首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tripeptides of the general X-SO2-d-Ser-AA-Arg-CO-Y formula, where X = α-tolyl, p-tolyl, 2,4,6-triisopropylphenyl; AA = alanine, glycine, norvaline and Y = OH, NH-(CH2)5NH2 were obtained and tested for their effect on the amidolytic activities of urokinase, thrombin, trypsin, plasmin, t-PA and kallikrein. The most active compound towards urokinase was PhCH2SO2-d-Ser-Gly-Arg-OH with Ki value 5.4 μM and the most active compound toward thrombin was PhCH2SO2-d-Ser-NVa-Arg-OH with Ki value 0.82 μM. The peptides were nontoxic against porcine erythrocytes in vitro. PhCH2SO2-d-Ser-Gly-Arg-OH showed cytotoxic effect against DLD cell lines with IC50 values of 5 μM. For the highly selective determination of the interaction of some of the synthesised acids of tripeptides with urokinase and plasmin the Surface Plasmon Resonance Imaging sensor has been applied. These compounds bind to urokinase and plasmin in 0.05 mM concentration.  相似文献   

2.
We synthesized and tested ten peptides with the molecular structure being H–d-Ser–AA–Arg–OH for their effect on the amidolytic activities against urokinase, thrombin, trypsin, plasmin, tissue plasminogen activator and kallikrein. The inserted amino acid in each peptide was either leucine, norleucine, izoleucine, valine, norvaline, α-metyloalanine, α-aminobutanoic acid, homoleucine, tert-leucine or neoglycine. H–d-Ser–NVal–Arg–OH (compound 4) was the most active inhibitor of urokinase plasminogen activator with a Ki value of 0.85 μM. Compound 4 showed cytotoxic effect against MDA-MB-231 and DLD cell lines, respectively, with IC50 values of 25 and 19 μM. Synthesised compounds did not have activity against MCF-7 cancer cells. These peptides were nontoxic against pig’s erythrocytes in vitro.  相似文献   

3.
The influence of PGI2 on the activity and on the inactivation of enzymes participating in blood coagulation /thrombin and Factor Xa/ and fibrinolysis /plasmin/ were investigated. According to the results PGI2 has no effect on the activity of Factor Xa and plasmin nor on the inactivation of these enzymes by antithrombin-III in the absence and presence of heparin at a concentration of PGI2 up to 400 μg/ml. An acceleration of the inactivation of thrombin by antithrombin-III was found in the presence of PGI2 within a concentration of 100–400 μg/ml without any effect on the heparin-accelerated inactivation of thrombin by antithrombin. We got similar results using clotting tests for the assay and the application of synthetic substrate for thrombin. This inactivation-accelerating effect of PGI2 on thrombin was only demonstratable at a concentration five magnitudes higher than that of the anti-aggregation effect on platelets.  相似文献   

4.
Ginkgo Biloba leaf extract has been widely used for the prevention and treatment of thrombosis and cardiovascular disease in both eastern and western countries, but the bioactive constituents and the underlying mechanism of anti-thrombosis have not been fully characterized. The purpose of this study was to investigate the inhibitory effects of major constituents in Ginkgo biloba on human thrombin, a key serine protease regulating the blood coagulation cascade and the processes of thrombosis. To this end, a fluorescence-based biochemical assay was used to assay the inhibitory effects of sixteen major constituents from Ginkgo biloba on human thrombin. Among all tested natural compounds, four biflavones (ginkgetin, isoginkgetin, bilobetin and amentoflavone), and five flavonoids (luteolin, apigenin, quercetin, kaempferol and isorhamnetin) were found with thrombin inhibition activity, with the IC50 values ranging from 8.05 μM to 82.08 μM. Inhibition kinetic analyses demonstrated that four biflavones were mixed inhibitors against thrombin-mediated Z-GGRAMC acetate hydrolysis, with the Ki values ranging from 4.12 μM to 11.01 μM. Molecular docking method showed that the four biflavones could occupy the active cavity with strong interactions of salt bridges and hydrogen bonds. In addition, mass spectrometry-based lysine labeling reactivity assay suggested that the biflavones could bind on human thrombin at exosite I rather than exosite II. All these findings suggested that the biflavones in Ginkgo biloba were naturally occurring inhibitors of human thrombin, and these compounds could be used as lead compounds for the development of novel thrombin inhibitors with improved efficacy and high safety profiles.  相似文献   

5.
Eight peptides of the general formula X-d-Ser-AA-Arg-Y where X = H, Ac; AA = Ala, Gly and Y = OH, NH2 were obtained and tested for their effect on the amidolytic activities of urokinase, thrombin, plasmin, and trypsin.  相似文献   

6.
The biological activities of eckol, a novel phlorotannin with a dibenzo-β-dioxine skeleton, were examined. Eckol inhibited the antiplasmin activity of a2-plasmin inhibitor very efficiently (IC50; 1.6 μg/ml) as well as those of α2-macroglobulin and -antitrypsin. However, its inhibitory effect on the antithrombin III-heparin complex was very weak. Eckol also showed inhibitory activity on thrombin (IC50; 12 μg/ml), but not on plasmin. Its inhibitory activity was reduced in whole human plasma, but at concentrations of above 200 μg/ml it enhanced urokinase-induced fibrinolysis in human plasma. Studies on the inhibitory spectra of several derivatives of eckol showed that the dibenzo-l,4-dioxane skeleton was necessary for inhibition of plasmin inhibitor. These observations suggest that eckol or its derivatives may be useful clinically for potentiating thrombolytic activity.  相似文献   

7.
New fluorogenic peptide substrates for plasmin   总被引:3,自引:0,他引:3  
Fluorogenic peptides, peptidyl-4-methylcoumaryl-7-amides (MCA), containing COOH-terminal lysine residues, were newly synthesized and tested as substrates for plasmin. Among six peptidyl-MCA's, Boc-Val-Leu-Lys-MCA and Boc-Glu-Lys-Lys-MCA were found to be useful for the specific and sensitive assay of plasmin. The Km values estimated from Line-weaver-Burk plots for these substrates using human and bovine plasmins were in the region of 10(-4) M. Boc-Glu-Lys-Lys-MCA was slightly hydrolyzed by bovine plasma kallikrein, and Boc-Val-Leu-Lys-MCA was slightly hydrolyzed by human and hog urinary kallikreins and hog pancreatic kallikrein. However, both of the fluorogenic peptides were essentially unaffected by urokinase, alpha-thrombin, Factor Xa, Factor IXa, Factor XIa, and Factor XIIa. It was confirmed that plasmin hydrolyzed Boc-Glu-Lys-Lys-MCA, cleaving the lysyl-MCA bond, but not the lysyl-lysyl bond. These fluorogenic peptides were resistant to human plasmin activated by streptokinase. Boc-Glu-Lys-Lys-MCA was not hydrolyzed by human plasmin or plasminogen in the presence of more than a 5-fold molar excess of streptokinase. The sensitivity of Boc-Val-Leu-Lys- of more than a 5-fold molar excess of streptokinase. The sensitivity of Boc-Val-Leu-Lys-MCA to human plasmin was also reduced, but plasmin retained 35% of the maximum activity even in the presence of a 20-fold molar excess of streptokinase. These results suggest that streptokinase-plasmin complex has essentially no activity towards Boc-Glu-Lys-Lys-MCA.  相似文献   

8.
Twenty novel longifolene-derived tetraline fused thiazole-amide compounds were synthesized from longifolene, a renewable natural resource. Their structures were characterized by FT-IR, NMR, ESI-MS, and elemental analysis. The in vitro antiproliferative activity of these compounds against SK-OV-3 ovarian cancer cell lines, MCF-7 human breast cancer cell lines, HepG2 human liver cancer cell lines, A549 human lung adenocarcinoma cell lines, and T-24 human bladder cancer cell lines was tested by MTT assay. Compounds 6a – 6c displayed significant and broad-spectrum antiproliferative activity against almost the tested cancer cell lines with IC50 in the range of 7.84 to 55.88 μM, of which compound 6c exhibited excellent antiproliferative activities with 7.84 μM IC50 against SKOV-3, 13.68 μM IC50 against HepG2, 15.69 μM IC50 against A549, 19.13 μM IC50 against MCF-7, and 22.05 μM IC50 against T-24, showing better and broad-spectrum antiproliferative effect than that of the positive control 5-FU. Furthermore, the action model was analyzed by the molecular docking study. Some intriguing structure-activity relationships were found and discussed herein by DFT theoretical calculation.  相似文献   

9.
A phosphatase was purified through a combination of ion‐exchange and hydrophobic chromatography followed by native PAGE from Physarum plasmodia. Recently, we demonstrated that this phosphatase isoform has a hydrolytic activity towards the PMLC (phosphorylated light chain of Physarum myosin II) at pH 7.6. The apparent molecular mass of the purified enzyme was estimated at approximately 50 kDa by means of analytical gel filtration. The enzyme was purified 340‐fold to a final phosphatase activity of 400 pkat/mg of protein. Among the phosphorylated compounds tested for hydrolytic activity at pH 7.6, the enzyme showed no activity towards nucleotides. At pH 7.6, hydrolytic activity of the enzyme against PMLC was detected; at pH 5.0, however, no hydrolytic activity towards PMLC was observed. The K m of the enzyme for PMLC was 10 μM, and the V max was 1.17 nkat/mg of protein. Ca2+ (10 μM) inhibited the activity of the enzyme, and Mg2+ (8.5 μM) activated the dephosphorylation of PMLC. Mn2+ (1.6 μM) highly stimulated the enzyme's activity. Based on these results, we concluded that the enzyme is likely to be a phosphatase with hydrolytic activity towards PMLC.  相似文献   

10.
Peptide T-11, a carboxyl terminal tryptic fragment of α2-plasmin inhibitor, inhibits the reversible first step of the reaction between plasmin and α2-plasmin inhibitor. To elucidate which amino-acid residues played a important role in the inhibitory activity of peptide T-11, we prepared the various synthetic derivatives of peptide T-11 and determined the peptide concentration that inhibited the apparent rate constant of the reaction between plasmin and α2-plasmin inhibitor by 50% (IC50). Peptide III, which lacked the residues Gly-1 to Pro-7 of peptide I (peptide T-11), had a strong inhibitory activity, like peptide I (IC50: peptide 1, 7 μM; peptide III, 13 μM). The peptides that lacked the Leu-9 and Lys-10 or Lys-26 of peptide III showed much weaker activity, and the loss of amidation of the C-terminal lysine of peptide III also markedly reduced the inhibitory activity, Peptide III competitivef inhibited the binding of [14C]tranexamic acid to kringle 1 + 2 + 3 (K1–3) and kringle 4 (K4) in a binding assay performed by the gel-diffusion method. The respectively dissociation constants (Kd) of peptide III for K1–3 and K4 were 0.85 μM and 35.2 μM. These data suggest that the amino residue of Lys-10 and the carboxylic acid of Lys-26 in peptide T-11 play crucial roles in the ionic binding of α2-plasmin inhibitor to the tranexamic acid-binding site (lysine-binding site) of plasminogen. Peptide T-11: H-G-D-K-L-F-G-P-D-L-K-L-V-P-P-M-E-E-D-Y-P-Q-F-G-S-P-K-OH.  相似文献   

11.
Trancriptomic analysis of the venom gland cDNA library of Bungarus flaviceps revealed Kunitz‐type serine protease inhibitor as one of the major venom protein families with three groups A, B, C. One of the group B isoforms named Flavikunin, which lacked an extra cysteine residue involved in disulfide bond formation in β‐bungarotoxin, was synthesized, cloned, and overexpressed in Escherichia coli. To decipher the structure‐function relationship, the P1 residue of Flavikunin, histidine, was mutated to alanine and arginine. Purified wild‐type and mutant Flavikunins were screened against serine proteases‐thrombin, factor Xa, trypsin, chymotrypsin, plasmin, and elastase. The wild‐type and mutant Flavikunin (H?R) inhibited plasmin with an IC 50 of 0.48 and 0.35 µM, respectively. The in‐silico study showed that P1 residue of wild‐type and mutant (H?R) Flavikunin interacted with S1′ and S1 site of plasmin, respectively. Thus, histidine at the P1 position was found to be involved in plasmin inhibition with mild anticoagulant activity.  相似文献   

12.
Antimicrobial‐peptide‐based therapies could represent a reliable alternative to overcome antibiotic resistance, as they offer potential advantages such as rapid microbicidal activity and multiple activities against a broad spectrum of bacterial pathogens. Three synthetic antimicrobial peptides (AMPs), AMP72, AMP126, and also AMP2041, designed by using ad hoc screening software developed in house, were synthesized and tested against nine reference strains. The peptides showed a partial β‐sheet structure in 10‐mM phosphate buffer. Low cytolytic activity towards both human cell lines (epithelial, endothelial, and fibroblast) and sheep erythrocytes was observed for all peptides. The antimicrobial activity was dose dependent with a minimum bactericidal concentration (MBC) ranging from 0.17 to 10.12 μM (0.4–18.5 µg/ml) for Gram‐negative and 0.94 to 20.65 μM (1.72‐46.5 µg/ml) for Gram‐positive bacteria. Interestingly, in high‐salt environment, the antibacterial activity was generally maintained for Gram‐negative bacteria. All peptides achieved complete bacterial killing in 20 min or less against Gram‐negative bacteria. A linear time‐dependent membrane permeabilization was observed for the tested peptides at 12.5 µg/ml. In a medium containing Mg2+ and Ca2+, the peptide combination with EDTA restores the antimicrobial activity particularly for AMP2041. Moreover, in combination with anti‐infective agents (quinolones or aminoglycosides) known to bind divalent cation, AMP126 and AMP2041 showed additive activity in comparison with colistin. Our results suggest the following: (i) there is excellent activity against Gram‐negative bacteria, (ii) there is low cytolytic activity, (iii) the presence of a chelating agent restores the antimicrobial activity in a medium containing Mg2+ and Ca2+, and (iv) the MBC value of the combination AMPs–conventional antibiotics was lower than the MBC of single agents alone. Copyright © 2013 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

13.
The binding of 125I-transforming growth factors-beta 1 and beta 2 (TGF-beta 1 and TGF-beta 2) to alpha 2-macroglobulin (alpha 2M) was studied before and after reaction with plasmin, thrombin, trypsin, or methylamine. Complex formation between TGF-beta and native or reacted forms of alpha 2M was demonstrated by non-denaturing polyacrylamide gel electrophoresis and autoradiography. Reaction of native alpha 2M with plasmin or methylamine markedly increased the binding of 125I-TGF-beta 1 and 125I-TGF-beta 2 to alpha 2M. The alpha 2M-plasmin/TGF-beta complexes were minimally dissociated by heparin. Reaction of alpha 2M with thrombin or trypsin reduced the binding of 125I-TGF-beta 1 and 125I-TGF-beta 2; the resulting complexes were readily dissociated by heparin. Complexes between TGF-beta 2 and native or reacted forms of alpha 2M were less dissociable by heparin than the equivalent complexes with TGF-beta 1. These studies demonstrate that the TGF-beta-binding activity of alpha 2M is significantly affected by plasmin, thrombin, trypsin and methylamine. Observations that alpha 2M-plasmin preferentially binds TGFs-beta suggest a mechanism by which alpha 2M may regulate availability of TGFs-beta to target cells in vivo.  相似文献   

14.
Plasmin is best known as the key molecule in the fibrinolytic system, which is critical for clot lysis and can initiate matrix metalloproteinase (MMP) activation cascade. Along with MMP, plasmin is suggested to be involved in physiological processes that are linked to the risk of carcinoma formation. Plasmin inhibitors could be perceived as a promising new principle in the treatment of diseases triggered by plasmin. On the basis of the peptidic sequence derived from the synthetic plasmin substrate, a series of peptidic plasmin inhibitors possessing nitrile as warhead were prepared and evaluated for their inhibitory activities against plasmin and other serine proteases, plasma kallikrein and urokinase. The most potent peptidic inhibitors with the nitrile warhead exhibit the potency toward plasmin (IC50 = 7.7–11 μM) and are characterized by their selectivity profile against plasma kallikrein and urokinase. The results and molecular modeling of the peptidic inhibitor complexed with plasmin reveal that the P2 residue makes favorable contacts with the open binding pocket comprising the S2 and S3 subsites of plasmin. Copyright © 2012 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

15.
Mechanisms of homocysteine (Hcy) contribution to thrombosis are complex and only partly recognized. The available data suggest that the prothrombotic activity of homocysteine may be not only a result of the changes in coagulation process and endothelial dysfunction, but also the dysfunction of fibrinolysis. The aim of the present work was to assess the effects of homocysteine (10-100 μM mM) and its thiolactone (HTL, 0.1-1 μM) on plasminogen and plasmin functions in vitro. The amidolytic activity of generated plasmin in Hcy or HTL-treated plasminogen and plasma samples was measured by the hydrolysis of chromogenic substrate. Effects of Hcy and HTL on proteolytic activity of plasmin were monitored electrophoretically, by using of fibrinogen as a substrate. The exposure of human plasma and purified plasminogen to Hcy or HTL resulted in the decrease of urokinase-induced plasmin activity. In plasminogen samples treated with the highest concentration of homocysteine (100 μM) or thiolactone (1 μM), the activity of plasmin was inhibited by about 50%. In plasma samples, a reduction of amidolytic activity by about 30% (for 100 μM Hcy) and 40% (for 1 μM HTL), was observed. Both Hcy and HTL were also able to diminish the streptokinase-induced proteolytic activity of plasmin. In conclusion, the results obtained in this study demonstrate that Hcy and HTL may affect fibrinolytic properties of plasminogen and plasma, leading to the decrease of plasmin activity.  相似文献   

16.
A series of novel 4-phenoxyquinoline derivatives containing 3-oxo-3,4-dihydro-quinoxaline moiety were synthesized and evaluated for their antiproliferative activity against five human cancer cell lines (A549, H460, HT-29, MKN-45 and U87MG) in vitro. Most of the tested compounds exhibited more potent inhibitory activities than the positive control foretinib. Compound 1b, 1s and 1t were further examined for their inhibitory activity against c-Met kinase. The most promising compound 1s (with c-Met IC50 value of 1.42 nM) showed remarkable cytotoxicity against A549, H460, HT-29, MKN45 and U87MG cell lines with IC50 values of 0.39 μM, 0.18 μM, 0.38 μM, 0.81 μM, respectively. Their preliminary structure-activity relationships (SARs) study indicated that the replacement of the aromatic ring with the cyclohexane improved their antiproliferative activity.  相似文献   

17.
Previous studies have shown that placental protein 5 (PP5) forms complexes with heparin. In order to further elucidate the biological role of PP5 we studied the effect of plasmin and thrombin on the immunoreactivity of PP5, and the possible functional antiplasmin and antithrombin effects of purified PP5. Varying concentrations of plasmin and thrombin were added to pregnancy plasma, and the PP5 levels, measured by radioimmunoassay, were found to be elevated by 558% (plasmin and 48–87% (thrombin). Incubation of radiolabeled PP5 with plasmin resulted in the formation of radioactive fragments with smaller molecular weights. Functional studies using a chromogenic substrate confirmed that purified PP5 has an anti-plasmin activity. An average increase of 15% was observed in the antiplasmin activity when 200 ng purified PP5 was added to 150 μl of pregnancy serum. Thus, there are certain similarities between PP5 and antithrombin III. Both form complexes with heparin and have antiplasmin properties, and both were found to be heat labile. But, functional studies utilizing a chromogenic substrate failed to demonstrate any antithrombin III-like activity in the purified PP5 preparation that had antiplasmin activity. Our results show that the function of PP5 is related to the blood coagulation and fibrinolytic systems, at least through its inhibitory action on plasmin.  相似文献   

18.
A series of novel substituted pyrazole-fused oleanolic acid derivative were synthesized and evaluated as selective α-glucosidase inhibitors. Among these analogs, compounds 4a – 4f exhibited more potent inhibitory activities compared with their methyl ester derivatives, and standard drugs acarbose and miglitol as well. Besides, all these analogs exhibited good selectivity towards α-glucosidase over α-amylase. Analog 4d showed potent inhibitory activity against α-glucosidase (IC50=2.64±0.13 μM), and greater selectivity towards α-glucosidase than α-amylase by ∼33-fold. Inhibition kinetics showed that compound 4d was a non-competitive α-glucosidase inhibitor, which was consistent with the result of its simulation molecular docking. Moreover, the in vitro cytotoxicity of compounds 4a – 4f towards hepatic LO2 and HepG2 cells was tested.  相似文献   

19.
Fifteen new peptide derivatives of ?-aminocaproic acid (EACA) containing the known fragment –Ala–Phe–Lys– with an affinity for plasmin were synthesised in the present study. The synthesis was carried out a solid phase. The following compounds were synthesised: H–Phe–Lys–EACA–X, H–d-Ala–Phe–Lys–EACA–X, H–Ala–Phe–Lys–EACA–X, H–d-Ala–Phe–EACA–X and H–Ala–Phe–EACA–X, where X = OH, NH2 and NH–(CH2)5–NH2. All peptides, except for those containing the sequence H–Ala–Phe–EACA–X, displayed higher inhibitory activity against plasmin than EACA. The most active and selective inhibitor of plasmin was the compound H–d-Ala–Phe–Lys–EACA–NH2 which inhibited the amidolytic activity of plasmin (IC50 = 0.02 mM), with the antifibrinolytic activity weaker than EACA. The resulting peptides did not affect the viability of fibroblast cells, colon cancer cell line DLD-1, breast MCF-7 and MDA-MB-231 cell lines.  相似文献   

20.
A library of new coumarin-1,2,3-triazole hybrids 7a – l were synthesized from 4-(diethylamino)-2-hydroxybenzaldehyde precursor through a series of reactions including Vilsmeier-Haack reaction and condensation reaction to achieve key intermediate oxime and further performed click reaction by using different aromatic azides. We screened all molecules in silico against crystal structure of Serine/threonine-protein kinase 24 (MST3), based on these results all molecules were screened for their cytotoxicity against human breast cancer MCF-7 and lung cancer A-549 cell lines. Compound 7 b (p-bromo) showed best activity against both cell lines MCF-7 and A-549 with IC50 value of 29.32 and 21.03 μM, respectively, in comparison to Doxorubicin corresponding IC50 value of 28.76 and 20.82 μM. Another compound 7 f (o-methoxy) also indicated good activity against both cell lines with IC50 value of 29.26 and 22.41 μM. The toxicity of all compounds tested against normal HEK-293 cell lines have not shown any adverse effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号