase kinase-3 by competition for magnesium   总被引:16,自引:0,他引:16  
The mechanism by which lithium (Li(+)) inhibits the protein kinase glycogen synthase kinase-3 (GSK-3) is unknown. Here, we demonstrate that Li(+) is a competitive inhibitor of GSK-3 with respect to magnesium (Mg(2+)), but not to substrate or ATP. This mode of inhibition is conserved between mammalian and Dictyostelium GSK-3 isoforms, and is not experienced with other group I metal ions. As a consequence, the potency of Li(+) inhibition is dependent on Mg(2+) concentration. We also found that GSK-3 is sensitive to chelation of free Mg(2+) by ATP and is progressively inhibited when ATP concentrations exceed that of Mg(2+). Given the cellular concentrations of ATP and Mg(2+), our results indicate that Li(+) will have a greater effect on GSK-3 activity in vivo than expected from in vitro studies and this may be a factor relevant to its use in the treatment of depression.  相似文献   

13.
Solid-phase ELISAs for the determination of EGF receptor (EGF-R) and pp60c-src tyrosine protein kinase activity are described. The methods were developed and optimized using purified recombinant EGF-R intracellular domain (ICD) and pp60c-src tyrosine protein kinases. A standardized assay that utilizes poly (GluNa-Tyr)4:1 as substrate and a monoclonal antiphosphotyrosine antibody for detection is described. Assay conditions for both enzymes were optimized with respect to substrate and ELISA plate-coating condition, divalent metal ion preferences, enzyme concentration, apparent kinetic constants for ATP, and reaction linearity. Following standardization, a number of reference tyrosine protein kinase inhibitors were tested in the ELISAs and compared to results obtained using solution-phase radioactive tyrosine protein kinase assays, which are based on the transfer of 32P from [gamma-32P]ATP to synthetic substrate. To enable a comprehensive comparison, IC50 values obtained in the ELISA were compared with values obtained in radioactive assays using both the holo-EGF-R and EGF-R ICD kinases. No substantial qualitative differences between these assays were seen. For many routine tyrosine protein kinase assays, semiquantitative or qualitative measurement of TPK activity is adequate. For such purposes, the ELISAs would be an attractive alternative to radioactive assays.  相似文献   

14.
Rudrabhatla P  Rajasekharan R 《Biochemistry》2004,43(38):12123-12132
Serine/threonine/tyrosine (STY) protein kinase from peanut is developmentally regulated and is induced by abiotic stresses. In addition, STY protein kinase activity is regulated by tyrosine phosphorylation. Kinetic mechanism of plant dual specificity protein kinases is not studied so far. Recombinant STY protein kinase occurs as a monomer in solution as shown by gel filtration chromatography. The relative phosphorylation rate of kinase against increasing enzyme concentrations follows a first-order kinetics indicating an intramolecular phosphorylation mechanism. Moreover, the active recombinant STY protein kinase could not transphosphorylate a kinase-deficient mutant of STY protein kinase. Molecular docking studies revealed that the tyrosine kinase inhibitors bind the protein kinase at the same region as ATP. STY protein kinase activity was inhibited by the tyrosine kinase inhibitors, and the inhibitor potency series against the recombinant STY protein kinase was tyrphostin > genistein > staurosporine. The inhibition constant (K(i)), and the IC(50) value of STY protein kinase for tyrosine kinase inhibitors with ATP and histone are discussed. All the inhibitors competed with ATP. Genistein was an uncompetitive inhibitor with histone, whereas staurosporine and tyrphostin were linear mixed type noncompetitive inhibitors with histone. Molecular docking and kinetic analysis revealed that Y148F mutant of the "ATP-binding loop" and Y297F mutant of the "activation loop" showed a dramatic increase in K(i) values for genistein and tyrphostin with respect to wild-type STY protein kinase. Data presented here provide the direct evidence on the mechanism of inhibition of plant protein kinases by tyrosine kinase inhibitors. This study also suggests that tyrosine kinase inhibitors may be useful in unraveling the plant tyrosine phosphorylation signaling cascades.  相似文献   

15.
The X-ray structure of Mycobacterium tuberculosis TMP kinase at 1.95 A resolution is described as a binary complex with its natural substrate TMP. Its main features involve: (i) a clear magnesium-binding site; (ii) an alpha-helical conformation for the so-called LID region; and (iii) a high density of positive charges in the active site. There is a network of interactions involving highly conserved side-chains of the protein, the magnesium ion, a sulphate ion mimicking the beta phosphate group of ATP and the TMP molecule itself. All these interactions conspire in stabilizing what appears to be the closed form of the enzyme. A complete multialignment of all (32) known sequences of TMP kinases is presented. Subtle differences in the TMP binding site were noted, as compared to the Escherichia coli, yeast and human enzyme structures, which have been reported recently. These differences could be used to design specific inhibitors of this essential enzyme of nucleotide metabolism. Two cases of compensatory mutations were detected in the TMP binding site of eukaryotic and prokaryotic enzymes. In addition, an intriguing high value of the electric field is reported in the vicinity of the phosphate group of TMP and the putative binding site of the gamma phosphate group of ATP.  相似文献   

16.
With the success of protein kinase inhibitors as drugs to target cancer, there is a continued need for new kinase inhibitor scaffolds. We have investigated the synthesis and kinase inhibition of new heteroaryl-substituted diazaspirocyclic compounds that mimic ATP. Versatile syntheses of substituted diazaspirocycles through ring-closing metathesis were demonstrated. Diazaspirocycles directly linked to heteroaromatic hinge binder groups provided ligand efficient inhibitors of multiple kinases, suitable as starting points for further optimization. The binding modes of representative diazaspirocyclic motifs were confirmed by protein crystallography. Selectivity profiles were influenced by the hinge binder group and the interactions of basic nitrogen atoms in the scaffold with acidic side-chains of residues in the ATP pocket. The introduction of more complex substitution to the diazaspirocycles increased potency and varied the selectivity profiles of these initial hits through engagement of the P-loop and changes to the spirocycle conformation, demonstrating the potential of these core scaffolds for future application to kinase inhibitor discovery.  相似文献   

17.
The effects of various ions commonly found in protein kinase assays upon the rate of histone phosphorylation catalyzed by the highly purified bovine brain enzyme, protein kinase I, have been investigated. Sodium, potassium, and magnesium were found to inhibit histone phosphorylation by protein kinase I in a similar manner. The degree of inhibition by any of these cations was demonstrated to be directly proportional to the square root of the ionic strength of the assay medium. The relationship between the ionic strength of the assay medium and the rate of histone phosphorylation catalyzed by protein kinase I was employed to correct the rate of histone phosphorylation at various magnesium acetate concentrations to a standard ionic strength. When this was done an analysis of the previously postulated rate law for histone phosphorylation c atalyzed by protein kinase I gave a binding constant for the magnesium-ATP complex which was in agreement with that expected for this complex on the basis of various binding constants available in the literature. These results demonstrate that it is unnecessary to postulate a specific ion inhibition process for protein kinase I by the ions employed in this study. They also support the reasonable assumption that magnesium ion binds to ATP at or prior to the rate-determining step in histone phosphorylation catalyzed by protein kinase I. The expression developed in this paper for the effect of ionic strength upon protein kinase I activity can now be used to correct activity measurements made under various assay conditions to a standard assay state, allowing facile comparisons of kinetic data. It should be possible to develop similar expressions for other protein kinases and substrates to permit useful interpretation of kinetic data.  相似文献   

18.
In order to understand better the structural and functional relations between protein kinase CK2 catalytic subunit, the triphosphate moiety of ATP, the catalytic metal and the peptidic substrate, we built a structural model of Yarrowia lipolytica protein kinase CK2 catalytic subunit using the recently solved three-dimensional structure of the maize enzyme and the structure of cAMP-dependent protein kinase peptidic inhibitor (1CDK) as templates. The overall structure of the catalytic subunit is close to the structure solved by Niefind et al. It comprises two lobes, which move relative to each other. The peptide used as substrate is tightly bound to the enzyme, at specific locations. Molecular dynamic calculations in combination with the study of the structural model led us to identify amino acid residues close to the triphosphate moiety of ATP and a residue sufficiently far from the peptide that could be mutated so as to modify the specificity of the enzyme. Site-directed mutagenesis was used to replace by charged residues both glycine-48, a residue located within the glycine-rich loop, involved in binding of ATP phosphate moiety, and glycine-177, a residue close to the active site. Kinetic properties of purified wild-type and mutated subunits were studied with respect to ATP, MgCl(2) and protein kinase CK2 specific peptide substrates. The catalytic efficiency of the G48D mutant increased by factors of 4 for ATP and 17.5 for the RRRADDSDDDDD peptide. The mutant G48K had a low activity with ATP and no detectable activity with peptide substrates and was also inhibited by magnesium. An increased velocity of ADP release by G48D and the building of an electrostatic barrier between ATP and the peptidic substrate in G48K could explain these results. The kinetic properties of the mutant G177K with ATP were not affected, but the catalytic efficiency for the RRRADDSDDDDD substrate increased sixfold. Lysine 177 could interact with the lysine-rich cluster involved in the specificity of protein kinase CK2 towards acidic substrate, thereby increasing its activity.  相似文献   

19.
Protein kinases are recognized as important drug targets due to the pivotal roles they play in human disease. Many kinase inhibitors are ATP competitive, leading to potential problems with poor selectivity and significant loss of potency in vivo due to cellular ATP concentrations being much higher than K(m). Consequently, there has been growing interest in the development of ATP-noncompetitive inhibitors to overcome these problems. There are challenges to identifying ATP-noncompetitive inhibitors from compound library screens because ATP-noncompetitive inhibitors are often weaker and commonly excluded by potency-based hit selection criteria in favor of abundant and highly potent ATP-competitive inhibitors in screening libraries. Here we report the development of a time-resolved fluorescence resonance energy transfer (TR-FRET) assay for protein kinase cyclin-dependent kinase 4 (CDK4) and the identification of ATP-noncompetitive inhibitors by high-throughput screening after employing a strategy to favor this type of inhibitors. We also present kinetic characterization that is consistent with the proposed mode of inhibition.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号