首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Extremely-low-frequency (ELF), low-intensity magnetic fields have been shown to influence cell signaling processes in a variety of systems, both in vivo and in vitro. Similar effects have been demonstrated for nervous system development and neurite outgrowth. We report that regeneration in planaria, which incorporates many of these processes, is also affected by ELF magnetic fields. The rate of cephalic regeneration, reflected by the mean regeneration time (MRT), for planaria populations regenerating under continuous exposure to combined DC (78.4 μT) and AC (60.0 Hz at 10.0 μT peak) magnetic fields applied in parallel was found to be significantly delayed (P ? 0.001) by 48 ± 1 h relative to two different types of control populations (MRT ? 140 ± 12 h). One control population was exposed to only the AC component of this field combination, while the other experienced only the ambient geomagnetic field. All measurements were conducted in a low-gradient, low-noise magnetics laboratory under well-maintained temperature conditions. This delay in regeneration was shown to be dependent on the planaria having a fixed orientation with respect to the magnetic field vectors. Results also indicate that this orientation-dependent transduction process does not result from Faraday induction but is consistent with a Ca2+ cyclotron resonance mechanism. Data interpretation also permits the tentative conclusion that the effect results from an inhibition of events at an early stage in the regeneration process before the onset of proliferation and differentiation. © 1995 Wiley-Liss, Inc.  相似文献   

2.
Several studies have indicated that weak, extremely-low-frequency (ELF; 1–100 Hz) magnetic fields affect brain electrical activity and memory processes in man and laboratory animals. Our studies sought to determine whether ELF magnetic fields could couple directly with brain tissue and affect neuronal activity in vitro. We used rat hippocampal slices to study field effects on a specific brain activity known as rhythmic slow activity (RSA), or theta rhythm, which occurs in 7–15 s bursts in the hippocampus during memory functions. RSA, which, in vivo, is a cholinergic activity, is induced in hippocampal slices by perfusion of the tissue with carbachol, a stable analog of acetylcholine. We previously demonstrated that the free radical nitric oxide (NO), synthesized in carbachol-treated hippocampal slices, lengthened and destabilized the intervals between successive RSA episodes. Here, we investigate the possibility that sinusoidal ELF magnetic fields could trigger the NO-dependent perturbation of the rate of occurrence of the RSA episodes. Carbachol-treated slices were exposed for 10 min epochs to 1 or 60 Hz magnetic fields with field intensities of 5.6, 56, or 560 μT (rms), or they were sham exposed. All exposures took place in the presence of an ambient DC field of 45 μT, with an angle of -66° from the horizontal plane. Sinusoidal 1 Hz fields at 56 and 560 μT, but not at 5.6 μT, triggered the irreversible destabilization of RSA intervals. Fields at 60 Hz resulted in similar, but not statistically significant, trends. Fields had no effects on RSA when NO synthesis was pharmacologically inhibited. However, field effects could take place when extracellular NO, diffusing from its cell of origin to the extracellular space, was chelated by hemoglobin. These results suggest that ELF magnetic fields exert a strong influence on NO systems in the brain; therefore, they could modulate the functional state of a variety of neuronal ensembles. © 1996 Wiley-Liss, Inc.  相似文献   

3.
We present a hypothesis that the risk of childhood leukemia is related to exposure to specific combinations of static and extremely-low-frequency (ELF) magnetic fields. Laboratory data from calcium efflux and diatom mobility experiments were used with the gyromagnetic equation to predict combinations of 60 Hz and static magnetic fields hypothesized to enhance leukemia risk. The laboratory data predicted 19 bands of the static field magnitude with a bandwidth of 9.1 μT that, together with 60 Hz magnetic fields, are expected to have biological activity. We then assessed the association between this exposure metric and childhood leukemia using data from a case-control study in Los Angeles County. ELF and static magnetic fields were measured in the bedrooms of 124 cases determined from a tumor registry and 99 controls drawn from friends and random digit dialing. Among these subjects, 26 cases and 20 controls were exposed to static magnetic fields lying in the predicted bands of biological activity centered at 38.0 μT and 50.6 μT. Although no association was found for childhood leukemia in relation to measured ELF or static magnetic fields alone, an increasing trend of leukemia risk with measured ELF fields was found for subjects within these static field bands (P for trend = 0.041). The odds ratio (OR) was 3.3 [95% confidence interval (CI) = 0.4–30.5] for subjects exposed to static fields within the derived bands and to ELF magnetic field above 0.30 μT (compared to subjects exposed to static fields outside the bands and ELF magnetic fields below 0.07 μT). When the 60 Hz magnetic fields were assessed according to the Wertheimer-Leeper code for wiring configurations, leukemia risks were again greater with the hypothesized exposure conditions (OR = 9.2 for very high current configurations within the static field bands: 95% CI = 1.3–64.6). Although the risk estimates are based on limited magnetic field measurements for a small number of subjects, these findings suggest that the risk of childhood leukemia may be related to the combined effects of the static and ELF magnetic fields. Further tests of the hypothesis are proposed. © 1995 Wiley-Liss, Inc.  相似文献   

4.
Electromagnetic fields have been used to augment the healing of fractures because of its ability to increase new bone formation. The mechanism of how electromagnetic fields can promote new bone formation is unknown, although the interaction of electromagnetic fields with components of the plasma membrane of cells has been hypothesized to occur in bone cells. Gap junctions occur among bone forming cells, the osteoblasts, and have been hypothesized to play a role in new bone formation. Thus it was investigated whether extremely low-frequency (ELF) magnetic fields alter gap junction intercellular communication in the pre-osteoblastic model, MC3T3-E1, and the well-differentiated osteoblastic model, ROS 17/2.8. ELF magnetic field exposure systems were designed to be used for an inverted microscope stage and for a tissue culture incubator. Using these systems, it was found that magnetic fields over a frequency range from 30 to 120 Hz and field intensities up to 12.5 G dose dependently decreased gap junction intercellular communication in MC3T3-E1 cells during their proliferative phase of development. The total amount of connexin 43 protein and the distribution of connexin 43 gap junction protein between cytoplasmic and plasma membrane pools were unaltered by treatment with ELF magnetic fields. Cytosolic calcium ([Ca(2+)](i)) which can inhibit gap junction communication, was not altered by magnetic field exposure. Identical exposure conditions did not affect gap junction communication in the ROS 17/2.8 cell line and when MC3T3-E1 cells were more differentiated. Thus ELF magnetic fields may affect only less differentiated or pre-osteoblasts and not fully differentiated osteoblasts. Consequently, electromagnetic fields may aid in the repair of bone by effects exerted only on osteoprogenitor or pre-osteoblasts.  相似文献   

5.
Exposure systems that provide good magnetic field uniformity, minimum stray fields, and minimal heating, vibration, and hum, as well as capability for true sham exposure in which current flows in the coils, are needed to determine rigorously the biological effects of weak magnetic fields. Designs based on acrylic polymer coil support structures and twisted pair bifilary coil windings were employed to fabricate several different systems for the exposure of laboratory animals and cell cultures to magnetic fields. These systems exhibit excellent performance characteristics in terms of exposure field uniformity, stray field containment, and exposure field cancellation in the sham exposure mode. A custom-written computer program was used to determine the best arrangement for coils with regard to field uniformity in the exposure volume and stray field containment. For in vivo exposures, modules were made up of four Merritt four-coil sets, built into a single structure and positioned to form an octapole with fields directed in the horizontal plane. For in vitro applications, two different coil configurations were selected to produce the vertical fields required. A quadrupole system, comprising modules consisting of two Merritt four-coil sets arranged side by side to limit stray fields, was built as a prototype. In the second configuration, one Merritt four-coil set was positioned inside the other to form a concentric coil set. In both in vitro systems, exposure chambers were connected to remote commercial incubators in order to reduce ambient magnetic fields in the exposure volume. An active field cancellation circuit was developed for reducing ambient AC magnetic fields in the in vitro sham exposure chamber, when necessary. These design and fabrication approaches provide systems that offer uniform field exposures and excellent stray field containment when needed and are portable, washable, and relatively inexpensive. © 1994 Wiley-Liss, Inc.
  • 1 This article is a US Government work and, as such, is in the public domain in the United States of America.
  •   相似文献   

    6.
    Human Mesenchymal Stem Cells (hMSCs) were exposed to a developed extremely low-frequency (ELF) magnetic fields (50?Hz ,20?mT ELF) system to evaluate whether exposure to (ELF) magnetic fields affects growth, metabolism, and differentiation of hMSCs. MTT method was used to determine the growth and metabolism of hMSCs following exposure to ELF magnetic fields. Na+/K+ concentration and osmolality of extracelluar were measured after exposured culture. Alkaline phosphatase (ALP) assay and Calcium assay, ALP staining, and Alizarin red staining were performed to evaluate the osteogenic differentiation of hMSCs under the ELF magnetic field exposure. In these experiments, the cells were exposed to ELF for up to 23 days. The results showed that exposure to ELF magnetic field could inhibit the growth and metabolism of hMSC, but have no significant effect on differentiation of hMSCs. These results suggested that ELF magnetic field may influence the early development of hMSCs related adult cells.  相似文献   

    7.
    The design, construction, and results of evaluation of an animal-exposure system for the study of biological effects of extremely low frequency (ELF) magnetic fields are described. The system uses a square coil arrangement based on a modification of the Helmholtz coil. Due to the cubic configuration of this exposure system, horizontal and vertical magnetic fields as high as 0.3 mT can be generated. Circularly polarized magnetic fields can also be generated by changing the current and phase difference between two sets of coils. Tests were made for uniformity of the magnetic field, stray fields, sham-exposure ratio of stray field, changes of temperature and humidity, light intensity and distribution inside the animal-housing space, and noise due to air-conditioning equipment. Variation of the magnetic field was less than 2% inside the animal housing. The stray-field level inside the sham-exposure system is less than 2% of experimental exposure levels. The system can be used for simultaneous exposure of 48 rats (2 to a cage) or 96 mice (4 to a cage). © 1993 Wiley-Liss. Inc.  相似文献   

    8.
    We have shown that 50 Hz sinusoidal magnetic fields within the 5-10 micro Tesla (μT) rms range cause an intensity-dependent reduction in nerve growth factor (NGF) stimulation of neurite outgrowth (NO) in PC-12 cells. Here we report on the frequency dependence of this response over the 15-70 Hz range at 5 Hz intervals. Primed PC-12 cells were plated in collagen-coated, 60 mm plastic petri dishes with or without 5 ng/ml NGF and were exposed to sinusoidal magnetic fields for 22 h in a CO2 incubator at 37 °C. One 1,000-turn coil, 20 cm in diameter, generated vertically oriented magnetic fields. The dishes were stacked on the center axis of the coil to provide a range of intensities between 3.5 and 9.0 μT rms. The flux density of the ambient DC magnetic field was 37 μT vertical and 19 μT horizontal. The assay consisted of counting over 100 cells in the central portion (radius ≤0.3 cm) of each dish and scoring cells positive for NO. Sham exposure of cells treated identically with NGF demonstrated no difference in the percentage of cells with NO between exposed and magnetically shielded locations within the incubator. Analysis of variance demonstrated flux density-dependent reductions in NGF-stimulated NO over the 35-70 Hz frequency range, whereas frequencies between 15 Hz and 30 Hz produced no obvious reduction. The results also demonstrated a relative maximal sensitivity of cells at 40 Hz with a possible additional sensitivity region at or above 70 Hz. These findings suggest a biological influence of perpendicular AC/DC magnetic fields different from those identified by the ion parametric resonance model, which uses strictly parallel AC/DC fields. © 1995 Wiley-Liss, Inc.  相似文献   

    9.
    An exposure facility for wide application to cell exposure to an ELF (extremely low frequency) magnetic field was developed. It is suitable for conducting experiments under a high-intensity, variable-frequency magnetic field, on the biological effects of the ELF magnetic field in an in vitro study. The exposure system consists of Merritt's 4-square coil as a basic component to generate the required magnetic field intensity of 10 mT at 50 Hz with spatial field uniformity less than +/-3% in a 400 mm cube. Concentric compensation coils are adopted to eliminate the effects of stray fields on sham (control) samples in the vicinity of the exposure system. The uniformity of the magnetic field in the exposure coil, the increase in the power supply capacity due to the existence of compensation coils, and the stray field estimation were investigated carefully. After fabricating the system, performance tests were carried out and all the characteristics were found to be satisfactory. In addition, the ideal configuration for a concentric coil system was proposed.  相似文献   

    10.
    ABSTRACT

    Current models that frame consciousness in terms of electromagnetic field theory carry implications that have yet to be fully explored. Endogenous weak extremely low frequency (ELF) magnetic fields are generated by ionic charge flow in axons, dendrites and synaptic transmitters. Because neural tissues are transparent to such fields, these provide the basis for the globally unifying qualities required to properly describe consciousness as a field. At the same time, however, an electromagnetic approach predicts partial transmission of this 1–100 nT field, suggesting external interactions similar to the various ELF magnetic perturbations that are linked to homeostatic and endocrine-related physiological effects. It follows that humans may represent an additional, previously unrecognized source of weak (1–10 nT) ambient ELF magnetic fields.  相似文献   

    11.
    Two epidemiologic studies have reported increased risk of childhood leukemia associated with the length of time children watched television (TV) programs or played video games connected to TV sets. To evaluate magnetic field exposures resulting from these activities, the static, ELF, and VLF magnetic fields produced by 72 TV sets used by children to watch TV programs and 34 TV sets used to play video games were characterized in a field study conducted in Washington DC and its Maryland suburbs. The resulting TV-specific magnetic field data were combined with information collected through questionnaires to estimate the magnetic field exposure levels associated with TV watching and video game playing. The geometric means of the ELF and VLF exposure levels so calculated were 0.0091 and 0.0016 microT, respectively, for children watching TV programs and 0.023 and 0.0038 microT, respectively, for children playing video games. Geometric means of ambient ELF and VLF levels with TV sets turned off were 0.10 and 0.0027 microT, respectively. Summed over the ELF frequency range (6-3066 Hz), the exposure levels were small compared to ambient levels. However, in restricted ELF frequency ranges (120 Hz and 606-3066 Hz) and in the VLF band, TV exposure levels were comparable to or larger than normal ambient levels. Even so, the strengths of the 120 Hz or 606-3066 Hz components of TV fields were small relative to the overall ambient levels. Consequently, our results provide little support for a linkage between childhood leukemia and exposure to the ELF magnetic fields produced by TV sets. Our results do suggest that any future research on possible health effects of magnetic fields from television sets might focus on the VLF electric and magnetic fields produced by TV sets because of their enhanced ability relative to ELF fields to induce electric currents.  相似文献   

    12.
    Although extremely low frequency (ELF) magnetic fields (<300 Hz) appear to exert a variety of biological effects, the magnetic field sensing/transduction mechanism(s) remains to be established. Here, using the inhibitory effects of magnetic fields on endogenous opioid peptide-mediated “analgaesic” response of the land snail. Cepaea nemoralis, we addressed the mechanism(s) of action of ELF magnetic fields. Indirect mechanisms involving both induced electric fields and direct magnetic field detection mechanisms (e.g., magnetite, parametric resonance) were evaluated. Snails were exposed to a static magnetic field (BDC=78±1 μT) and to a 60 Hz magnetic field (BAC=299±1 μT peak) with the angle between the static and 60 Hz magnetic fields varied in eight steps between 0° and 90°. At 0° and 90°, the magnetic field reduced opioid-induced analgaesia by approximately 20%, and this inhibition was increased to a maximum of 50% when the angle was between 50° and 70°. Because BAC was fixed in amplitude, direction, and frequency, any induced electric currents would be constant independent of the BAC/BDC angle. Also, an energy transduction mechanism involving magnetite should show greatest sensitivity at 90°. Therefore, the energy transduction mechanism probably does not involve induced electric currents or magnetite. Rather, our results suggest a direct magnetic field detection mechanism consistent with the parametric resonance model proposed by Lednev. © 1996 Wiley-Liss, Inc.  相似文献   

    13.
    Human Mesenchymal Stem Cells (hMSCs) were exposed to a developed extremely low-frequency (ELF) magnetic fields (50?Hz ,20?mT ELF) system to evaluate whether exposure to (ELF) magnetic fields affects growth, metabolism, and differentiation of hMSCs. MTT method was used to determine the growth and metabolism of hMSCs following exposure to ELF magnetic fields. Na(+)/K(+) concentration and osmolality of extracellular were measured after exposured culture. Alkaline phosphatase (ALP) assay and Calcium assay, ALP staining, and Alizarin red staining were performed to evaluate the osteogenic differentiation of hMSCs under the ELF magnetic field exposure. In these experiments, the cells were exposed to ELF for up to 23 days. The results showed that exposure to ELF magnetic field could inhibit the growth and metabolism of hMSC, but have no significant effect on differentiation of hMSCs. These results suggested that ELF magnetic field may influence the early development of hMSCs related adult cells.  相似文献   

    14.
    Exposure to extremely low frequency (ELF) magnetic fields has been shown to attenuate endogenous opioid peptide mediated antinociception or “analgaesia” in the terrestrial pulmonate snail, Cepaea nemoralis. Here we examine the roles of light in determining this effect and address the mechanisms associated with mediating the effects of the ELF magnetic fields in both the presence and absence of light. Specifically, we consider whether the magnetic field effects involve an indirect induced electric current mechanism or a direct effect such as a parametric resonance mechanism (PRM). We exposed snails in both the presence and absence of light at three different frequencies (30, 60, and 120 Hz) with static field values (BDC) and ELF magnetic field amplitude (peak) and direction (BAC) set according to the predictions of the PRM for Ca2+. Analgaesia was induced in snails by injecting them with an enkephalinase inhibitor, which augments endogenous opioid (enkephalin) activity. We found that the magnetic field exposure reduced this opioid-induced analgaesia significantly more if the exposure occurred in the presence rather than the absence of light. However, the percentage reduction in analgaesia in both the presence and absence of light was not dependent on the ELF frequency. This finding suggests that in both the presence and the absence of light the effect of the ELF magnetic field was mediated by a direct magnetic field detection mechanism such as the PRM rather than an induced current mechanism. Bioelectromagnetics 18:284–291, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

    15.
    用细胞分析成像光盘记录系统测量了3T3细胞在某些ELF磁场和温度条件下生长周期的变化.实验结果表明,只有某些频率的ELF磁场才对细胞生长产生影响,磁场对细胞生长的影响还与培养细胞的生化环境有关.温度和ELF磁场都能影响细胞的生长.但二者的机理是不一样的,当撤除ELF磁场后,细胞在短时间内(2天以上)继续保持着ELF场对其生长的影响.而细胞生长周期能在短时间内(2天以内)随着温度的变化而变化.温度引起的细胞生长的变化可能与细胞内的各种生长因子、生物离子的活性有关.ELF磁场引起的细胞生长的变化可能与ELF磁场对细胞膜的影响有关,与细胞内细胞生长必不可少的生物离子(如Ca~(2+))的浓度有关.  相似文献   

    16.
    17.
    This study aims to assess the levels of extremely low frequency magnetic fields (ELF‐MF) emitted from portable hand‐held fans (HHFs) and their principal frequency and to identify factors influencing these levels. We collected a total of eleven models of HHF and monitored the ELF‐MF as a function of fan speed and distance from the fan. EMDEX II was used to monitor the ELF‐MF. An SMP2 EMF‐meter equipped with a P400 field probe was used to determine the levels of ELF‐MF and the frequency spectrum. Ten of the fans, excluding only one bladeless‐fan model, emitted a high level of ELF‐MF near the source of the HHF direct‐current motor. The maximum measured level of ELF‐MF ranged from 14.07 to 218.7 µT. All measurements of the ELF‐MF taken within 10 cm from the HHFs showed values higher than 1.0 µT. ELF‐MF levels were found to decrease markedly with distance, regardless of the HHF product. The level of ELF‐MF rose noticeably with increased fan speed. The speed of and distance from the HHF significantly influenced the level of ELF‐MF. All principal frequencies ranged from 1 to 300 Hz, which falls in the typical range of ELF. Bioelectromagnetics. 2019;40:569–577. © 2019 Bioelectromagnetics Society.  相似文献   

    18.
    A recent epidemiologic study reported associations between leukemia risk in children and their personal use of television (TV) sets, hair dryers, and stereo headsets, and the prenatal use by their mothers of sewing machines. To provide exposure data to aid in the interpretation of these findings, extremely and very low frequency (ELF and VLF) magnetic fields produced by a sample of each type of appliance were characterized in a field study of volunteers conducted in Washington DC and its Maryland suburbs. Questionnaire data regarding children's or mothers' patterns of usage of each type of appliance were also collected. ELF magnetic fields measured 10 cm from the nozzles of hair dryers were elevated over the ambient by a mean factor of 17 when these devices were in use. Fields near headsets being used to listen to music were not distinguishable from ambient levels except at frequencies below and well above 60 Hz and, even then, field levels were < 0.01 microT. Home sewing machines produced ELF magnetic fields that were elevated by a factor of 2.8 over ambient levels at the front surfaces of the lower abdomens of mothers. Estimated mean daily times of usage of hair dryers, stereo headsets, and sewing machines were 2.6, 19, and 17 minutes, respectively. These data and previously published data on TV sets, do not provide a consistent picture of increased (or decreased) leukemia risk in relation to increasing peak or time weighted average (TWA) ELF magnetic field exposure. The data could, however, conceivably be compatible with some more complex biophysical model with unknown properties. Overall, the results of this study provide little evidence supporting the hypothesis that peak or TWA ELF magnetic fields produced by appliances are causally related to the risk of childhood leukemia in children.  相似文献   

    19.
    Epidemiological studies have suggested that extremely low‐frequency magnetic fields (ELF‐MF) are associated with an increased incidence of cancer. Studies using in vitro systems have reported mixed results for the effects of ELF‐MF alone, and the World Health Organization (WHO) Research Agenda published in 2007 suggested that high priority research should include an evaluation of the co‐carcinogenic effects of ELF‐MF exposure using in vitro models. Here, the carcinogenic potential of ELF‐MF exposure alone and in combination with various stress factors was investigated in NIH3T3 mouse fibroblasts using an in vitro cellular transformation assay. NIH3T3 cells were exposed to a 60 Hz ELF‐MF (1 mT) alone or in combination with ionizing radiation (IR), hydrogen peroxide (H2O2), or c‐Myc overexpression, and the resulting number of anchorage‐independent colonies was counted. A 4 h exposure of NIH3T3 cells to ELF‐MF alone produced no cell transformation. Moreover, ELF exposure did not influence the transformation activity of IR, H2O2, or activated c‐Myc in our in vitro assay system, suggesting that 1 mT ELF‐MF did not affect any additive or synergistic transformation activities in combination with stress factors such as IR, H2O2, or activated c‐Myc in NIH3T3 cells. Bioelectromagnetics 33:207–214, 2012. © 2011 Wiley Periodicals, Inc.  相似文献   

    20.
    The purpose of the study was to examine the influence of the spatial variable magnetic field (induction: 150–300?µT, 80–150?µT, 20–80?µT; frequency 40?Hz) on neuropathic pain after tibial nerve transection. The experiments were carried out on 64 male Wistar C rats. The exposure of animals to magnetic field was performed 1?d/20?min., 5?d/week, for 28?d. Behavioural tests assessing the intensity of allodynia and sensitivity to mechanical and thermal stimuli were conducted 1?d prior to surgery and 3, 7, 14, 21 and 28?d after the surgery. The extent of autotomy was examined. Histological and immunohistochemical analysis was performed. The use of extremely low-frequency magnetic fields of minimal induction values (20–80?µT/40?Hz) decreased pain in rats after nerve transection. The nociceptive sensitivity of healthy rats was not changed following the exposition to the spatial magnetic field of the low frequency. The results of histological and immunohistochemical investigations confirm those findings. Our results indicate that extremely low-frequency magnetic field may be useful in the neuropathic pain therapy.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号