首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
ABSTRACT

In our previous study, the developmental effects of extremely low-frequency electric fields (ELF-EF) on visual and somatosensory evoked potentials in adult rats were studied. There is no study so far examining the effects of 50 Hz electric field (EF) on mismatch negativity (MMN) recordings after exposure of rats during development. Therefore, our present study aimed to investigate MMN and oxidative brain damage in rats exposed to EF (12 kV/m, 1 h/day). Rats were divided into four groups, namely control (C), prenatal (Pr), postnatal (Po), and prenatal+postnatal (PP). Pregnant rats of Pr and PP groups were exposed to EF during pregnancy. Following birth, rats of PP and Po groups were exposed to EF for three months. After exposure to EF, MMN was recorded by electrodes positioned stereotaxically to the surface of the dura, and then brain tissues were removed for histological and biochemical analyses. The MMN amplitude was higher to deviant tones than to standard tones. It was decreased in all experimental groups compared with the C group. 4-Hydroxy-2-nonenal (4-HNE) levels were significantly increased in the Po group with respect to the C group, whereas they were significantly decreased in the PP group compared with Pr and Po groups. Protein carbonyl levels were significantly decreased in the PP group compared with C, Pr, and Po groups. EF decreased MMN amplitudes were possibly induced by lipid peroxidation.  相似文献   

2.
The aim of the study was to investigate the effects of extremely low-frequency electric field (ELF EF) on visual evoked potential (VEP), thiobarbituric acid reactive substances (TBARS), total antioxidant status (TAS), total oxidant status (TOS), and oxidant stress index (OSI). Thirty female Wistar rats, aged 3 months, were divided into three equal groups: Control (C), the group exposed to EF at 12 kV/m strength (E12), and the group exposed to EF at 18 kV/m strength (E18). Electric field was applied to the E12 and E18 groups for 14 days (1 h/day). Brain and retina TBARS, TOS, and OSI were significantly increased in the E12 and E18 groups with respect to the control group. Also, TBARS levels were significantly increased in the E18 group compared with the E12 group. Electric fields significantly decreased TAS levels in both brain and retina in E12 and E18 groups with respect to the control group. All VEP components were significantly prolonged in rats exposed to electric fields compared to control group. In addition, all latencies of VEP components were increased in the E18 group with respect to the E12 group. It is conceivable to suggest that EF-induced lipid peroxidation may play an important role in changes of VEP parameters.  相似文献   

3.
This study was designed to investigate effect of alpha-lipoic acid (LA) on lipid peroxidation, nitric oxide production and antioxidant systems in rats exposed to chronic restraint stress. Twenty four male Wistar rats, aged three months, were divided into four groups: control (C), the group treated with LA (L), the group exposed to restraint stress (S) and the group exposed to stress and treated with LA (LS). Restraint stress was applied for 21 days (1 h/day) and LA (100 mg/kg/day) was injected intraperitonally to the L and LS groups for the same period. Restraint stress significantly decreased brain copper/zinc superoxide dismutase (Cu,Zn-SOD) and brain and retina glutathione peroxidase (GSH-Px) and catalase (CAT) activities compared with the control group. Thiobarbituric acid reactive substances (TBARS), nitrite and nitrate levels were significantly increased in the tissues of the S group compared with the C group. LA produced a significant decrease in brain and retina TBARS, nitrite and nitrate levels of the L and LS groups compared to their corresponding control groups. LA increased all enzyme activities in the tissues of the LS group compared to the S group. Our study indicated that LA is an ideal antioxidant candidate for the prevention of stress-induced lipid peroxidation.  相似文献   

4.
Background Somatosensory evoked potentials (SEPs) constitute a useful neurophysiologic tool commonly used to assess the functionality and developmental degree of the nervous system. Objective To analyze somatosensory pathways of the Macaca mulatta species throughout different ontogenetic statuses. Methods Twenty non‐human primates were divided into five age‐dependant groups. Recording of SEPs was executed by stimulation of lower limb at the tibial nerve and upper limb and recorded at the median nerve. Results Two wave series were observed for all groups for both limbs studied. Significant differences were found at the upper right limb at C4, C7 and also for the antecubital fossa site. The lower limbs showed a single significant right‐wing deflection. Conclusions Differences found in signals generated by the nervous system in response to somatosensory stimuli among the studied groups are thought to be developmental in origin, as the most remarkable deviations were seen in younger monkeys.  相似文献   

5.
Snegir'  M. A. 《Neurophysiology》2002,34(1):52-57
We compared the visual evoked EEG potentials (VEP) elicited by presentation of a reversal chess pattern in patients with glaucoma and in the control group. Amplitudes, peak latencies of the main VEP components (N75, P100, and N145), interpeak intervals, and interpeak magnitudes were measured, and a spectral analysis of the averaged VEP was performed. In patients suffering from glaucoma, the latencies of the N75 and P100 components were greater, while the interpeak intervals P100-N145 and N75-N145 were shorter, than those in the control group. Glaucoma-related changes in the VEP spectral characteristics, in particular a drop in the spectral power of oscillations corresponding to the alpha rhythm, were observed.  相似文献   

6.
N E Naftchi 《Peptides》1982,3(3):235-247
Cats were used as models of traumatic spinal cord injury. Each experimental animal received a 500 g-cm force to the exposed dura at the level of thoracic fourth vertebra. Somatosensory evoked potentials (SEPs), carotid arterial blood pressure (BP), and abdominal aorta blood flow in the treated groups were compared with those of the control group. The three treated groups received naloxone (5 mg/kg), TRH (5 mg/kg), and a combination of methyl-prednisolone sodium succinate (MP, 35 mg/kg) and epsilon-aminocaproic acid (EACA, 350 mg/kg). The SEPs which were done only in the naloxone treated group approached "normalcy" 24-26 hours after trauma as compared with the absence of SEPs in traumatized untreated group. In all three groups, the treatment increased the blood flow in abdominal aorta significantly. Morphine sulfate increased substance P (SP) immunoreactivity in the dorsal and ventral gray matter. Naloxone not only reversed this effect, it depleted SP below the saline control level. In order to establish that lipid free radicals are responsible for damage to biological membranes, their effects were also investigated in vitro: 14C-GABA uptake by mouse cortical slices which had decreased by 33% in the presence of superoxide (. O-2) generating system, horseradish peroxidase (HRP), was reduced only by 9% when superoxide dismutase was added to the medium. The latter also protected the nerve endings from damage by (. O-2) as examined by electron microscopy. It is concluded that the agents used in this study produce their ameliorating effects by virtue of their anti-inflammatory, anti-oxidant, and membrane stabilizing properties in addition to their effect on enhancing the regional microcirculation. The release of SP by naloxone may be responsible for the increase in blood flow. The consequences of traumatic injury as depicted in Fig. 1 are discussed at length.  相似文献   

7.
The aim of the present study was to investigate the effects of stress-induced lipid peroxidation on macrophages' functions. Animals were subjected to 4 h immobilization at 4 degrees C in restraining devices. The peritoneal macrophages obtained from rats exposed to cold and restraint stress exhibited an increase in lipid peroxidation and a decline of chemotaxis and phagocytosis compared with control rats. After supplementation with vitamin E, the increment in thiobarbituric acid reactive substances (TBARS) content as the oxidative stress marker and the decline of chemotaxis and phagocytosis in peritoneal macrophages observed during cold-restraint stress was significantly removed. No significant change in catalase activity of peritoneal macrophages was observed in groups exposed to cold-restraint stress and treated with vitamin E. These findings indicate that phagocytic and chemotactic capacities of peritoneal macrophages are decreased by cold-restraint stress and this effect of stress may be related to lipid peroxidation.  相似文献   

8.
Abstract

Objective: We analysed the recovery function of somatosensory evoked potentials (SEPs) in juvenile myoclonic epilepsy (JME) patients. We hypothesized that there may be disinhibition in the recovery of SEPs at 20–100?ms intervals in JME patients.

Methods: We recorded SEPs and SEP recovery in 19 consecutive patients with JME admitted for a routine follow-up examination, and in a control group composed of 13 healthy subjects who were similar to the patient group regarding age and sex. The recovery function of SEPs was examined using paired stimuli at 30, 40, 60, and 100?ms intervals.

Results: The amplitudes of N20-P25 and P25-N33 components were higher in patients with JME. Ten patients had high-amplitude SEPs. By paired stimulation, there was inhibition of SEPs in both groups. The mean recovery percentages of N20-P25 and P25-N33 components at 30, 40, 60, and 100?ms were not different between healthy subjects and patients with JME.

Conclusions: The recovery function of SEP is normal in JME even in the presence of high-amplitude SEPs.  相似文献   

9.
To assess whether lipid peroxidation of hepatic mitochondria is associated with cholestatic hepatic injury we examined the effect of bile duct ligation (BDL) versus sham surgery on mitochondrial lipids of rats maintained on one of seven diets. Diets included vitamin E-deficient (E-) and vitamin E-sufficient (E+) combined with normal lipid (11.9% calories as stripped corn oil), high lipid (35% calories as stripped corn oil), or n-3 fatty acid (fish oil) supplementation. Rats were killed 17 days after surgery, mitochondria were isolated by differential centrifugation, and lipid-conjugated dienes and thiobarbituric acid-reacting substances (TBARS) were measured in mitochondrial lipids as indices of lipid peroxidation. BDL resulted in significant increases in lipid peroxidation in all dietary groups. The E- high lipid diets (with either corn oil or fish oil) were associated with higher lipid peroxide and serum bilirubin values in BDL rats compared to the normal lipid diets. Fish oil supplementation did not ameliorate cholestatic or oxidative injury. Serum alanine aminotransferase, bilirubin, alkaline phosphatase, and cholylglycine levels correlated significantly with levels of mitochondrial conjugated dienes and TBARS. These data suggest that free radical stress occurs during BDL in the rat and may result in mitochondrial lipid peroxidation, and that diets high in lipid may increase free radical damage to hepatic mitochondria. The role of free radicals in cholestatic hepatic injury requires further investigation.  相似文献   

10.
Oxidant stress is one of the factors proposed to be responsible for damaged erythrocytes observed during and after exercise. The impact of exertional oxidant stress after acute exhaustive treadmill running on erythrocyte damage was investigated in sedentary (Sed) and exercise-trained (ET) rats treated with or without antioxidant vitamins C and E. Exhaustive exercise led to statistically significant increments in the levels of thiobarbituric acid-reactive substance (TBARS) and H2O2-induced TBARS in Sed rats and resulted in functional and structural alterations in erythrocytes (plasma hemoglobin concentrations, methemoglobin levels, and rise in osmotic fragility of erythrocytes with decrease in erythrocyte deformability). Administration of antioxidant vitamin for 1 mo before exhaustive exercises prevented lipid peroxidation (TBARS, H2O2-induced TBARS) in Sed rats without any functional or structural alterations in erythrocytes. Parameters indicating erythrocyte lipid peroxidation and deterioration after exhaustive exercise in rats trained regularly with treadmill running for 1 mo were not different from those in Sed controls. Erythrocyte lipid peroxidation (TBARS) increased in exhausted-ET rats compared with ET controls; however, the plasma hemoglobin, methemoglobin levels, and erythrocyte osmotic fragility and deformability did not differ. Exhaustive exercise-induced lipid peroxidation in ET rats on antioxidant vitamin treatment was prevented, whereas functional and structural parameters of erythrocytes were not different from those of the ET controls. We conclude that exertional oxidant stress contributed to erythrocyte deterioration due to exercise in Sed but not in ET rats.  相似文献   

11.
Acidic FGF enhances functional regeneration of adult dorsal roots   总被引:4,自引:0,他引:4  
Lee LM  Huang MC  Chuang TY  Lee LS  Cheng H  Lee IH 《Life sciences》2004,74(15):1937-1943
It has been well documented that the regeneration of sensory axons severed in the dorsal roots into the spinal cord is largely inhibited in adult mammals. We investigated whether peripheral nerve grafts combined with acidic fibroblast growth factor (aFGF) could induce the regeneration of transected dorsal roots in adult rats, as evaluated by cortical somatosensory evoked potentials (SEPs). Median nerve (forelimb) stimuli produced consistent responses in the primary somatosensory cortex of normal rats, but these were completely eliminated after the transection of cervical 6th - 8th roots. The dorsal root stumps were immediately anastomosed to the cord with intercostal nerve grafts. Subsequently, aFGF in fibrin glue was administered to the grafted area. Four to twenty weeks after rhizotomy, six of the seven rats receiving such reconstruction had recovery of SEPs. The reappearing SEPs typically showed similar waveforms and latencies as normal ones. They were eliminated by retransection of the repaired roots, thus verifying their source as the regenerated roots. We present here substantial evidence that aFGF enhances the functional restoration of cut dorsal roots. Cortical SEPs is considered a useful tool in evaluating such regeneration. These results may offer therapeutic potential in the treatment of dorsal root injuries.  相似文献   

12.
The effect of in vivo lipid peroxidation on the excretion of immunoreactive prostaglandin E2 (PGE2) in the urine of rats was studied. Weanling, male Sprague-Dawley rats were fed a vitamin E-deficient diet containing 10% tocopherol-stripped corn oil (CO) or 5% cod liver oil (CLO) with or without 40 mg dl-alpha-tocopheryl acetate/kg. To induce a high, sustained level of lipid peroxidation, some rats were injected intraperitoneally with 100 mg of iron as iron dextran after 10 days of feeding. Iron overload stimulated in vivo lipid peroxidation in rats, as measured by the increase in expired ethane and pentane. Dietary vitamin E reversed this effect. Rats fed the CLO diet excreted 9.5-fold more urinary thiobarbituric acid-reactive substances (TBARS) than did rats fed the CO diet. Iron overload increased the excretion of TBARS in the urine of rats fed the CO diet, but not in urine of rats fed the CLO diet. Dietary vitamin E decreased TBARS in the urine of rats fed either the CO or the CLO diet. Iron overload decreased by 40% the urinary excretion of PGE2 by rats fed the CO diet, and dietary vitamin E did not reverse this effect. Iron overload had no statistically significant effect on urinary excretion of PGE2 by rats fed the CLO diet. A high level of lipid peroxidation occurred in iron-treated rats, as evidenced by an increase in alkane production and in TBARS in urine in this study, and by an increase in alkane production by slices of kidney from iron-treated rats in a previous study [V. C. Gavino, C. J. Dillard, and A. L. Tappel (1984) Arch. Biochem. Biophys. 233, 741-747]. Since PGE2 excretion in urine was not correlated with these effects, lipid peroxidation appears not to be a major factor in renal PGE2 flux.  相似文献   

13.
The effects were examined of 6-month intermittent hypobaric (4000 m) exposure on the antioxidant enzyme systems in soleus and tibialis muscles of rats. At the end of the 6-month experimental exposure, the six rats in both the exposed group and the control group were sacrificed. Immunoreactive mitochondrial superoxide dismutase (Mn-SOD) contents were measured as well as the activities of antioxidant enzymes [Mn-SOD, cytosolic SOD (Cu,Zn-SOD), catalase (CAT), and glutathione peroxidase (GPX)]. Thiobarbituric acid-reactive substances (TBARS) were also determined as an indicator of lipid peroxidation. The high altitude exposure resulted in a marked increase in TBARS content in soleus muscle, suggesting increased levels of oxygen free radicals. Conversely, significant decreases in both Mn-SOD content and activity in solens muscle were oted affer exposure. Such trends were not noticed in tibialis muscle. On the other hand, no significant changes in Cu,Zn-SOD, CAT, or GPX were observed in either muscle. These results suggested that the increases in lipid peroxidation were most probably a result of decreased Mn-SOD function which was more depressed in oxidative than in glycolytic muscle.  相似文献   

14.
The aim of this study was to investigate the influences of different stress models on the antioxidant status and lipid peroxidation (LPO) in erythrocytes of rats. Swiss-Albino female rats (3 months old) were used in this study. Rats were randomly divided into the following four groups; control group (C), cold stress group (CS), immobilization stress group (IS) and cold+immobilization stress group (CS+IS). Control group was kept in an animal laboratory (22 ±2°C). Rats in CS group were placed in cold room (5°C) for 15 min/day for 15 days. Rats in IS group were immobilized for 180 min/day for 15 days. Rats in CS+IS group were exposed to both cold and immobilization stresses for 15 days. At the end of experimental periods, the activities of glucose-6-phosphate dehydrogenase (G-6-PD), Cu,Zn-superoxide dismutase (Cu,Zn-SOD), catalase (CAT) and glutathione peroxidase (GSH-Px), and concentration of reduced glutathione (GSH) were measured. LPO was determined by measuring the contents of thiobarbituric acid-reactive substances (TBARS). Cu,Zn-SOD activity and TBARS concentration were increased after cold and immobilization stresses, but CAT and GSH-Px activities and GSH levels were decreased. Immobilization stress decreased the activity of G-6-PD. The activities of G-6-PD, CAT and GSH-Px, and the level of GSH were lower in CS+IS group than in the control group. Cu,Zn-SOD activity and TBARS levels were increased in CS+IS group when compared with the control group. From these findings, three stress models are thought to cause oxidative stress.  相似文献   

15.
The aim of this study was to investigate the influences of different stress models on the antioxidant status and lipid peroxidation (LPO) in erythrocytes of rats. Swiss-Albino female rats (3 months old) were used in this study. Rats were randomly divided into the following four groups; control group (C), cold stress group (CS), immobilization stress group (IS) and cold+immobilization stress group (CS+IS). Control group was kept in an animal laboratory (22 &#45 2°C). Rats in CS group were placed in cold room (5°C) for 15 min/day for 15 days. Rats in IS group were immobilized for 180 min/day for 15 days. Rats in CS+IS group were exposed to both cold and immobilization stresses for 15 days. At the end of experimental periods, the activities of glucose-6-phosphate dehydrogenase (G-6-PD), Cu,Zn-superoxide dismutase (Cu,Zn-SOD), catalase (CAT) and glutathione peroxidase (GSH-Px), and concentration of reduced glutathione (GSH) were measured. LPO was determined by measuring the contents of thiobarbituric acid-reactive substances (TBARS). Cu,Zn-SOD activity and TBARS concentration were increased after cold and immobilization stresses, but CAT and GSH-Px activities and GSH levels were decreased. Immobilization stress decreased the activity of G-6-PD. The activities of G-6-PD, CAT and GSH-Px, and the level of GSH were lower in CS+IS group than in the control group. Cu,Zn-SOD activity and TBARS levels were increased in CS+IS group when compared with the control group. From these findings, three stress models are thought to cause oxidative stress.  相似文献   

16.
The inhibitory property of garlic on free radical generation and lipid peroxidation has been reported in a number of in vitro studies. However, the in vivo effects of chronic garlic intake on the antioxidant milieu of heart has not been reported. Therefore, the present study was designed to investigate the effect of chronic garlic homogenate administration on myocardial endogenous antioxidants and lipid peroxidation at five different dosage levels (125, 250, 500, 1000 and 2000 mg/kg; B, C, D, E, F groups respectively). Garlic homogenate was administered orally to Wistar albino rats (150-200 gms) of either sex 6 days/week for 30 days. Myocardial TBARS (Thiobarbituric acid reactive substances) and antioxidants such as SOD (Superoxide Dismutase), catalase, GPx (glutathione peroxidase) and GSH (Reduced Glutathione) were estimated and histopathological changes were observed. Group F was excluded after 55% mortality occurred in 15 days. TBARS levels were significantly lower in groups B, C and D than that of control group (A). Catalase was increased significantly in groups C, D and E, whereas SOD increased significantly in groups B, C and D but decreased in group E. Significant increase in GSH in group E and significant reduction in GPx activity in group B were observed. Histopathological studies showed marked focal myocytolysis in group E. These results showed that chronic garlic intake dose dependently augmented endogenous antioxidants, which might have important direct cytoprotective effects on the heart, especially in the event of oxidant stress induced injury.  相似文献   

17.
An enormous amount of data has been published in recent years demonstrating melatonin's defensive role against toxic free radicals. In the present study, we examined the role of melatonin as an antioxidant against the effect of continuous light exposure. Rats were divided into three groups. Control rats (group A) were kept under natural conditions whereas other group of rats (group B and C) were exposed to constant light for inhibition of melatonin secretion by the pineal gland. Group C rats also received melatonin via s.c. injection (1 mg x kg(- 1) body weight x day(- 1)). At the end of experiment, all animals were sacrificied by decapitation, serum and tissue samples were removed for determination of malondialdehyde (MDA), a product of lipid peroxidation, conjugated dienes levels and glutathione peroxidase (GSH-Px) activity levels. It was found that lipid peroxidation was increased in the rats which were exposed to constant light. Melatonin injection caused a decrease in lipid peroxidation, especially in the brain. In addition, melatonin application resulted in increased GSH-Px activity, which has an antioxidant effect. Thus, melatonin is not only a direct scavenger of toxic radicals, but also stimulates the antioxidative enzyme GSH-Px activity to detoxify hydroxyl radical produced by constant light exposure.  相似文献   

18.
Antioxidant defenses within the lung are pivotal in preventing damage from oxidative toxicants. There have also been several reports with conflicting results on the antioxidant system during aging. In this study, we attempted to investigate age-related alterations in both antioxidant enzyme activities and thiobarbituric acid-reactive substances (TBARS), a product of lipid peroxidation, in the whole lung of control and sulfur dioxide (SO2) exposed rats of different age groups (3-, 12-, and 24-months-old). Swiss-Albino Male rats were exposed to 10 ppm SO2 1 hr/day, 7 days/week for 6 weeks. The antioxidant enzymes examined include Cu,Zn-superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px) and glutathione S-transferase (GST). A mixed pattern of age-associated alterations in antioxidant activities was observed. SOD, GSH-Px and GST activities were increased with age, but CAT activity was decreased. Lung SOD, GSH-Px and GST activities were also increased in response to SO2. The level of TBARS was increased with age. SO2 exposure stimulated lipid peroxide formation in the lung as indicated by an increase in the level of TBARS. These findings suggest that both aging and SO2 exposure may impose an oxidative stress to the body. We conclude that the increase in the activities of the antioxidant enzymes of the lung during aging, could be interpreted as a positive feedback mechanism in response to rising lipid peroxidation.  相似文献   

19.
The purpose of the present study was to evaluate the effect of 4-pregnen-17-hydroxy-3-one (A) and two steroids homologues: 3beta-acetoxy-5,16-pregnadien-20-one (B) and 3beta-acetoxy-16alpha-17alpha-epoxy-4-pregnen-20-one (C). Male Wistar rats were treated with o-cresol combined (A, B or C) steroids. Lipid peroxidation status as result of measurement reactive substances to thiobarbituric acid (TBARS) as well as serotonin (5-HT) and its precursor 5-hydroxytryptophan (5-HTP) were measured. The prostate glands were weighed, the 5alpha-reductase activity was determined. The animals treated with A, B, and C steroids showed a slight increase in both 5alpha-reductase activity and prostate size. 5-HT and 5-HTP levels did not change significantly, and TBARS showed an increase in the group treated with B steroid and a decrease in the A steroid group with significant differences in both groups (p<0.05) versus control group. Results suggest that A steroid reduces TBARS in rat brain, perhaps as a result of the interaction between the testosterone unsaturated carbons and OH(-) groups with free radicals.  相似文献   

20.
Saadet Gü          reyya B   lmen  Dijle K   pmen Korgun  Piraye Yargi  o  lu  Aysel A  ar 《Free radical research》2001,34(6):621-627
Antioxidant defenses within the lung are pivotal in preventing damage from oxidative toxicants. There have also been several reports with conflicting results on the antioxidant system during aging. In this study, we attempted to investigate age-related alterations in both antioxidant enzyme activities and thiobarbituric acid-reactive substances (TBARS), a product of lipid peroxidation, in the whole lung of control and sulfur dioxide (SO2) exposed rats of different age groups (3-, 12-, and 24-months-old). Swiss-Albino Male rats were exposed to 10 ppm SO2 1 hr/day, 7 days/week for 6 weeks. The antioxidant enzymes examined include Cu,Zn-superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px) and glutathione S-transferase (GST). A mixed pattern of age-associated alterations in antioxidant activities was observed. SOD, GSH-Px and GST activities were increased with age, but CAT activity was decreased. Lung SOD, GSH-Px and GST activities were also increased in response to SO2. The level of TBARS was increased with age. SO2 exposure stimulated lipid peroxide formation in the lung as indicated by an increase in the level of TBARS. These findings suggest that both aging and SO2 exposure may impose an oxidative stress to the body. We conclude that the increase in the activities of the antioxidant enzymes of the lung during aging, could be interpreted as a positive feedback mechanism in response to rising lipid peroxidation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号