首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Current methods employing contact electrodes for the measurement of the electromechanical properties of bone produce errors in the measurement due to the effects of polarization at the bone-electrode interface, and the flow of electric charges in the bone measuring circuit. In addition, signal artefacts may result from the movement of an electrode in contact with a specimen undergoing mechanical deformation. The principles for a non-contacting method, based on charge induction on a conductive plate placed in the field of a charged body (bone), and the resulting non-contacting electrode system are presented in this paper. The new electrode enabled measurement of strain generated potentials (SGP) in bone with minimal effect from the measuring circuit and provided new results previously masked by contacting measurement methods. Furthermore, the new electrode is a potential tool for further investigation of the in vitro electromechanical behaviour of bone, particularly in partially hydrated specimens and in vivo, thereby avoiding invasive methods or use of ionizing radiation.  相似文献   

2.
Electromechanical potentials in cortical bone--II. Experimental analysis   总被引:6,自引:0,他引:6  
The electrokinetic model developed in Part 1 of this paper is used to characterize the electromechanical effect in cortical bone. Low frequency characteristics of stress-generated potentials are measured to provide insight into the origin and generation of these potentials induced in fluid-filled cortical bone. The results support the proposed model and indicate that fluid movement within the microporosity of bone is responsible for observed potentials whose origin is electrokinetic. The microporosity in bone, composed of the fluid spaces in and around mineral crystals encrusting collagen fibrils, constitutes an enormous surface area and appears to dominate surface-related phenomena at low frequencies. Previous experimental results, reported by many researchers, are also supported by this mechanism.  相似文献   

3.
Electromechanical potentials in cortical bone--I. A continuum approach   总被引:5,自引:0,他引:5  
An electrokinetic model to characterize the electromechanical effect in cortical bone has been developed using the basic principles of the biphasic theory of porous materials and a simple model for permeability and charge distribution for cortical bone. The model is developed analytically in Part I of this paper and is shown to account qualitatively for the principal experimental results reported to date. Part II of this paper concerns experimental analysis of this model, reporting results of low frequency testing of the dynamic characteristics of stress-generated potentials. Quantitative analysis of these results indicates that the microporosity of bone, made up of the channels around the hydroxyapatite encrusting the collagen matrix, is the compartment responsible for the electromechanical effects in fluid-saturated cortical bone. This microporous compartment would seem to be the obvious source of the electrokinetic effect, because it has the greatest surface area in bone and constitutes the rate limiting fluid flow compartment in deformation-induced fluid flow at low frequency.  相似文献   

4.
This paper presents a review of the work carried out on the electromechanical properties of bone over the the past three decades. Research in this field has established the piezoelectric nature of bone and identified collagen as the generating source in dry bone. Some of the characteristics of the strain generated potential (SGP) signal from dry and hydrated bone were found to be unaccountable in terms of a classical piezoelectric theory. Modifications of the theory were suggested and in the case of fully hydrated bone, a new mechanism (streaming potential) has emerged. The paper also reports on recent developments in the field and presents results from microstructural (osteonic) studies and from fluid-filled bone. The review indicates the need for actual in vivo work because most of the reported data were obtained, in the last decade, from in vitro work and were considered valid in vivo. Modelling of the mechanism which produces the SGP has been considered to explain the characteristics of these potentials. A representative model recently developed by the present authors and co-workers is reported. This model relates the generated potential to reorientation of spontaneous dipoles and differentiates between the generated and recorded signal, thus identifying effects from the measuring circuitry. The clinical aspects of electricity of bone in assisting fracture healing and the different techniques employed are mentioned briefly. Emphasis on new techniques of piezoelectric implants and their future development is also reported.  相似文献   

5.
本文对双磷酸盐、狄诺塞麦、Sagopilone等特异性靶向药物在乳腺癌骨转移靶向治疗中的作用机制、临床应用、临床疗效等方面的相关研究进展情况进行了简要阐述。双磷酸盐在抑制骨转移和非骨转移中发挥作用,狄诺塞麦可能成为双磷酸盐的合理替代物,尤其在双磷酸盐治疗效果不佳的病人中,而新型抗癌药物Sagopilone、骨唾液酸蛋白抑制剂亦可通过多种机制参与乳腺癌转移过程,具有抑制骨转移的巨大潜力。  相似文献   

6.
Prestin is a voltage-dependent membrane-spanning motor protein that confers electromotility on mammalian cochlear outer hair cells, which is essential for normal hearing of mammals. Voltage-induced charge movement in the prestin molecule is converted into mechanical work; however, little is known about the molecular mechanism of this process. For understanding the electromechanical coupling mechanism of prestin, we simultaneously measured voltage-dependent charge movement and electromotility under conditions in which the magnitudes of both charge movement and electromotility are gradually manipulated by the prestin inhibitor, salicylate. We show that the observed relationships of the charge movement and the physical displacement (q-d relations) are well represented by a three-state Boltzmann model but not by a two-state model or its previously proposed variant. Here, we suggest a molecular mechanism of prestin with at least two voltage-dependent conformational transition steps having distinct electromechanical coupling efficiencies.  相似文献   

7.
Bone represents a porous tissue containing a fluid phase, a solid matrix, and cells. Movement of the fluid phase within the pores or spaces of the solid matrix translates endogenous and exogenous mechanobiological, biochemical and electromechanical signals from the system that is exposed to the dynamic external environment to the cells that have the machinery to remodel the tissue from within. Hence, bone fluid serves as a coupling medium, providing an elegant feedback mechanism for functional adaptation. Until recently relatively little has been known about bone fluid per se or the influences governing the characteristics of its flow. This work is designed to review the current state of this emerging field. The structure of bone, as an environment for fluid flow, is discussed in terms of the properties of the spaces and channel walls through which the fluid flows and the influences on flow under physiological conditions. In particular, the development of the bone cell syncytium and lacunocanalicular system are presented, and pathways for fluid flow are described from the systemic to the organ, tissue, cellular and subcellular levels. Finally, exogenous and endogenous mechanisms for pressure-induced fluid movement through bone, including mechanical loading, vascular derived pressure gradients, and osmotic pressure gradients are discussed. The objective of this review is to survey the current understanding of the means by which fluid flow in bone is regulated, from the level of the skeletal system down to the level of osteocyte, and to provide impetus for future research in this area of signal transduction and coupling. An understanding of this important aspect of bone physiology has profound implications for restoration of function through innovative treatment modalities on Earth and in space, as well as for engineering of biomimetic replacement tissue.  相似文献   

8.
Reduced skeletal loading typically leads to bone loss because bone formation and bone resorption become unbalanced. Hibernation is a natural model of musculoskeletal disuse because hibernating animals greatly reduce weight-bearing activity, and therefore, they would be expected to lose bone. Some evidence suggests that small mammals like ground squirrels, bats, and hamsters do lose bone during hibernation, but the mechanism of bone loss is unclear. In contrast, hibernating bears maintain balanced bone remodeling and preserve bone structure and strength. Differences in the skeletal responses of bears and smaller mammals to hibernation may be due to differences in their hibernation patterns; smaller mammals may excrete calcium liberated from bone during periodic arousals throughout hibernation, leading to progressive bone loss over time, whereas bears may have evolved more sophisticated physiological processes to recycle calcium, prevent hypercalcemia, and maintain bone integrity. Investigating the roles of neural and hormonal control of bear bone metabolism could give valuable insight into translating the mechanisms that prevent disuse-induced bone loss in bears into novel therapies for treating osteoporosis.  相似文献   

9.
We propose a new mechanism for outer hair cell electromotility based on electrically induced localized changes in the curvature of the plasma membrane (flexoelectricity). Electromechanical coupling in the cell's lateral wall is modeled in terms of linear constitutive equations for a flexoelectric membrane and then extended to nonlinear coupling based on the Langevin function. The Langevin function, which describes the fraction of dipoles aligned with an applied electric field, is shown to be capable of predicting the electromotility voltage displacement function. We calculate the electrical and mechanical contributions to the force balance and show that the model is consistent with experimentally measured values for electromechanical properties. The model rationalizes several experimental observations associated with outer hair cell electromotility and provides for constant surface area of the plasma membrane. The model accounts for the isometric force generated by the cell and explains the observation that the disruption of spectrin by diamide reduces force generation in the cell. We discuss the relation of this mechanism to other proposed models of outer hair cell electromotility. Our analysis suggests that rotation of membrane dipoles and the accompanying mechanical deformation may be the molecular mechanism of electromotility.  相似文献   

10.
Mechanical stimulation of bone tissue by physical activity stimulates bone formation in normal bone and may attenuate bone loss of osteoporotic patients. However, altered responsiveness of osteoblasts in osteoporotic bone to mechanical stimuli may contribute to osteoporotic bone involution. The purpose of the present study was to investigate whether osteoblasts from osteoporotic patients and normal donors show differences in proliferation and TGFβ production in responses to cyclic strain. Human osteoblasts isolated from collagenase-treated bone explants of 10 osteoporotic patients (average age 70 ± 6 yr) and 8 normal donors (average age 54 ± 10 yr) were plated into elastic rectangular silicone dishes. Subconfluent cultures were stimulated by cyclic strain (1%, 1 Hz) in an electromechanical cell stretching apparatus at three consecutive days for each 30 min. The cultures were assayed for proliferation, alkaline phosphatase activity and TGFβ release in each three parallel cultures. In all experiments, osteoblasts grown in the same elastic dishes but without mechanical stimulation served as controls. Significant differences between stimulated cultures and unstimulated controls were determined by a paired two-tailed Wilcoxon test. In comparison to the unstimulated controls, osteoblasts from normal donors significantly increased proliferation (p = 0.025) and TGFβ secretion (p = 0.009) into the conditioned culture medium. In contrast, osteoblasts from osteoporotic donors failed to increase both proliferation (p > 0.05) and TGFβ release (p > 0.05) in response to cyclic strain. Alkaline phosphatase activity was not significantly affected (p > 0.05) in normal as well as osteoporotic bone derived osteoblasts.

These findings suggest a different responsiveness to 1% cyclic strain of osteoblasts isolated from normal and osteoporotic bone that could be influenced by both the disease of osteoporosis and the higher average age of the osteoporotic patient group. While osteoblasts from osteoporotic donors failed to increase proliferation and TGFβ release under the chosen mechanical strain regimen that stimulated both parameters in normal osteoblasts, it is possible that some other strain regimen would provide more effective stimulation of osteoporotic cells.  相似文献   


11.
The Kv2.1 channel generates a delayed-rectifier current in neurons and is responsible for modulation of neuronal spike frequency and membrane repolarization in pancreatic β-cells and cardiomyocytes. As with other tetrameric voltage-activated K(+)-channels, it has been proposed that each of the four Kv2.1 voltage-sensing domains activates independently upon depolarization, leading to a final concerted transition that causes channel opening. The mechanism by which voltage-sensor activation is coupled to the gating of the pore is still not understood. Here we show that the carbon-monoxide releasing molecule 2 (CORM-2) is an allosteric inhibitor of the Kv2.1 channel and that its inhibitory properties derive from the CORM-2 ability to largely reduce the voltage dependence of the opening transition, uncoupling voltage-sensor activation from the concerted opening transition. We additionally demonstrate that CORM-2 modulates Shaker K(+)-channels in a similar manner. Our data suggest that the mechanism of inhibition by CORM-2 may be common to voltage-activated channels and that this compound should be a useful tool for understanding the mechanisms of electromechanical coupling.  相似文献   

12.
Biomechanical theories to predict bone remodelling have used either mechanical strain or microdamage as the stimulus driving cellular responses. Even though experimental data have implicated both stimuli in bone cell regulation, a mechano-regulatory system incorporating both stimuli has not yet been proposed. In this paper, we test the hypothesis that bone remodelling may be regulated by signals due to both strain and microdamage. Four mechano-regulation algorithms are studied where the stimulus is: strain, damage, combined strain/damage, and either strain or damage with damage-adaptive remodelling prioritised when damage is above a critical level. Each algorithm is implemented with both bone lining cell (surface) sensors and osteocyte cell (internal) sensors. Each algorithm is applied to prediction of a bone multicellular unit (BMU) remodelling on the surface of a bone trabecula. It is predicted that a regulatory system capable of responding to changes in either strain or microdamage but which prioritises removal of damaged bone when damage is above a critical level, is the only one that provides a plausible prediction of BMU behaviour. A mechanism for this may be that, below a certain damage threshold, osteocyte processes can sense changes in strain and fluid flow but above the threshold damage interferes with the signalling mechanism, or causes osteocyte apoptosis so that a remodelling response occurs to remove the dead osteocytes.  相似文献   

13.
The active amplification of sound-induced vibrations in the cochlea, known to be crucial for auditory sensitivity and frequency selectivity, is not well understood. The outer hair cell (OHC) somatic electromotility is a potential mechanism for such amplification. Its effectiveness in vivo is putatively limited by the electrical low-pass filtering of the cell's transmembrane potential. However, the transmembrane potential is an incomplete metric. We propose and estimate two metrics to evaluate the effectiveness of OHC electromotility in vivo. One metric is the OHC electromechanical ratio defined as the amplitude of the ratio of OHC displacement to the change in its transmembrane potential. The in vivo electromechanical ratio is derived from the recently measured in vivo displacements of the reticular lamina and the basilar membrane at the 19 kHz characteristic place in guinea pigs and using a model. The ratio, after accounting for the differences in OHC vibration in situ due to the impedances from the adjacent structures, is in agreement with the literature values of the in vitro electromechanical ratio measured by others. The second and more insightful metric is the OHC somatic power. Our analysis demonstrates that the organ of Corti is nearly optimized to receive maximum somatic power in vivo and that the estimated somatic power could account for the active amplification.  相似文献   

14.
Cell therapy has been intensely studied for over a decade as a potential treatment for ischaemic heart disease. While initial trials using skeletal myoblasts, bone marrow cells and peripheral blood stem cells showed promise in improving cardiac function, benefits were found to be short‐lived likely related to limited survival and engraftment of the delivered cells. The discovery of putative cardiac ‘progenitor’ cells as well as the creation of induced pluripotent stem cells has led to the delivery of cells potentially capable of electromechanical integration into existing tissue. An alternative strategy involving either direct reprogramming of endogenous cardiac fibroblasts or stimulation of resident cardiomyocytes to regenerate new myocytes can potentially overcome the limitations of exogenous cell delivery. Complimentary approaches utilizing combination cell therapy and bioengineering techniques may be necessary to provide the proper milieu for clinically significant regeneration. Clinical trials employing bone marrow cells, mesenchymal stem cells and cardiac progenitor cells have demonstrated safety of catheter based cell delivery, with suggestion of limited improvement in ventricular function and reduction in infarct size. Ongoing trials are investigating potential benefits to outcome such as morbidity and mortality. These and future trials will clarify the optimal cell types and delivery conditions for therapeutic effect.  相似文献   

15.
Colony stimulating factors (CSFs) regulate the survival, proliferation and differentiation of haemopoietic progenitor cells, as well as the functional activity of mature cells. Because the osteoclast is derived from haemopoietic tissue, and because osteoblastic cells produce CSFs, we tested the effects of several CSFs on bone resorption by osteoclasts disaggregated from neonatal rat long bone. We found that recombinant macrophage (M)-CSF was a potent inhibitor of bone resorption, causing significant inhibition at concentrations similar to those required to support the growth of macrophage colonies in agar. Unlike other inhibitors of osteoclastic resorption, M-CSF did not alter cytoplasmic motility in time-lapse recordings, suggesting that M-CSF may inhibit osteoclasts through a different transduction mechanism. None of the remaining cytokines tested (granulocyte-macrophage CSF, interleukin 3, interleukin 6, or interferon γ) influenced bone resorption. M-CSF production may be a mechanism by which osteoblastic cells, which produce M-CSF, may regulate osteoclastic function. Alternatively, inhibition of osteoclastic resorption by a CSF that is responsible for amplification of the macrophage compartment may reflect a close lineage relationship between mononuclear phagocytes, in which M-CSF induces a diversion of lineage resources away from osteoclastic function.  相似文献   

16.
17.
Bone loss is one of the most important complications for astronauts who are exposed to long-term microgravity in space and also for bedridden elderly people. Recent studies have indicated that the sympathetic nervous system plays a role in bone metabolism. This paper reviews findings concerning with sympathetic influences on bone metabolism to hypothesize the mechanism how sympathetic neural functions are related to bone loss in microgravity. Animal studies have suggested that leptin stimulates hypothalamus increasing sympathetic outflow to bone and enhances bone resorption through noradrenaline and β-adrenoreceptors in bone. In humans, even though there have been some controversial findings, use of β-adrenoblockers has been reported to be beneficial for prevention of osteoporosis and bone fracture. On the other hand, microneurographically-recorded sympathetic nerve activity was enhanced by exposure to microgravity in space as well as dry immersion or long-term bed rest to simulate microgravity. The same sympathetic activity became higher in elderly people whose bone mass becomes generally reduced. Our recent findings indicated a significant correlation between muscle sympathetic nerve activity and urinary deoxypyridinoline as a specific marker measuring bone resorption. Based on these findings we would like to propose a following hypothesis concerning the sympathetic involvement in the mechanism of bone loss in microgravity: An exposure to prolonged microgravity may enhance sympathetic neural traffic not only to muscle but also to bone. This sympathetic enhancement increases plasma noradrenaline level and inhibits osteogenesis and facilitates bone resorption through β-adrenoreceptors in bone to facilitate bone resorption to reduce bone mass. The use of β-adrenoblockers to prevent bone loss in microgravity may be reasonable.  相似文献   

18.
The binding of growth factors to the extracellular matrix (ECM) may be a key pathway for regulation of their activity. We have shown that a major mechanism for storage of transforming growth factor-beta (TGF-beta) in bone ECM is via its association with latent TGF-beta-binding protein-1 (LTBP1). Although proteolytic cleavage of LTBP1 has been reported, it remains unclear whether this represents a physiological mechanism for release of matrix-bound TGF-beta. Here we examined the role of LTBP1 in cell-mediated release of TGF-beta from bone ECM. We first characterized the soluble and ECM-bound forms of latent TGF-beta produced by primary osteoblasts. Next, we examined release of ECM-bound TGF-beta by bone resorbing cells. Isolated avian osteoclasts and rabbit bone marrow-derived osteoclasts released bone matrix-bound TGF-beta via LTBP1 cleavage. 1,25-Dihydroxyvitamin D3 enhanced LTBP1 cleavage, resulting in release of 90% of the ECM-bound LTBP1. In contrast, osteoblasts failed to cleave LTBP1 or release TGF-beta from bone ECM. Cleavage of LTBP1 by avian osteoclasts was inhibited by serine protease and metalloproteinase (MMP) inhibitors. Studies using purified proteases showed that plasmin, elastase, MMP2, and MMP9 were able to cleave LTBP1 to produce 125-165-kDa fragments. These studies identify LTBP1 as a novel substrate for MMPs and provide the first demonstration that LTBP1 proteolysis may be a physiological mechanism for release of TGF-beta from ECM-bound stores, potentially the first step in the pathway by which matrix-bound TGF-beta is rendered active.  相似文献   

19.
Maintaining bone volume during bone turnover by a BMU is known as bone balance. Balance is required to maintain structural integrity of the bone and is often dysregulated in disease. Consequently, understanding how a BMU controls bone balance is of considerable interest. This paper develops a methodology for identifying potential balance controls within a single cortical BMU. The theoretical framework developed offers the possibility of a directed search for biological processes compatible with the constraints of balance control. We first derive general control constraint equations and then introduce constitutive equations to identify potential control processes that link key variables that describe the state of the BMU. The paper describes specific local bone volume balance controls that may be associated with bone resorption and bone formation. Because bone resorption and formation both involve averaging over time, short-term fluctuations in the environment are removed, leaving the control systems to manage deviations in longer-term trends back towards their desired values. The length of time for averaging is much greater for bone formation than for bone resorption, which enables more filtering of variability in the bone formation environment. Remarkably, the duration for averaging of bone formation may also grow to control deviations in long-term trends of bone formation. Providing there is sufficient bone formation capacity by osteoblasts, this leads to an extraordinarily robust control mechanism that is independent of either osteoblast number or the cellular osteoid formation rate. A complex picture begins to emerge for the control of bone volume. Different control relationships may achieve the same objective, and the 'integration of information' occurring within a BMU may be interpreted as different sets of BMU control systems coming to the fore as different information is supplied to the BMU, which in turn leads to different observable BMU behaviors.  相似文献   

20.
强直性脊柱炎(Ankylosing spondylitis, AS)是以骶髂关节和脊柱病变为主的炎性疾病。其特征性病理表现为炎症和新骨形 成。近年来使用肿瘤坏死因子(Tumor necrosis factor,TNF)抑制剂控制AS 炎症已卓有成效,却无法阻止影像学进程,其病理性新 骨形成可致残,严重影响患者健康生活,但其机制尚不完全清楚。目前研究认为复杂的新骨形成机制与Wnt/beta-catenin信号通路及 其调控因子、炎症介质密切相关。本文结合当前国内外的研究就AS 新骨形成机制进展展开综述,为深入研究新骨形成机制提供 新思想。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号