首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 553 毫秒
1.
Association of cholinesterase with β-amyloid plaques and tau neurofibrillary tangles in Alzheimer’s disease offers an opportunity to detect disease pathology during life. Achieving this requires development of radiolabelled cholinesterase ligands with high enzyme affinity. Various fluorinated acetophenone derivatives bind to acetylcholinesterase with high affinity, including 2,2,2-trifluoro-1-(3-dimethylaminophenyl)ethanone (1) and 1-(3-tert-butylphenyl)-2,2,2-trifluoroethanone (2). Such compounds also offer potential for incorporation of radioactive fluorine (18F) for Positron Emission Tomography (PET) imaging of cholinesterases in association with Alzheimer’s disease pathology in the living brain. Here we describe the synthesis of two meta-substituted chlorodifluoroacetophenones using a Weinreb amide strategy and their rapid conversion to the corresponding trifluoro derivatives through nucleophilic substitution by fluoride ion, in a reaction amenable to incorporating 18F for PET imaging. In vitro kinetic analysis indicates tight binding of the trifluoro derivatives to cholinesterases. Compound 1 has a Ki value of 7 nM for acetylcholinesterase and 1300 nM for butyrylcholinesterase while for compound 2 these values are 0.4 nM and 26 nM, respectively. Tight binding of these compounds to cholinesterase encourages their development for PET imaging detection of cholinesterase associated with Alzheimer’s disease pathology.  相似文献   

2.
Synthetic derivatives of phenothiazine have been used for over a century as well-tolerated drugs against a variety of human ailments from psychosis to cancer. This implies a considerable diversity in the mechanisms of action produced by structural changes to the phenothiazine scaffold. For example, chlorpromazine treatment of psychosis is related to its interaction with dopaminergic receptors. On the other hand, antagonistic action of such drugs on cholinergic receptor systems would be counter-productive for treatment of Alzheimer’s disease. In a search for phenothiazines that are inhibitors of cholinesterases, especially butyrylcholinesterase, with potential to treat Alzheimer’s disease, we wished to ascertain that such molecules could be devoid of neurotransmitter receptor interactions. To that end, a number of our synthetic N-10-carbonyl phenothiazine derivatives, with cholinesterase inhibitory activity, were tested for interaction with a variety of neurotransmitter receptor systems. We demonstrate that phenothiazines can be prepared without significant neurotransmitter receptor interactions while retaining high potency as cholinesterase ligands for treatment of Alzheimer’s disease.  相似文献   

3.
Small molecule cholinesterases inhibitor (ChEI) provides an effective therapeutic strategy to treat Alzheimer’s disease (AD). Currently, the discovery of new ChEI with multi-target effect is still of great importance. Herein, we report the synthesis, structure–activity relationship study and biological evaluation of a series of tacrine-cinnamic acid hybrids as new ChEIs. All target compounds are evaluated for their in vitro cholinesterase inhibitory activities. The representatives which show potent activity on cholinesterase, are evaluated for the amyloid β-protein self-aggregation inhibition and in vivo assays. The optimal compound 19, 27, and 30 (human AChE IC50?=?10.2?±?1.2, 16.5?±?1.7, and 15.3?±?1.8?nM, respectively) show good performance in ameliorating the scopolamine-induced cognition impairment and preliminary safety in hepatotoxicity evaluation. These compounds deserve further evaluation for the development of new therapeutic agents against AD.  相似文献   

4.
In vivo imaging of β-amyloid (Aβ) aggregates in the brain may lead to early detection of Alzheimer’s disease (AD) and monitoring of the progression and effectiveness of treatment. The purpose of this study was to develop novel 18F-labeled amyloid-imaging probes based on flavones as a core structure. Fluoropegylated (FPEG) flavone derivatives were designed and synthesized. The affinity of the derivatives for Aβ aggregates varied from 5 to 321 nM. In brain sections of AD model mice, FPEG flavones with the dimethylamino group intensely stained β-amyloid plaques. In biodistrubution experiments using normal mice, they displayed high uptake in the brain ranging from 2.9 to 4.2%ID/g at 2 min postinjection. The radioactivity washed out from the brain rapidly (1.3–2.0%ID/g at 30 min), which is highly desirable for β-amyloid imaging agents. FPEG flavones may be potential PET imaging agents for β-amyloid plaques in Alzheimer’s brains.  相似文献   

5.
During a decade there was a dogma that Alzheimer’s amyloid beta (Aβ) is produced only upon the disease, and that this protein is neurotoxic for neurons and brain tissue. Current scientific evidence demonstrates that Aβ is an essential molecule in synaptic plasticity that underlines learning and memory. Therefore, it was hypothesized that the change of Aβ biology in Alzheimer’s disease (as well as in a number of other human pathologies, including cardiovascular disease, Niemann-Pick type C disease and Down syndrome) represents a physiological mechanism serving to compensate the impaired brain structure or function. This review summarizes experimental evidence on Aβ as a functional player in synaptic plasticity and neurochemical pathways.  相似文献   

6.
Clinical diagnostic of “Alzheimer’s disease” is currently based on neuropsychological tests. This most common form of dementia is a syndrome rather than a disease. Magnetic resonance imaging has permitted to characterize the structural and functional brain changes accompanying progression to clinical “Alzheimer’s disease”. It provides evidence of distinct subgroups of patients and enhances the role of cerebrovascular dysfunction in the “Alzheimer’s syndrome”.  相似文献   

7.
Brain diseases affect 1 in 6 people worldwide. These diseases range from acute neurological conditions such as stroke to chronic neurodegenerative disorders such as Alzheimer’s disease. Recent advancements in tissue-engineered brain disease models have overcome many of the different shortcomings associated with the various animal models, tissue culture models, and epidemiologic patient data that are commonly used to study brain disease. One innovative method by which to model human neurological disease is via the directed differentiation of human pluripotent stem cells (hPSCs) to neural lineages including neurons, astrocytes, and oligodendrocytes. Three-dimensional models such as brain organoids have also been derived from hPSCs, offering more physiological relevance due to their incorporation of various cell types. As such, brain organoids can better model the pathophysiology of neural diseases observed in patients. In this review, we will emphasize recent developments in hPSC-based tissue culture models of neurological disorders and how they are being used to create neural disease models.  相似文献   

8.
Amyloid‐beta plaques are a pathological hallmark of Alzheimer’s disease. Several proteases are known to cleave/remove amyloid‐beta, including plasmin, the product of tissue plasminogen activator cleavage of the pro‐enzyme plasminogen. Although plasmin levels are lower in Alzheimer brain, there has been little analysis of the plasminogen activator/plasmin system in the brains of Alzheimer patients. In this study, zymography, immunocapture, and ELISAs were utilized to show that tissue plasminogen activator activity in frontal cortex tissue of Alzheimer patients is dramatically reduced compared with age‐matched controls, while tissue plasminogen activator and plasminogen protein levels are unchanged; suggesting that plasminogen activator activity is inhibited in the Alzheimer brain. Analysis of endogenous plasminogen activator inhibitors shows that while plasminogen activator inhibitor‐1 and protease nexin‐1 levels are unchanged, the neuroserpin levels are significantly elevated in brains of Alzheimer patients. Furthermore, elevated amounts of tissue plasminogen activator‐neuroserpin complexes are seen in the Alzheimer brain, and immunohistochemical studies demonstrate that both tissue plasminogen activator and neuroserpin are associated with amyloid‐beta plaques in Alzheimer brain tissue. Thus, neuroserpin inhibition of tissue plasminogen activator activity leads to reduced plasmin and may be responsible for reduced clearance of amyloid‐beta in the Alzheimer disease brain. Furthermore, decreased tissue plasminogen activator activity in the Alzheimer brain may directly influence synaptic activity and impair cognitive function.  相似文献   

9.
Alzheimer’s disease is the most frequent type of dementia and diagnosed late in the progression of the illness when irreversible brain tissue loss has already occurred. For this reason, treatments have been ineffective. It is imperative to find novel therapies ameliorating modifiable risk factors (hypertension, stroke, diabetes, chronic kidney disease, and traumatic brain injury) and effective against early pathogenic mechanisms including alterations in cerebral blood flow leading to poor oxygenation and decreased access to nutrients, impaired glucose metabolism, chronic inflammation, and glutamate excitotoxicity. Angiotensin II receptor blockers (ARBs) fulfill these requirements. ARBs are directly neuroprotective against early injury factors in neuronal, astrocyte, microglia, and cerebrovascular endothelial cell cultures. ARBs protect cerebral blood flow and reduce injury to the blood brain barrier and neurological and cognitive loss in animal models of brain ischemia, traumatic brain injury, and Alzheimer’s disease. These compounds are clinically effective against major risk factors for Alzheimer’s disease: hypertension, stroke, chronic kidney disease, diabetes and metabolic syndrome, and ameliorate age-dependent cognitive loss. Controlled studies on hypertensive patients, open trials, case reports, and database meta-analysis indicate significant therapeutic effects of ARBs in Alzheimer’s disease. ARBs are safe compounds, widely used to treat cardiovascular and metabolic disorders in humans, and although they reduce hypertension, they do not affect blood pressure in normotensive individuals. Overall, there is sufficient evidence to consider long-term controlled clinical studies with ARBs in patients suffering from established risk factors, in patients with early cognitive loss, or in normal individuals when reliable biomarkers of Alzheimer’s disease risk are identified.  相似文献   

10.
The infamous chronic neurodegenerative disease, Alzheimer’s, that starts with short-term memory loss and eventually leads to gradual bodily function decline which has been attributed to the deficiency in brain neurotransmitters, acetylcholine, and butylcholine. As a matter of fact, design of compounds that can inhibit cholinesterases activities (acetylcholinesterase and butylcholinesterase) has been introduced as an efficient method to treat Alzheimer’s. Among proposed compounds, bis(7)tacrine (B7T) is recognized as a noteworthy suppressor for Alzheimer’s disease. Recently a new analog of B7T, cystamine-tacrine dimer is offered as an agent to detain Alzheimer’s complications, even better than the parent compound. In this study, classical molecular dynamic simulations have been employed to take a closer look into the modes of interactions between the mentioned ligands and both cholinesterase enzymes. According to our obtained results, the structural differences in the target enzymes active sites result in different modes of interactions and inhibition potencies of the ligands against both enzymes. The obtained information can help to investigate those favorable fragments in the studied ligands skeletons that have raised the potency of the analog in comparison with the parent compound to design more potent multi target ligands to heal Alzheimer’s disease.  相似文献   

11.
Despite years of research, Alzheimer’s disease (AD) remains incurable and thus poses a major health challenge in coming years. This neurodegenerative disease belongs to a heterogeneous group of human tauopathies, characterized by the extracellular deposition of beta amyloid-Aβ and intracellular accumulation of tau protein in neuronal and glial cells, whereby tau pathology best correlates with disease progression. For decades, several disease-modifying agents were brought to clinical studies with promising efficacy in preclinical trials; however, all of the subsequent clinical trials failed. Therefore, the pursuit for therapeutic agents for the treatment of AD and other tauopathies still continue. Recent evidences show previously unidentified role of peripheral immune system in regulating the inflammatory status of the brain, mainly the dendritic cells. A decrease in functionality and count of dendritic cells has been observed in Alzheimer’s disease. Here, we discuss a potential role of dendritic cell-based vaccines as therapeutic approach in ameliorating disease pathogenesis in AD and other tauopathies.  相似文献   

12.
Alzheimer’s disease, Parkinson’s disease and amyotrophic lateral sclerosis (ALS) are ‘protein misfolding disorders’ of the mature nervous system that are characterized by the accumulation of protein aggregates and selective cell loss. Different brain regions are impacted, with Alzheimer’s affecting cells in the cerebral cortex, Parkinson’s targeting dopaminergic cells in the substantia nigra and ALS causing degeneration of cells in the spinal cord. These diseases differ widely in frequency in the human population. Alzheimer’s is more frequent than Parkinson’s and ALS. Heat shock proteins (Hsps) are ‘protein repair agents’ that provide a line of defense against misfolded, aggregation-prone proteins. We have suggested that differing levels of constitutively expressed Hsps (Hsc70 and Hsp27) in neural cell populations confer a variable buffering capacity against ‘protein misfolding disorders’ that correlates with the relative frequencies of these neurodegenerative diseases. The high relative frequency of Alzheimer’s may due to low levels of Hsc70 and Hsp27 in affected cell populations that results in a reduced defense capacity against protein misfolding. Here, we demonstrate that celastrol, but not classical heat shock treatment, is effective in inducing a set of neuroprotective Hsps in cultures derived from cerebral cortices, including Hsp70, Hsp27 and Hsp32. This set of Hsps is induced by celastrol at ‘days in vitro’ (DIV) 13 when cultured cortical cells reached maturity. The inducibility of a set of neuroprotective Hsps in mature cortical cultures at DIV13 suggests that celastrol is a potential agent to counter Alzheimer’s disease, a neurodegenerative ‘protein misfolding disorder’ of the adult brain that targets cells in the cerebral cortex.  相似文献   

13.
14.
Detection of cerebral β-amyloid (Aβ) by targeted contrast agents is of great interest for in vivo diagnosis of Alzheimer’s disease (AD). Partly because of their planar structure several bis-styrylbenzenes have been previously reported as potential Aβ imaging agents. However, these compounds are relatively hydrophobic, which likely limits their in vivo potential. Based on their structures, we hypothesized that less hydrophobic bis-pyridylethenylbenzenes may also label amyloid. We synthesized several bis-pyridylethenylbenzenes and tested whether these compounds indeed display improved solubility and lower Log P values, and studied their fluorescent properties and Aβ binding characteristics. Bis-pyridylethenylbenzenes showed a clear affinity for Aβ plaques on both human and murine AD brain sections. Competitive binding experiments suggested a different binding site than Chrysamine G, a well-known stain for amyloid. With a Log P value between 3 and 5, most bis-pyridylethenylbenzenes were able to enter the brain and label murine amyloid in vivo with the bis(4-pyridylethenyl)benzenes showing the most favorable characteristics. In conclusion, the presented results suggest that bis-pyridylethenylbenzene may serve as a novel backbone for amyloid imaging agents.  相似文献   

15.
Detection of cerebral β-amyloid (Aβ) by targeted contrast agents remains of great interest to aid the in vivo diagnosis of Alzheimer’s disease (AD). Bis-styrylbenzenes have been previously reported as potential Aβ imaging agents. To further explore their potency as 19F MRI contrast agents we synthetized several novel fluorinated bis-styrylbenzenes and studied their fluorescent properties and amyloid-β binding characteristics. The compounds showed a high affinity for Aβ plaques on murine and human brain sections. Interestingly, competitive binding experiments demonstrated that they bound to a different binding site than chrysamine G. Despite their high logP values, many bis-styrylbenzenes were able to enter the brain and label murine amyloid in vivo. Unfortunately initial post-mortem 19F NMR studies showed that these compounds as yet do not warrant further MRI studies due to the reduction of the 19F signal in the environment of the brain.  相似文献   

16.
The cholinergic theory of aging states that dysfunction of cholinergic neurons arising from the basal forebrain and terminating in the cortex and hippocampus may be involved in the cognitive decline that occurs during aging and Alzheimer’s disease. Despite years of research, pharmacological interventions to treat or forestall the development of Alzheimer’s disease have primarily focused on enhancing cholinergic transmission, either through increasing acetylcholine (ACh) synthesis or inhibition of the acetylcholinesterase enzyme responsible for ACh hydrolysis. However, recent studies have indicated that dietary supplementation can impact the cholinergic system, particularly during aging. The purpose of the present review is to examine the relevant research suggesting that cholinergic functioning may be maintained during aging via consuming a diet containing polyunsaturated fatty acids (PUFAs). The data reviewed herein indicate that, at least in animal studies, inclusion of PUFAs in the diet can improve cholinergic transmission in the brain, possibly leading to improvements in cognitive functioning.  相似文献   

17.
We synthesized push–pull benzothiazole derivatives and evaluated their potential as β-amyloid imaging probes. In binding experiments in vitro, the benzothiazoles showed excellent affinity for synthetic Aβ(1-42) aggregates. β-Amyloid plaques in the mouse and human brain were clearly visualized with the benzothiazoles, reflecting the results in vitro. These compounds may be a useful scaffold for the development of novel PET/SPECT and fluorescent tracers for detecting β-amyloid in Alzheimer’s brains.  相似文献   

18.
The study of sporadic Alzheimer’s disease etiology, now more than ever, needs an infusion of new concepts. Despite ongoing interest in Alzheimer’s disease, the basis of this entity is not yet clear. At present, the best-established and accepted “culprit” in Alzheimer’s disease pathology by most scientists is the amyloid, as the main molecular factor responsible for neurodegeneration in this disease. Abnormal upregulation of amyloid production or a disturbed clearance mechanism may lead to pathological accumulation of amyloid in brain according to the “amyloid hypothesis.” We will critically review these observations and highlight inconsistencies between the predictions of the “amyloid hypothesis” and the published data. There is still controversy over the role of amyloid in the pathological process. A question arises whether amyloid is responsible for the neurodegeneration or if it accumulates because of the neurodegeneration. Recent evidence suggests that the pathophysiology and neuropathology of Alzheimer’s disease comprises more than amyloid accumulation, tau protein pathology and finally brain atrophy with dementia. Nowadays, a handful of researchers share a newly emerged view that the ischemic episodes of brain best describe the pathogenic cascade, which eventually leads to neuronal loss, especially in hippocampus, with amyloid accumulation, tau protein pathology and irreversible dementia of Alzheimer type. The most persuasive evidences come from investigations of ischemically damaged brains of patients and from experimental ischemic brain studies that mimic Alzheimer-type dementia. This review attempts to depict what we know and do not know about the triggering factor of the Alzheimer’s disease, focusing on the possibility that the initial pathological trigger involves ischemic episodes and ischemia-induced gene dysregulation. The resulting brain ischemia dysregulates additionally expression of amyloid precursor protein and amyloid-processing enzyme genes that, in addition, ultimately compromise brain functions, leading over time to the complex alterations that characterize advanced sporadic Alzheimer’s disease. The identification of the genes involved in Alzheimer’s disease induced by ischemia will enable to further define the events leading to sporadic Alzheimer’s disease-related abnormalities. Additionally, knowledge gained from the above investigations should facilitate the elaboration of the effective treatment and/or prevention of Alzheimer’s disease.  相似文献   

19.
Finding a new type of cholinesterase inhibitor that would overcome the brain availability and pharmacokinetic parameters or hepatotoxic liability has been a focus of investigations dealing with the treatment of Alzheimer’s disease. Isothiocyanates have not been previously investigated as potential cholinesterase inhibitors. These compounds can be naturally produced from their glucosinolate precursors, secondary metabolites widely distributed in our daily Brassica vegetables. Among 11 tested compounds, phenyl isothiocyanate and its derivatives showed the most promising inhibitory activity. 2-Methoxyphenyl ITC showed best inhibition on acetylcholinesterase with IC50 of 0.57?mM, while 3-methoxyphenyl ITC showed the best inhibition on butyrylcholinesterase having 49.2% at 1.14?mM. Assessment of the antioxidant efficacy using different methods led to a similar conclusion. The anti-inflammatory activity was also tested using human COX-2 enzyme, ranking phenyl isothiocyanate, and 3-methoxyphenyl isothiocyanate as most active, with ~99% inhibition at 50?μM.  相似文献   

20.
Amyloid precursor protein cleavage through β- and γ-secretases produces β-amyloid peptide, which is believed to be responsible for death of neurons and dementia in Alzheimer’s disease. Levels of β- and γ-secretase are increased in sensitive areas of the Alzheimer’s disease brain, but the mechanism of this process is unknown. In this review, we prove that brain ischemia generates expression and activity of both β- and γ-secretases. These secretases are induced in association with oxidative stress following brain ischemia. Data suggest that ischemia promotes overproduction and aggregation of β-amyloid peptide in brain, which is toxic for ischemic neuronal cells. In our review, we demonstrated the role of brain ischemia as a molecular link between the β- and the γ-secretase activities and provided a molecular explanation of the possible neuropathogenesis of sporadic Alzheimer’s disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号