首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The commonly used beverage and psychostimulant caffeine is known to inhibit human acetylcholinesterase enzyme. This pharmacological activity of caffeine is partly responsible for its cognition enhancing properties. However, the exact mechanisms of its binding to human cholinesterases (acetyl and butyrylcholinesterase; hAChE and hBuChE) are not well known. In this study, we investigated the cholinesterase inhibition by the xanthine derivatives caffeine, pentoxifylline, and propentofylline. Among them, propentofylline was the most potent AChE inhibitor (hAChE IC50 = 6.40 μM). The hAChE inhibitory potency was of the order: caffeine (hAChE IC50 = 7.25 μM) < pentoxifylline (hAChE IC50 = 6.60 μM) ? propentofylline (hAChE IC50 = 6.40 μM). These compounds were less potent relative to the reference agent donepezil (hAChE IC50 = 0.04 μM). Moreover, they all exhibited selective inhibition of hAChE with no inhibition of hBuChE (IC50 > 50 μM) relative to the reference agent donepezil (hBuChE IC50 = 13.60 μM). Molecular modeling investigations indicate that caffeine binds primarily in the catalytic site (Ser203, Glu334 and His447) region of hAChE whereas pentoxifylline and propentofylline are able to bind to both the catalytic site and peripheral anionic site due to their increased bulk/size, thereby exhibiting superior AChE inhibition relative to caffeine. In contrast, their lack of hBuChE inhibition is due to a larger binding site and lack of key aromatic amino acids. In summary, our study has important implications in the development of novel caffeine derivatives as selective AChE inhibitors with potential application as cognitive enhancers and to treat various forms of dementia.  相似文献   

2.
A series of novel 2-aminobenzimidazole derivatives were synthesized under microwave irradiation. Their biological activities were evaluated on acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE). A number of the 2-aminobenzimidazole derivatives showed good inhibitory activities to AChE and BuChE. Among them, compounds 9, 12 and 13 were found to be >25-fold more selective for BuChE than AChE. No evidence of cytotoxicity was observed by MTT assay in PC12 cells or HepG2 cells exposed to 100 μM of the compounds. Molecular modeling studies indicate that the benzimidazole moiety of compounds 9, 12 and 13 forms a face-to-face π–π stacking interaction in a ‘sandwich’ form with the indole ring of Trp82 (4.09 Å) in the active gorge, and compounds 12 and 13 form a hydrogen bond with His438 at the catalytic site of BuChE. In addition, compounds 12 and 13 fit well into the hydrophobic pocket formed by Ala328, Trp430 and Tyr332 of BuChE. Our data suggest the 2-aminobenzimidazole drugs as promising new selective inhibitors for AChE and BuChE, potentially useful to treat neurodegenerative diseases.  相似文献   

3.
A series of new biphenyl bis-sulfonamide derivatives 2a3p were synthesized in good to excellent yield (76–98%). The inhibitory potential of the synthesized compounds on acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) was investigated. Most of the screened compounds showed modest in vitro inhibition for both AChE and BChE. Compared to the reference compound eserine (IC50 0.04 ± 0.0001 μM for AChE) and (IC50 0.85 ± 0.0001 μM for BChE), the IC50 values of these compounds were ranged from 2.27 ± 0.01 to 123.11 ± 0.04 μM for AChE and 7.74 ± 0.07 to <400 μM for BuChE. Among the tested compounds, 3p was found to be the most potent against AChE (IC50 2.27 ± 0.01 μM), whereas 3g exhibited the highest inhibition for BChE (IC50 7.74 ± 0.07 μM). Structure–activity relationship (SAR) of these compounds was developed and elaborated with the help of molecular docking studies.  相似文献   

4.
AChE and BuChE are druggable targets for the discovery of anti-Alzheimer’s disease drugs, while dual-inhibition of these two targets seems to be more effective. In this study, we synthesised a series of novel isoflavone derivatives based on our hit compound G from in silico high-throughput screening and then tested their activities by in vitro AChE and BuChE bioassays. Most of the isoflavone derivatives displayed moderate inhibition against both AChE and BuChE. Among them, compound 16 was identified as a potent AChE/BuChE dual-targeted inhibitor (IC50: 4.60?μM for AChE; 5.92?μM for BuChE). Molecular modelling study indicated compound 16 may possess better pharmacokinetic properties, e.g. absorption, blood–brain barrier penetration and CYP2D6 binding. Taken together, our study has identified compound 16 as an excellent lead compound for the treatment of Alzheimer’s disease.  相似文献   

5.
In a search for novel multifunctional anti-Alzheimer agents, a congeneric set of seventeen flavone-8-acrylamide derivatives (8a─q) were synthesized and evaluated for their cholinesterase inhibitory, antioxidant, neuroprotective and modulation of Aβ aggregation activities. The target compounds showed effective and selective inhibitory activity against the AChE over BuChE. In addition, the target compounds also showed moderate anti-oxidant activity and strong neuroprotective capacities, and accelerated dosage-dependently the Aβ aggregation. Also, we presented here a complete study on the interaction of 8a, 8d, 8e, 8h and 8i with AChE. Through fluorescence emission studies, the binding sites number found to be 1, binding constants were calculated as 2.04 × 104, 2.22 × 104, 1.18 × 104, 9.8 × 103 and 3.2 × 104 M−1 and free energy change as −5.83, −5.91, −5.51, −5.41 and −6.12 kcal M−1 at 25 °C which were well agreed with the computational calculations indicating a strong binding affinity of flavones and AChE. Furthermore, the CD studies revealed that the secondary structure of AChE became partly unfolded upon binding with 8a, 8d, 8e, 8h and 8i.  相似文献   

6.
Acetylcholinesterase mediates cell adhesion and neurite outgrowth through a site associated with the peripheral anionic site (PAS). Monoclonal antibodies raised to this site block cell adhesion. We have raised anti-idiotypic antibodies to one of these antibodies. The anti-idiotypic antibodies recognized the immunogenic antibody and non-specific mouse IgG, but not acetylcholinesterase. Five antibodies (out of 143 clones, an incidence of 3.5%) were able to promote neurite outgrowth in human neuroblastoma cells in vitro in a similar manner to acetylcholinesterase itself, suggesting that these antibodies carry an internal image of the neuritogenic site. Two of the antibodies were significantly more effective (P < 0.01) than acetylcholinesterase in this regard. The antibodies also bound specifically to mouse laminin-1 and human collagen IV, as does acetylcholinesterase. This binding was displaced by unlabelled antibody, as well as by acetylcholinesterase itself, indicating competition with acetylcholinesterase. We have also investigated the development of anti-anti-idiotypic antibodies in mice in vivo, and have observed that four of these (out of 318 clones, an incidence of 1.26%) mimic the idiotypic antibody and abrogate adhesion in neuroblastoma cells. We have thus demonstrated functional mimicry of the neuritogenic site on acetylcholinesterase in anti-idiotypic antibodies, enhancement of this activity in one antibody, and mimicry of the idiotypic antibody site in anti-anti-idiotypic antibodies. Implications of these findings for differentiation-promoting cancer therapy are discussed.  相似文献   

7.
The inhibitory efficacy of two substituted coumarin derivatives on the activity of neurodegenerative enzyme acetylcholinesterase (AChE) was assessed in aqueous buffer as well as in the presence of human serum albumin (HSA) and compared against standard cholinergic AD drug, Donepezil (DON). The experimental data revealed the inhibition to be of non-competitive type with both the systems showing substantial inhibitory activity on AChE. In fact, one of the tested compounds Chromenyl Coumarate (CC) was found to be better inhibitor (IC50 = 48.49 ± 5.6 nM) than the reference drug DON (IC50 = 74.13 ± 8.3 nM), unequivocally amplifying its importance. The structure of the compound was found to play a vital role in the inhibitory efficiency, validating previous Structure Activity Relationship (SAR) reviews for coumarin. The mechanism of inhibition remained impervious when the experimental medium was switched from aqueous buffer to HSA, albeit noticeable change in the inhibition potency of the compound 3, 3′- Methylene-bis (4-hydroxy coumarin) (MHC) (38%) and CC (35%). Both the coumarin derivatives were observed to bind to the peripheral anionic site (PAS) of AChE and also found to displace the fluorescence marker thioflavinT (ThT) from AChE binding pocket. All experimental observations were seconded by molecular docking and MD simulation results. The inferences drawn in this study form a foundation for further investigation on these compounds; magnifying the probability of their usage as AD drugs and re-emphasizes the significance of drug delivery media while considering the inhibition potencies of targeted drugs.  相似文献   

8.
Novel mono and bis spiropyrrolidine derivatives were synthesized via an efficient ionic liquid mediated, 1,3-dipolar cycloaddition methodology and evaluated in vitro for their AChE and BChE inhibitory activities in search for potent cholinesterase enzyme inhibitors. Most of the synthesized compounds displayed remarkable AChE inhibitory activities with IC50 values ranging from 1.68 to 21.85 μM, wherein compounds 8d and 8j were found to be most active inhibitors against AChE and BChE with IC50 values of 1.68 and 2.75 μM, respectively. Molecular modeling simulation on Torpedo californica AChE and human BChE receptors, showed good correlation between IC50 values and binding interaction template of the most active inhibitors docked into the active site of their relevant enzymes.  相似文献   

9.
Analogs of pralidoxime, which is a commercial antidote for intoxication from neurotoxic organophosphorus compounds, were designed, synthesized, characterized, and tested as potential inhibitors or reactivators of acetylcholinesterase (AChE) using the Ellman’s test, nuclear magnetic resonance, and molecular modeling. These analogs include 1-methylpyridine-2-carboxaldehyde hydrazone, 1-methylpyridine-2-carboxaldehyde guanylhydrazone, and six other guanylhydrazones obtained from different benzaldehydes. The results indicate that all compounds are weak AChE reactivators but relatively good AChE inhibitors. The most effective AChE inhibitor discovered was the guanylhydrazone derived from 2,4-dinitrobenzaldehyde and was compared with tacrine, displaying similar activity to this reference material. These results indicate that guanylhydrazones as well as future similar derivatives may function as drugs for the treatment of Alzheimer's disease.  相似文献   

10.
A series of novel chalcone-rivastigmine hybrids were designed, synthesized, and tested in vitro for their ability to inhibit human acetylcholinesterase and butyrylcholinesterase. Most of the target compounds showed hBChE selective activity in the micro- and submicromolar ranges. The most potent compound 3 exhibited comparable IC50 to the commercially available drug (rivastigmine). To better understand their structure activity relationships (SAR) and mechanisms of enzyme-inhibitor interactions, kinetic and molecular modeling studies including molecular docking and molecular dynamics (MD) simulations were carried out. Furthermore, compound 3 blocks the formation of reactive oxygen species (ROS) in SH-SY5Y cells and shows the required druggability and low cytotoxicity, suggesting this hybrid is a promising multifunctional drug candidate for Alzheimer’s disease (AD) treatment.  相似文献   

11.
A series of thirty (30) thiazole analogs were prepared, characterized by 1H NMR, 13C NMR and EI-MS and evaluated for Acetylcholinesterase and butyrylcholinesterase inhibitory potential. All analogs exhibited varied butyrylcholinesterase inhibitory activity with IC50 value ranging between 1.59 ± 0.01 and 389.25 ± 1.75 μM when compared with the standard eserine (IC50, 0.85 ± 0.0001 μM). Analogs 15, 7, 12, 9, 14, 1, 30 with IC50 values 1.59 ± 0.01, 1.77 ± 0.01, 6.21 ± 0.01, 7.56 ± 0.01, 8.46 ± 0.01, 14.81 ± 0.32 and 16.54 ± 0.21 μM respectively showed excellent inhibitory potential. Seven analogs 15, 20, 19, 24, 28, 30 and 25 exhibited good acetylcholinesterase inhibitory potential with IC50 values 21.3 ± 0.50, 35.3 ± 0.64, 36.6 ± 0.70, 44.81 ± 0.81, 46.36 ± 0.84, 48.2 ± 0.06 and 48.72 ± 0.91 μM respectively. All other analogs also exhibited well to moderate enzyme inhibition. The binding mode of these compounds was confirmed through molecular docking.  相似文献   

12.
A series of new 4-arylthiazole-2-amine derivatives as acetylcholinesterase inhibitors (AChEIs) were designed and synthesized, Furthermore, their inhibitory activities against acetylcholinesterase in vitro were tested by Ellman spectrophotometry, and the results of inhibitory activity test showed that most of them had a certain acetylcholinesterase inhibitory activity in vitro. Moreover, the IC50 value of compound 4f was to 0.66 μM, which was higher than that of Rivastigmine and Huperzine-A as reference compounds, and it had a weak inhibitory effect on butyrylcholinesterase. The potential binding mode of compound 4f with AChE was investigated by the molecular docking, and the results showed that 4f was strongly bound up with AChE with the optimal conformation, in addition, their binding energy reached −11.27 Kcal*mol−1. At last, in silico molecular property of the synthesized compounds were predicted by using Molinspiration online servers. It can be concluded that the lead AChEIs compound 4f presented satisfactory drug-like characteristics.  相似文献   

13.
New coumaryl-thiazole derivatives with the acetamide moiety as a linker between the alkyl chains and/or the heterocycle nucleus were synthesized and in vitro tested as acetylcholinesterase (AChE) inhibitors. 2-(diethylamino)-N-(4-(2-oxo-2H-chromen-3-yl)thiazol-2-yl)acetamide (6c, IC50 value of 43?nM) was the best AChE inhibitor with a selectivity index of 4151.16 over BuChE. Kinetic study of AChE inhibition revealed that 6c was a mixed-type inhibitor. Moreover, the result of H4IIE hepatoma cell toxicity assay for 6c showed negligible cell death. Molecular docking studies were also carried out to clarify the inhibition mode of the more active compounds. Best pose of compound 6c is positioned into the active site with the coumarin ring wedged between the residues of the CAS and catalytic triad of AChE. In addition, the coumarin ring is anchored into the gorge of the enzyme by H-bond with Tyr130.  相似文献   

14.
Here, we propose five fullerene (C60) derivatives as new drugs against Alzheimer’s disease (AD). These compounds were designed to act as new human acetylcholinesterase (HssAChE) inhibitors by blocking its fasciculin II (FASII) binding site. Docking and molecular dynamic results show that our proposals bind to the HssAChE tunnel entrance, forming stable complex, and further binding free energy calculations suggest that three of the derivatives proposed here could be potent HssAChE inhibitors. We found a region formed by a set of residues (Tyr72, Asp74, Trp286, Gln291, Tyr341, and Pro344) which can be further exploited in the drug design of new inhibitors of HssAChE based on C60 derivatives. Results presented here report for the first time by a new class of molecules that can become effective drugs against AD.  相似文献   

15.
Two series of novel acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitors containing benzimidazole core structure were synthesized by a four-step reaction pathway starting from 4-fluoro-3-nitrobenzoic acid as the basic compound. The structure of the novel benzimidazoles was characterized and confirmed by the elemental and mass spectral analyses as well as 1H NMR spectroscopic data. Of the 34 novel synthesized compounds, three benzimidazoles revealed AChE inhibition with IC50 < 10 μM. The highest inhibitory activity (IC50 = 5.12 μM for AChE and IC50 = 8.63 μM for BChE) corresponds to the compound 5IIc (ethyl 1-(3-(1H-imidazol-1-yl)propyl)-2-(4-nitrophenyl)-1H-benzo[d]imidazole-5-carboxylate). The relationship between lipophilicity and the chemical structures as well as their limited structure–activity relationship was discussed.  相似文献   

16.
A small library of novel spiropyrrolidine heterocyclic hybrids has been prepared regioselectively in 1-butyl-3-methylimidazoliumbromide ([bmim]Br) with good to excellent yields using a [3+2] cycloaddition reaction. These synthesized compounds were evaluated as potential agents for treating Alzheimer’s disease. Compound 4b showed the most potent activity, with an IC50 of 7.9 ± 0.25 µM against acetylcholinesterase (AChE). The inhibition mechanisms for the most active compounds on AChE and butyrylcholinesterase (BChE) receptors were elucidated using molecular docking simulations.  相似文献   

17.
To research a new non-peptidyl inhibitor of beta-site amyloid precursor protein cleaving enzyme 1, we focused on the curcumin framework, two phenolic groups combined with an sp2 carbon spacer for low-molecular and high lipophilicity. The structure–activity relationship study of curcumin derivatives is described. Our results indicate that phenolic hydroxy groups and an alkenyl spacer are important structural factors for the inhibition of beta-site amyloid precursor protein cleaving enzyme 1 and, furthermore, non-competitive inhibition of enzyme activity is anticipated from an inhibitory kinetics experiment and docking simulation.  相似文献   

18.
The peripheral anionic site (PAS) of acetylcholinesterase (AChE) is involved in amyloid beta (Aβ) peptides aggregation of Alzheimer's disease (AD). AChE exhibits an aryl acylamidase (AAA) activity along with the well known esterase activity. Numerous studies have reported the beneficiary effect of metal chelators in AD treatment. Hence, a comparative study on the effect of metal chelators on both the esterase and AAA activity of AChE globular (G4 and G1) molecular forms was performed. The inhibitory effect of 1,10‐phenanthroline was high towards AChE esterase activity. The corresponding IC50 values for esterase activity of G4 and G1‐form was 190 µM and 770 µM and for AAA activity it was 270 µM and 2.74 mM, respectively. Kinetic studies on both forms of AChE show that 1,10‐phenanthroline inhibits esterase in competitive and AAA activity in non‐competitive manner. Protection studies further revealed that the nature of 1,10‐phenanthroline inhibition on AChE is through its direct binding to protein rather than its metal chelation property. Molecular docking studies shows orientation of 1,10‐phenathroline in the PAS through hydrophobic interactions with the PAS residues (Trp286, Tyr124 and Tyr341) and hydrogen bonding with Phe295. Further molecular dynamics simulation of “hAChE‐1,10‐phenanthroline” complex revealed that both hydrogen and hydrophobic interaction contribute equally for 1,10‐phenanthroline binding to hAChE. Such an interaction of 1,10‐phenanthroline on PAS may hinder “AChE‐Aβ peptide” complex formation. Hence, 1,10‐phenanthroline can act as a lead molecule for developing drug(s) against AD ailment with dual functions namely, anti‐cholinesterase and anti‐amyloid aggregation potency in a single chemical entity. Proteins 2013. Proteins 2013; 81:1179–1191. © 2013 Wiley Periodicals, Inc.  相似文献   

19.
Alzheimer’s disease (AD), a progressive neurodegenerative disorder is the most common cause of dementia among elderly people. To date, the successful therapeutic strategy to treat AD is maintaining the levels of acetylcholine via inhibiting acetylcholinesterase (AChE). The present study involves identification of newer AChE inhibitors by dual approach of e-pharmacophore and structure-based virtual screening of Asinex library. Robustness of docking protocol was validated by enrichment calculation with ROC value .71 and BEDROC value .028. Among 11 selected hits, ZINC72338524 with best MM-GBSA dG binding shows optimal range of CNS properties and ligand–AChE complex stability. Further, molecular dynamics study revealed its molecular interactions with Trp86, Phe338, and Tyr341 amino acid residues of catalytic anionic site and Tyr124, Ser125, and Trp286 amino acid residues of peripheral anionic site. Physicochemical properties and ADMET risk prediction indicates their potential in druggability and safety.  相似文献   

20.
To provide hints for the design of novel acetylcholinesterase (AChE) inhibitors with higher potency and specificity, the binding modes of the (RS, S)-17b and (RS, R)-17b enantiomers on AChE were chosen to investigate by molecular docking and molecular dynamics simulation. The results show that the binding modes of (RS, S)-17b and (RS, R)-17b are clearly different from each other. In particular, the (RS, S)-17b and (RS, R)-17b enantiomers tend to be planar and bend conformations to interact with AChE, respectively. Furthermore, based on the binding mode on AChE and structure modification of (RS, S)-17b, two novel inhibitors (1 and 2) with higher inhibitory activity were designed. Our design strategy suggests that the number of N and O atoms should be increased, the 5, 6-dimethoxy should be transformed into ring and the indanone moiety should be ring-opening, which would result in generating potent and selective AChE inhibitors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号