首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We aimed to provide a systematic evaluation of magnetic field (MF) exposure of staff working in the offices located above or close to transformer stations (TS) and electric enclosures (EE). Occupational short-term "spot" measurements with Narda EFA-300 and isotropic magnetic field probe were carried out in two National Banks and one Industrial Company having more than 500 employees. Extremely low-frequency (ELF) MFs up to several tens of μT were measured in the mentioned working environments. 25% of the measured MFs were found less than 0.3?μT, the background exposure level that staff receive at home, 75% were above 0.3?μT with the highest value of 6.8?μT. The mean and median personal exposures were calculated to be 1.19?μT and 0.56?μT, respectively. Most of the staff (83%) is under risk based on epidemiological studies that reported a statistically significant association between risk of leukemia and averaged magnetic fields of 0.2?μT or over. Results showed that risk evaluation should be considered to minimize the possibility of the workers being harmed due to exposure to work-related electromagnetic sources.  相似文献   

2.
A series of epidemiological studies have indicated associations between exposure to magnetic fields (MFs) and a variety of cancers, including breast cancer. In order to test the possibility that MF acts as a cancer promoter or copromoter, four separate experiments have been conducted in rats in which the effects of chronic exposure to MFs on the development of mammary tumors induced by 7,12-dimethylbenz(a)anthracene (DMBA) were determined. Female rats were exposed in magnetic coils for 91 days (24 h/day) to either alternating current (AC; 50 Hz)-MF or direct current (DC)-MF. Magnetic flux density of the DC-MF was 15 mT. Two AC-MF exposures used a homogeneous field with a flux density of 30 mT (rms); one used a gradient field with flux density ranging from 0.3–1 μT. DMBA (5 mg) was administered orally at the onset of MF exposure and was repeated thrice at intervals of 1 week. In each experiment, 18–36 animals were exposed in 6 magnetic coils. The same number of rats were used as sham-exposed control. These control animals were treated with DMBA and were placed in dummy coils in the same room as the MF-exposed rats. Furthermore, groups of age-matched rats (reference controls) were treated with DMBA but housed in another room to exclude any MF exposure due to the magnetic stray field from the MF produced by coils. At the end of the exposure or sham-exposure period, tumor number and weight or size of tumors were determined at necropsy. Results were as follows: In sham-exposed animals or reference controls, the tumor incidence varied between 50 and 78% in the 4 experiments. The average number of mammary tumors per tumor-bearing animal varied between 1.6 and 2.9. In none of the experiments did MFs significantly alter tumor incidence, but in one of the experiments with AC-MF exposure at 30 mT, the number of tumors per tumor-bearing animal was significantly increased. Furthermore, exposure to a DC-MF at 15 mT significantly enhanced the tumor weight. Exposure to a gradient AC-MF at 0.3–1 μT exerted no significant effects. These experiments seem to indicate that MFs at high flux densities may act as a promoter or copromoter of breast cancer. However, this interpretation must be considered only a tentative conclusion because of the limitations of this study, particularly the small sample size used for MF exposure and the lack of repetition of data. © 1993 Wiley-Liss. Inc.  相似文献   

3.
We present a hypothesis that the risk of childhood leukemia is related to exposure to specific combinations of static and extremely-low-frequency (ELF) magnetic fields. Laboratory data from calcium efflux and diatom mobility experiments were used with the gyromagnetic equation to predict combinations of 60 Hz and static magnetic fields hypothesized to enhance leukemia risk. The laboratory data predicted 19 bands of the static field magnitude with a bandwidth of 9.1 μT that, together with 60 Hz magnetic fields, are expected to have biological activity. We then assessed the association between this exposure metric and childhood leukemia using data from a case-control study in Los Angeles County. ELF and static magnetic fields were measured in the bedrooms of 124 cases determined from a tumor registry and 99 controls drawn from friends and random digit dialing. Among these subjects, 26 cases and 20 controls were exposed to static magnetic fields lying in the predicted bands of biological activity centered at 38.0 μT and 50.6 μT. Although no association was found for childhood leukemia in relation to measured ELF or static magnetic fields alone, an increasing trend of leukemia risk with measured ELF fields was found for subjects within these static field bands (P for trend = 0.041). The odds ratio (OR) was 3.3 [95% confidence interval (CI) = 0.4–30.5] for subjects exposed to static fields within the derived bands and to ELF magnetic field above 0.30 μT (compared to subjects exposed to static fields outside the bands and ELF magnetic fields below 0.07 μT). When the 60 Hz magnetic fields were assessed according to the Wertheimer-Leeper code for wiring configurations, leukemia risks were again greater with the hypothesized exposure conditions (OR = 9.2 for very high current configurations within the static field bands: 95% CI = 1.3–64.6). Although the risk estimates are based on limited magnetic field measurements for a small number of subjects, these findings suggest that the risk of childhood leukemia may be related to the combined effects of the static and ELF magnetic fields. Further tests of the hypothesis are proposed. © 1995 Wiley-Liss, Inc.  相似文献   

4.
It is important to study the relationship between extremely low-frequency magnetic fields (ELF-MFs) and childhood leukemia, particularly in locations with a high incidence of this neoplasm in children and an elevated exposure to ELF-MF, such as Mexico City. The aim was to investigate the association between ELF-MF exposure and the risk of B-lineage acute lymphoblastic leukemia (B-ALL). A case–control study was conducted in Mexico City during the period from 2010 to 2011. Residential 24-h ELF-MF measurements were obtained for 290 incident B-ALL patients and 407 controls, aged less than 16 years. Controls were frequency-matched by sex, age (±18 months), and health institution. The adjusted odds ratios (aOR) and 95% confidence intervals (CIs) were calculated. ELF-MF exposure at <0.2 μT was used to define the reference group. ELF-MF exposure at ≥0.3 μT was observed in 11.3% of the controls. Different ELF-MF intensity cutoff values were used to define the highest exposure category; the highest exposure category for each cutoff value was associated with an increased risk of B-ALL compared with the corresponding lower exposure categories. The aORs were as follows: ≥0.2 μT = 1.26 (95% CI: 0.84–1.89); ≥0.3 μT = 1.53 (95% CI: 0.95–2.48); ≥0.4 μT = 1.87 (95% CI: 1.04–3.35); ≥0.5 μT = 1.80 (95% CI 0.95–3.44); ≥0.6 μT = 2.32 (95% CI: 1.10–4.93). ELF-MF exposure as a continuous variable (per 0.2 μT intervals) was associated with B-ALL risk (aOR = 1.06; 95% CI: 1.01–1.12). In the present study, the proportion of children exposed to ≥0.3 μT is among the highest reported worldwide. Additionally, an ELF-MF exposure ≥0.4 μT may be associated with the risk of B-ALL. Bioelectromagnetics. © 2020 Bioelectromagnetics Society  相似文献   

5.
6.
Two separate, independent experiments were conducted to evaluate the effect of 60 Hz linearly polarized, sinusoidal, continuous-wave magnetic fields (MFs) on immune system performances in rats born and raised under these fields. Each experiment lasted for 6 weeks. A total of 96 animals, divided into groups of eight animals each, was exposed for 20 h/day to MFs of different intensities, i.e., sham (<0.02 μT) and 2, 20, 200, and 2000 μT. Another group of animals, which was housed in a separate room, served as cage controls (CC). These animals were exposed to ambient MFs of <0.02 μT. The following immune responses were evaluated in both experiments: total T and B cells; CD4+ and CD8+ subpopulation and natural killer (NK) cell activity in splenic lymphocytes; hydrogen peroxide (H2O2), nitrous oxide (NO), and tumor necrosis factor (TNF) production by peritoneal macrophages. Our results show that a 6 week exposure to MFs induced a significant decrease in the number of CD5+, CD4+, and CD8+ populations. These changes were even more significant in rats that were exposed to fields of 2000 μT. A lower, although significant, decrease in the CD5+ population was also observed in animals that were exposed to fields of 200 μT. Linear regression analysis demonstrated a dose effect with MF intensity. B lymphocyte (Ig+ cell) populations also showed a 12% decrease (P < .05) in the groups that were exposed to fields of 20 and 200 μT. However, these results were not significant, and no relation with MF intensities could be demonstrated. In contrast, evaluation of splenic NK cell activity revealed a 50% increase (P < .05) in animals that were exposed to fields of 2000 μT. No significant results were obtained from the evaluation of TNF activity and NO secretion in peritoneal macrophages. Phorbol 12-myristate 13-acetate (PMA)-stimulated and net H2O2 productions for a minor subpopulation of peritoneal cells showed positive dose-response correlations by linear regression analysis. Taken together, our results suggest that an in vivo exposure of rats for 6 weeks to 60 Hz MFs can induce significant immunological perturbations on effector cells of both natural and adaptive immunity in a dose-dependent fashion. © 1996 Wiley-Liss, Inc.  相似文献   

7.
Measurements of the flux density and spectra of magnetic fields (MFs) generated by several types of electric bed heaters (EBH) were made in order to characterize the MFs to which the fetus may be exposed in utero from the mother's use of these devices. Data on MFs were gathered from more than 1,300 in-home and laboratory spot measurements. In-home measurements taken at seven different positions 10 cm from the EBHs determined that the mean flux density at the estimated position of the fetus relative to the device was 0.45 μT (4.5 mG) for electric blankets and 0.20 μT (2.0 mG) for electrically heated water beds. A rate-of-change (RC) metric applied to the nighttime segment of 24 h EMDEX-C personal-dosimeter measurements, which were taken next to the bed of volunteers, yielded an approximate fourfold to sixfold higher value for electric blanket users compared to water-bed heater users. These same data records yielded an approximate twofold difference for the same measurements when evaluated by the time-weighted-average (TWA) MF exposure metric. Performance of exposure meters was checked against standard fields generated in the laboratory, and studies of sources of variance in the in-home measurement protocols were carried out. Spectral measurements showed that the EBH's measured produced no appreciable high-frequency MFs. Data gathered during this work will be used in interpreting results from a component of the California Pregnancy Outcome Study, which evaluates the use of EBHs as a possible risk factor in miscarriage. © 1996 Wiley-Liss, Inc.  相似文献   

8.
Previous investigations of exposure to electric, magnetic, or electromagnetic fields (EMF) in households were either about electricity supply EMFs or radio frequency EMFs (RF‐EMFs). We report results from spot measurements at the bedside that comprise electrostatic fields, extremely low‐frequency electric fields (ELF‐EFs), extremely low‐frequency magnetic fields (ELF‐MFs), and RF‐EMFs. Measurements were taken in 226 households throughout Lower Austria. In addition, effects of simple reduction measures (e.g., removal of clock radios or increasing their distance from the bed, turning off Digital Enhanced Cordless Telecommunication (DECT) telephone base stations) were assessed. All measurements were well below International Commission on Non‐Ionizing Radiation Protection (ICNIRP) guideline levels. Average night‐time ELF‐MFs (long‐term measurement from 10 pm to 6 am, geometric mean over households) above 100 nT were obtained in 2.3%, and RF‐EMFs above 1000 µW/m2 in 7.1% of households. Highest ELF‐EFs were primarily due to lamps beside the bed (max = 166 V/m), and highest ELF‐MFs because of transformers of devices (max = 1030 nT) or high current of power lines (max = 380 nT). The highest values of RF‐EMFs were caused by DECT telephone base stations (max = 28979 µW/m2) and mobile phone base stations (max = 4872 µW/m2). Simple reduction measures resulted in an average decrease of 23 nT for ELF‐MFs, 23 V/m for ELF‐EFs, and 246 µW/m2 for RF‐EMFs. A small but statistically significant correlation between ELF‐MF exposure and overall RF‐EMF levels of R = 0.16 (P = 0.008) was computed that was independent of type (flat, single family) and location (urban, rural) of houses. Bioelectromagnetics 31:200–208, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

9.
In a specific case, the magnetic field generated in a building by a nearby power line is usually easy to calculate, although the accuracy of these calculations is sensitive to the quality of source information. To be able to study public health dimensions of magnetic field exposure (e.g., risk of cancer), it is necessary to evaluate the size and exposure of the population at risk. Relatively little quantitative information on public exposure to power-frequency magnetic fields of high-voltage power lines is available. This report describes residential exposure to magnetic fields from 110 kV, 220 kV, and 400 kV power lines in Finland at the national level, including 90% of the total line length in 1989. A geographical information system (GIS) was used to identify the buildings located near the power lines. After determining the distances between the lines and the buildings, historical data on load currents of these lines were used to calculate the magnetic fields. The residential magnetic field histories were then linked to the residents by means of a computerized central population register. The data obtained on personal exposure have also been utilized in a nationwide epidemiological study on magnetic field exposure of power lines and risk of cancer. The methods of exposure assessment and results of the number of buildings near 110 kV, 220 kV, and 400 kV power lines, their average annual magnetic fields, and personal exposure to magnetic fields from these lines are described. We found that 15,600 residents lived in an average residential magnetic field ≥0.1 μT caused by power lines in 1989. The number of these residents increased fivefold during 1970-1989. We estimated that 0.3% of the population was exposed in their residences to an annual average magnetic flux density from 110 kV, 220 kV, and 400 kV power lines higher than 0.1 μT, the level that the background magnetic flux density in general does not exceed in Finnish homes. Thus, the problem of magnetic field exposure generated by high-voltage lines concerns only a relatively small fraction of the total population in Finland. However, the size and exposure of the population at risk remain somewhat arbitrary in practical multisource situations, as the biological interaction mechanism, the concept of harmful dose, and, in particular, the significance of the duration of exposure are unknown. © 1995 Wiley-Liss, Inc.  相似文献   

10.
Effects of alternating magnetic fields (MFs) on the embryonic and fetal development in CBA/Ca mice were studied. Mated females were exposed continuously to a sinusoidal 50 Hz (13 μT or 0.13 mT root mean square) or a sawtooth 20 kHz (15 μT peak-to-peak) MF from day 0 to day 18 of pregnancy for 24 h/day until necropsied on day 18. Control animals were kept under the same conditions without the MF. MFs did not cause maternal toxicity. No adverse effects were seen in maternal hematology and the frequency of micronuclei in maternal bone marrow erythrocytes did not change. The MFs did not increase the number of resorptions or fetuses with major or minor malformations in any exposure group. The mean number of implantations and living fetuses per litter were similar in all groups. The corrected weight gain (weight gain without uterine content) of dams, pregnancy rates, incidences of resorptions and late fetal deaths, and fetal body weights were similar in all groups. There was, however, a statistically significant increase in the incidence of fetuses with at least three skeletal variations in all groups exposed to MFs. In conclusion, the 50 Hz or 20 kHz MFs did not increase incidences of malformations or resorptions in CBA/Ca mice, but increased skeletal variations consistently in all exposure groups. Bioelectromagnetics 19:477–485, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

11.
Epidemiological studies suggest that exposure to power frequency magnetic fields may be a risk factor for breast cancer in humans. To study the relationship between exposure to 60-Hz magnetic fields (MFs) and breast cancer, cell cycle distribution, apoptosis, and the expression of related proteins (p21, Bax, and Bcl-2) were determined in MCF-7 cells following exposure to magnetic fields (60 Hz, 5 mT) alone or in combination with X rays. It was found that exposure of MCF-7 cells to 60-Hz MFs for 4, 8, and 24 h had no effect on cell cycle distribution. Furthermore, 60-Hz MFs failed to affect cell growth arrest and p21 expression induced by X rays (4 Gy). Similarly, 60-Hz MFs did not induce apoptosis or the expression of Bax and Bcl-2, two proteins related to apoptosis. However, exposure of cells to 60-Hz MFs for 24 h after irradiation by X rays (12 Gy) significantly decreased apoptosis and Bax expression but increased Bcl-2 expression. The effects of exposure to 60-Hz MFs on X-ray-induced apoptosis and Bax and Bcl-2 expressions were not observed at 72 h. These data suggest that exposure to 60-Hz MFs has no effects on the growth of MCF-7 cells, but it might transiently suppress X-ray-induced apoptosis through increasing the Bcl-2/Bax ratio.  相似文献   

12.
To provide possible laboratory support to health risk evaluation associated with long-term, low-intensity magnetic field exposure, 256 male albino rats and an equal number of control animals (initial age 12 weeks) were exposed 22 h/day to a 50 Hz magnetic flux density of 5 μmT for 32 weeks (a total of about 5000 h). Hematology was studied from blood samples before exposure to the field and at 12 week intervals. Morphology and histology of liver, heart, mesenteric lymph nodes, and testes as well as brain neurotransmitters were assessed at the end of the exposure period. In two identical sets of experiments, no significant differences in the investigated variables were found between exposed and sham-exposed animals. It is concluded that continuous exposure to a 50 Hz magnetic field of 5 μT from week 12 to week 44, which makes up ?70% of the life span of the rat before sacrifice, does not cause changes in growth rate, in the morphology and histology of liver, heart, mesenteric lymph nodes, testes, and bone marrow, in hematology and hematochemistry, or in the neurotransmitters dopamine and serotonin. © 1995 Wiley-Liss, Inc.  相似文献   

13.
This study assessed exposure to extremely low frequency (ELF) magnetic fields of welders and other metal workers and compared exposure from different welding processes. Exposure to ELF magnetic fields was measured for 50 workers selected from a nationwide cohort of metal workers and 15 nonrandomly selected full-time welders in a shipyard. The measurements were carried out with personal exposure meters during 3 days of work for the metal workers and 1 day of work for the shipyard welders. To record a large dynamic range of ELF magnetic field values, the measurements were carried out with “high/low” pairs of personal exposure meters. Additional measurements of static magnetic fields at fixed positions close to welding installations were done with a Hall-effect fluxmeter. The total time of measurement was 1273 hours. The metal workers reported welding activity for 5.8% of the time, and the median of the work-period mean exposure to ELF magnetic fields was 0.18 μT. DC metal inert or active gas welding (MIG/MAG) was used 80% of the time for welding, and AC manual metal arc welding (MMA) was used 10% of the time. The shipyard welders reported welding activity for 56% of the time, and the median and maximum of the workday mean exposure to ELF magnetic fields was 4.70 and 27.5 μT, respectively. For full-shift welders the average workday mean was 21.2 μT for MMA welders and 2.3 μT for MIG/MAG welders. The average exposure during the effective time of welding was estimated to be 65 μT for the MMA welding process and 7 μT for the MIG/MAG welding process. The time of exposure above 1 μT was found to be a useful measure of the effective time of welding. Large differences in exposure to ELF magnetic fields were found between different groups of welders, depending on the welding process and effective time of welding. MMA (AC) welding caused roughly 10 times higher exposure to ELF magnetic fields compared with MIG/MAG (DC) welding. The measurements of static fields suggest that the combined exposure to static and ELF fields of MIG/MAG (DC) welders and the exposure to ELF fields of MMA (AC) welders are roughly of the same level. Bioelectromagnetics 18:470–477, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

14.
Given the current interest in potential carcinogenic and developmental effects of exposure to extremely-low-frequency electromagnetic fields, there is a need to identify cohorts of exposed female workers for future epidemiologic investigations. This study was designed to test the hypothesis that nurses working in neonatal intensive care units (NICU) may be significantly exposed to power-frequency magnetic fields. An electromagnetic field monitor was used to measure magnetic fields at distances of 5, 15, 30, and 60 cm from the surfaces of each device used in the NICU. Six female nurses assigned to the NICU (the “exposed” group) and six female nurses working in the normal newborn nursery (the “referent” group) wore EMDEX dosimeters for the entire duration of their 12 h shifts. An investigator kept a detailed log of each NICU subject's whereabouts for the first one-third of her shift. Magnetic fields at 5 cm from the front (defined by the nurses' usual work area) of the NICU devices ranged from less than 0.1 to 114 μT and in all cases decreased considerably with increasing distance. The geometric mean of the shift-time-weighted average exposure of the NICU nurses was 0.17 μT compared with 0.11 μT for the normal newborn nurses. The percentage of time when subjects were exposed to magnetic fields of 0.4 μT or greater ranged from 5.8% to 15.6% for the NICU nurses, 0.4% to 2.9% for five of the comparison group nurses, and was 9.4% for one of the normal newborn nurses with unidentified aberrantly high exposures. Log data revealed that the vast majority of observed peaks among NICU nurses occurred while subjects were in close proximity to infant bed units. We conclude that NICU nurses represent one female-intensive job sector with intermittent high exposures to ELF magnetic fields and encourage larger exposure studies of nurses in a variety of medical settings. © 1994 Wiley-Liss, Inc.  相似文献   

15.
Advances in magnetic resonance imaging are driving the development of higher-resolution machines equipped with high-strength static magnetic fields (MFs). The behavioral effects of high-strength MFs are largely uncharacterized, although in male rats, exposure to 7 T or above induces locomotor circling and leads to a conditioned taste avoidance (CTA) if paired with a novel taste. Here, the effects of MFs on male and female rats were compared to determine whether there are sex differences in behavioral responses and whether these can be explained by ovarian steroid status. Rats were given 10-min access to a novel saccharin solution and then restrained within a 14-T magnet for 30 min. Locomotor activity after exposure was scored for circling and rearing. CTA extinction was measured with two-bottle preference tests. In experiment 1, males were compared with females across the estrous cycle after a single MF exposure. Females circled more and acquired a more persistent CTA than males; circling was highest on the day of estrus. In experiment 2, the effects of three MF exposures were compared among intact rats, ovariectomized females, and ovariectomized females with steroid replacement. Compared with intact rats, ovariectomy increased circling; estrogen replacement blocked the increase. Males acquired a stronger initial CTA but extinguished faster than intact or ovariectomized females. Thus the locomotor circling induced by MF exposure was increased in females and modulated by ovarian steroids across the estrous cycle and by hormone replacement. Furthermore, female rats acquired a more persistent CTA than male rats, which was not dependent on estrous phase or endogenous ovarian steroids.  相似文献   

16.
In Hungary it is typical that 10/04 kV transformer stations are being installed in multistory residential and office buildings. Magnetic fields (MFs) up to several tens of microT have been measured in apartments close to transformers. The aim of the present study was to provide systematic assessment of MF exposure of residents living above transformer stations. Out of 41 addresses provided by the electricity supplier, current load of 21 transformers and MF in 21 apartments was measured. Spot MFs at 1 m height and time weighted average 24 h MF exposure at bed height was measured. All-day personal MF exposure was measured at waist and HOME exposure was calculated. BED exposure was measured at bed height. Participants kept a time-activity diary. The time-weighted average 24 h MF exposure (3.03 microT) exceeded the usual residential exposure (<0.2 microT). The mean HOME and BED personal exposure above transformers was 0.825 and 1.033 microT, respectively. Our study provides exposure assessment of a cohort with a wider exposure range, compared to power-line epidemiological studies.  相似文献   

17.
The present study was conducted to investigate the possible effect of 60 Hz circularly polarized magnetic fields (MFs) as promoters of genetically initiated lymphoma in AKR mice. One hundred sixty female animals were divided into four different groups. They were exposed to four different intensities of circularly polarized MFs. Animals received exposure to 60 Hz circularly polarized MF at field strengths (rms‐value) of 0 µT (sham control, T1, Group I), 5 µT(T2, Group II), 83.3 µT (T3, Group III), or 500 µT(T4, Group IV), for 21 h/day from the age of 4–6 weeks to the age of 44–46 weeks. There were no exposure‐related changes in mean survival time, clinical signs, body weights, hematological values, micronucleus assay, gene expression arrays, analysis of apoptosis, and necropsy findings. At histopathological examination, lymphoma was seen in all the groups. The tumor incidence was 31/40(78%), 30/40(75%), 32/40(80%), and 31/40(78%) in sham control, 5, 83.3, and 500 µT groups, respectively. However, there were no differences in the tumor incidence between the sham control (T1) and circularly polarized MF exposure groups (T2–T4). In conclusion, there was no evidence that exposure to 60 Hz circularly polarized MF strengths up to 500 µT promoted lymphoma in AKR mice. Bioelectromagnetics 31:130–139, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

18.
ABSTRACT

Chromogranin A (CgA), which is a major protein in adrenal chromaffin cells and adrenergic neurons, is a clinically relevant endocrine and neuroendocrine tumor marker including pheochromocytomas, neuroblastomas, and related neurogenic tumors. In this study, we looked at the effect in humans of chronic daily exposure to a 50-Hz magnetic field. We examined in 15 men (38.0 ± 0.9 years) the effects of chronic daily exposure to a 50-Hz magnetic field for 1–20 yrs both at home and at work. EMDEX II dosimeters were used to record magnetic field all day long every 30 s. for 1 week. The weekly geometric mean of the individual exposures ranged from 0.1 to 2.6 μT. Blood samples were taken hourly between 20:00 h and 08:00 h. CgA patterns of exposed subjects were compared to age-matched controls. The results of exposed subjects were compared with those for 15 unexposed men who served as controls and whose individual exposure was ten times lower ranging from 0.004 to 0.092 μT. This work shows that in the control group the serum CgA levels exhibited a nighttime peak with a progressive decline of the serum concentrations and a nadir in the morning. Both the profile and the serum concentrations of CgA, a marker of neuroendocrine tumors and stress, did not appear to be impaired in the subjects chronically exposed over a long period (up to 20 yrs) to magnetic fields though a trend toward lower levels were found at the highest exposure (>0.3 μT). This does not rule out, however, that the potential deleterious risk of ELF-EMF on frail populations such as children and the elderly may be greater at low exposure and should hence be documented, at least for their residential exposure.  相似文献   

19.
Power-frequency electric and magnetic fields are known to exhibit marked temporal variation, yet in the absence of clear biological indications, the most appropriate summary indices for use in epidemiologic studies are unknown. In order to assess the statistical patterns among candidate indices, data on 4383 worker-days for magnetic fields and 2082 worker-days for electric fields collected for the Electric and Magnetic Field Project for Electric Utilities using the EMDEX meter [Bracken (1990): Palo Alto, CA: Electric Power Research Institute] were analyzed. We examined correlations at the individual and job title group levels among indices of exposure to both electric and magnetic fields, including the arithmetic mean, geometric mean, median, 20th and 90th percentiles, time above lower cutoffs of 20 V/m and 0.2 μT, and time above higher cutoffs of 100 V/m and 2.0 μT. For both electric and magnetic fields, the arithmetic mean was highly correlated with the 90th percentile; moderately correlated with the geometric mean, median, and lower and higher cutoff scores; and weakly correlated with the 20th percentile. Electric and magnetic field indices were generally weakly correlated with one another. Rank-order correlation coefficients were consistently greater than product-moment correlation coefficients. Job title group summary scores showed higher correlations among electric field indices and magnetic field indices and between electric and magnetic field indices than was found for individual worker-days, with only the 20th percentile clearly independent of the others. These results suggest that individuals' exposures are adequately characterized by a measure of central tendency for electric and magnetic fields, such as the arithmetic or geometric mean, and an indicator of a lower threshold or cutoff for each field type, such as the 20th percentile or proportion of time above 20 V/m or 0.2 μT. A single measure of central tendency for each type of field appears to be adequate when exposures are assessed at the job title level. © 1994 Wiley-Liss, Inc.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号