首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Protein kinase CK2 is emerging as a target in neoplastic diseases. Inhibition of CK2 by small compounds could lead to new therapies by counteracting the elevated CK2 activities found in a variety of tumors. Currently, CK2 inhibitors are primarily evaluated by a radiometric in vitro assay tracing the amount of transferred γ-(32)P from ATP to a substrate peptide. Here, we present two alternative assays abandoning radioisotopes. The first assay is based on F?rster resonance energy transfer between the fluorescence donor EDANS and the acceptor molecule DABCYL within the CK2 substrate peptide [DABCYL]-RRRDDDSDDD-[EDANS]. This peptide comprises a cleavage site for pancreatic elastase, which is located next to the phosphate acceptor serine. Only the non-phosphorylated peptide can be cleaved by elastase, disrupting the FRET effect. Thus fluorescence intensity is inversely correlated with CK2 activity. The second non-radiometric assay deploys the changing of charge that occurs within the peptide substrate RRRDDDSDDD upon phosphorylation by CK2. Substrate and product of a CK2 reaction consequently show a difference in electrophoretic mobility and thus can be separated by capillary electrophoresis. Absorption detection enabled quantification of both peptide species and allowed the determination of IC(50) values. This method facilitated the testing of a small compound library by which benzofuran derivatives were identified as potent CK2 inhibitors with IC(50) values in the submicromolar range.  相似文献   

2.
A sensitive fluorescence assay that employs a new fluorogenic peptide substrate has been developed to continuously measure the proteolytic activity of human renin. The substrate, DABCYL-gaba-Ile-His-Pro-Phe-His-Leu-Val-Ile-His-Thr-EDANS, has been designed to incorporate the renin cleavage site that occurs in the N-terminal peptide of human angiotensinogen. The assay relies upon resonance energy transfer-mediated, intramolecular fluorescence quenching that occurs in the intact peptide substrate. Efficient fluorescence quenching occurs as a result of favorable energetic overlap of the EDANS excited state and the DABCYL absorption, and the relatively long excited state lifetime of the EDANS fluorophore. Cleavage of the substrate by renin liberates the peptidyl-EDANS fragment from proximity with the DABCYL acceptor, restoring the higher, unattenuated fluorescence of the EDANS moiety. This leads to a time-dependent increase in fluorescence intensity, directly related to the extent of substrate consumed by renin cleavage. The kinetics of renin-catalyzed hydrolysis of this substrate have been shown to be consistent with a simple substrate inhibition model with a substrate Km 1.5 μM at physiological pH; Cleavage of the substrate occurs specifically at the Leu-Val bond and corresponds to the renin cleavage site of angiotensinogen, as reported earlier. In this report, we describe in detail the synthesis of the fluorogenic renin substrate and its application in assays of renin activity. Assay sensitivity has been evaluated by a series of enzyme dilution experiments using the continuous assay format, showing that the assay can detect renin as low as 30 ng/ml after a incubation of only 3-5 min. It was estimated that with extended incubation time (2-3 h) the assay can detect renin at 0.5 ng/ml concentration level. An automated, high throughput fluorometric renin assay has been developed for a 96-well microtiter-plate fluorescence reader, which is useful for studies of enzyme inhibitors and enzyme stability.  相似文献   

3.
Increased activity of protein kinase CK2 is associated with various types of cancer, neurodegenerative diseases, and chronic inflammation. In the search for CK2 inhibitors, attention has expanded toward compounds disturbing the interaction between CK2α and CK2β in addition to established active site-directed approaches. The current article describes the development of a fluorescence anisotropy-based assay that mimics the principle of CK2 subunit interaction by using CK2α1–335 and the fluorescent probe CF-Ahx-Pc as a CK2β analog. In addition, we identified new inhibitors able to displace the fluorescent probe from the subunit interface on CK2α1–335. Both CF-Ahx-Pc and the inhibitors I-Pc and Cl-Pc were derived from the cyclic peptide Pc, a mimetic of the C-terminal CK2α-binding motif of CK2β. The design of the two inhibitors was based on docking studies using the known crystal structure of the Pc/CK2α1–335 complex. The dissociation constants obtained in the fluorescence anisotropy assay for binding of all compounds to human CK2α1–335 were validated by isothermal titration calorimetry. I-Pc was identified as the tightest binding ligand with a KD value of 240 nM and was shown to inhibit the CK2 holoenzyme-dependent phosphorylation of PDX-1, a substrate requiring the presence of CK2β, with an IC50 value of 92 μM.  相似文献   

4.
Novel internally quenched fluorescence peptide substrates containing sequence specific sites for cleavage by multiple proteases were designed and synthesized. The 28 and 29 residue peptides contain an N-terminal fluorescence acceptor group, 4-(4-dimethylaminophenylazo)benzoic acid (DABCYL), and a C-terminal fluorescence donor group, 5-(2-aminoethylamino)naphthalene-1-sulfonic acid (EDANS). Efficient energy transfer between the donor and acceptor groups flanking the peptide sequence was achieved by incorporation of a central DPro-Gly segment, which serves as a conformation nucleating site, inducing hairpin formation. This multispecificity protease substrate was used to profile the proteolytic activities in the malarial parasite Plasmodium falciparum in a stage dependent manner using a combination of fluorescence and MALDI mass spectrometry. Cysteine protease activity was shown to be dominating at neutral pH, whereas aspartic protease activity contributed predominantly to the proteolytic repertoire at acidic pH. Maximum proteolysis was observed at the trophozoite stage followed by the schizonts and the rings.  相似文献   

5.
A synthetic tetradecapeptide derived from the phosphorylation site of the beta-subunit of phosphorylase kinase (Arg-Thr-Lys-Arg-Ser-Gly-Ser-Val-Tyr-Glu-Pro-Leu-Lys-Ile) is a highly efficient substrate for the cAMP-dependent protein kinase, exhibiting a 36% decrease in the intrinsic tyrosine fluorescence on phosphorylation. The fluorescence changes in continuous assays were monitored to demonstrate the roles of protein kinase effectors (cAMP, the type II regulatory subunit, and the 8000-Da heat-stable inhibitor) in the regulation of the enzyme and to determine Km and Vmax. The phosphorylation reaction requires 1 mol ATP/mol peptide. Amino acid analysis demonstrates the presence of phosphoserine in the phosphorylated peptide. Auxiliary experiments show that tyrosine phosphorylation can also be detected fluorometrically and distinguished from serine or threonine phosphorylation.  相似文献   

6.
Transforming growth factor beta (TGF-beta) signaling pathways regulate a wide variety of cellular processes including cell proliferation, differentiation, extracellular matrix deposition, development, and apoptosis. TGF-beta type-I receptor (TbetaRI) is the major receptor that triggers several signaling events by activating downstream targets such as the Smad proteins. The intracellular kinase domain of TbetaRI is essential for its function. In this study, we have identified a short phospho-Smad peptide, pSmad3(-3), KVLTQMGSPSIRCSS(PO4)VS as a substrate of TbetaRI kinase for in vitro kinase assays. This peptide is uniquely phosphorylated by TbetaRI kinase at the C-terminal serine residue, the phosphorylation site of its parent Smad protein in vivo. Specificity analysis demonstrated that the peptide is phosphorylated by only TbetaRI and not TGF-beta type-II receptor kinase, indicating that the peptide is a physiologically relevant substrate suitable for kinetic analysis and screening of TbetaRI kinase inhibitors. Utilizing pSmad3(-3) as a substrate, we have shown that novel pyrazole compounds are potent inhibitors of TbetaRI kinase with K(i) value as low as 15 nM. Kinetic analysis revealed that these pyrazoles act through the ATP-binding site and are typical ATP competitive inhibitors with tight binding kinetics. More importantly, these compounds were shown to inhibit TGF-beta-induced Smad2 phosphorylation in vivo in NMuMg mammary epithelial cells with potency equivalent to the inhibitory activity in the in vitro kinase assay. Cellular selectivity analysis demonstrated that these pyrazoles are capable of inhibiting activin signaling but not bone morphogenic protein or platelet-derived growth factor signal transduction pathways. Further functional analysis revealed that pyrazoles are capable of blocking the TGF-beta-induced epithelial-mesenchymal transition in NMuMg cells, a process involved in the progression of cancer, fibrosis, and other human diseases. These pyrazoles provide a foundation for future development of potent and selective TbetaRI kinase inhibitors to treat human disease.  相似文献   

7.
The proapoptotic protein, prostate apoptosis response-4 (Par-4), acts as a tumor suppressor in prostate cancer cells. The serine/threonine kinase casein kinase 2 (CK2) has a well-reported role in prostate cancer resistance to apoptotic agents or anticancer drugs. However, the mechanistic understanding on how CK2 supports survival is far from complete. In this work, we demonstrate both in rat and humans that (i) Par-4 is a new substrate of the survival kinase CK2 and (ii) phosphorylation by CK2 impairs Par-4 proapoptotic functions. We also unravel different levels of CK2-dependent regulation of Par-4 between species. In rats, the phosphorylation by CK2 at the major site, S124, prevents caspase-mediated Par-4 cleavage (D123) and consequently impairs the proapoptotic function of Par-4. In humans, CK2 strongly impairs the apoptotic properties of Par-4, independently of the caspase-mediated cleavage of Par-4 (D131), by triggering the phosphorylation at residue S231. Furthermore, we show that human Par-4 residue S231 is highly phosphorylated in prostate cancer cells as compared with their normal counterparts. Finally, the sensitivity of prostate cancer cells to apoptosis by CK2 knockdown is significantly reversed by parallel knockdown of Par-4. Thus, Par-4 seems a critical target of CK2 that could be exploited for the development of new anticancer drugs.  相似文献   

8.
Since Fip1 is phosphoprotein we investigated whether it is a substrate for protein kinase CK2. According to the amino acid sequence Fip1 harbours twenty putative CK2 phosphorylation sites. Here we have report characterization of Fip1 as a substrate for both forms of CK2. Fip1 serves as a substrate for both the recombinant CK2α ′ (K m 1.28 μM) and holoenzyme (K m 1.4 μM) but not for CK1. By MALDI-MS we identified the two serine residues at positions 73 and 77 as the possible in vitro phosphorylation sites. These data may help to elucidate the role of Fip1 in the mRNA 3'-OH polyadenylation process and the involvement of CK2 mediated phosphorylation in regulation of interactions and activity members of cleavage/polyadenylation factor (CPF) complex.  相似文献   

9.
10.
The calpain enzymes play important roles in numerous processes in the cell. In vivo analysis of calpain activity might be useful for clarification of their role in different diseases. Our early results suggested that a peptide substrate, Dabcyl-TPLKSPPPSPR- EDANS, based on the calpain cleavage sequences is suitable for developing a new cell-penetrating calpain substrate. This conjugate with the Dabcyl and EDANS fluorophores as a FRET pair is specific for calpain even in cell lysate, but unfortunately has poor cell uptake. Therefore, we have modified this sequence by C-terminal elongation with heptaarginine unit possessing cell-penetrating activity. In order to preserve the necessary distance between the two FRET partners, we inserted a Glu residue between the substrate and heptaarginine parts of the peptide. Thus, the cell-penetrating substrate Dabcyl-TPLKSPPPSPRE( EDANS)R 7 was synthesized. This peptide not only retained the substrate property, but was a better substrate of Calpain B enzyme. The cell uptake of the substrate conjugate was studied by fluorescence microscopy and flow cytometry. The results showed that the conjugate enters COS-7 cells more efficiently than the peptide substrate without heptaarginine. The uptake occurs already at low concentration and the compound is distributed homogeneously inside cells. These observations might indicate that this new cell-penetrating substrate could be useful for determining calpain activity in cell lysate or in intact cells of various origins.  相似文献   

11.
12.
The enzymatic studies were performed to reveal a mode of activation of human topoisomerase I by a direct interaction with protein kinase CK2. In the absence of ATP CK2 kinase activated DNA relaxation about twofold. CK2 subunit was identified as solely responsible for the stimulation of relaxing activity by CK2 kinase. CK2 activated the relaxation only at the excess of the substrate over topoisomerase I. At the equimolar ratio of the substrate DNA and topoisomerase I the activation was not observed. There was also no effect of CK2 on camptothecin-induced cleavage of DNA by htopo I. These results identify an accelerated movement of topoisomerase I between substrate molecules as a cause of the activation of DNA relaxation by CK2 kinase.  相似文献   

13.
Microtubule-associated protein 2 (MAP2) is an excellent substrate for both cyclic-AMP (cAMP)-dependent and Ca2+/calmodulin-dependent kinases. A recently purified cytosolic Ca2+/calmodulin-dependent kinase (now designated CaM kinase II) phosphorylates MAP2 as a major substrate. We now report that microtubule-associated cAMP-dependent and calmodulin-dependent protein kinases phosphorylate MAP2 on separate sites. Tryptic phosphopeptide digestion and two-dimensional phosphopeptide mapping revealed 11 major peptides phosphorylated by microtubule-associated cAMP-dependent kinase and five major peptide species phosphorylated by calmodulin-dependent kinase. All 11 of the cAMP-dependently phosphorylated peptides were phosphorylated on serine residues, whereas four of five major peptides phosphorylated by the calmodulin-dependent kinase were phosphorylated on threonine. Only one peptide spot phosphorylated by both kinases was indistinguishable by both migration and phosphoamino acid site. The results indicate that cAMP-dependent and calmodulin-dependent kinases may regulate microtubule and cytoskeletal dynamics by phosphorylation of MAP2 at distinct sites.  相似文献   

14.

Background

Protein kinase CK2 is a pleiotropic enzyme which is ubiquitously expressed in eukaryotic cells. Several years ago CK2 was found to be associated with the mammalian endoplasmic reticulum. So far nothing is known about the function of CK2 at the ER.

Methods

CK2 phosphorylation sites in the polypeptide chain of Sec63 were mapped using deletion mutants and a peptide library. Binding of Sec63 to CK2 and to Sec62 was analyzed by pull-down assays and by co-immunoprecipitation

Results

Sec63 was identified as a novel substrate and binding partner of protein kinase CK2.We identified serine 574, serine 576 and serine 748 as CK2 phosphorylation sites. Phosphorylation of Sec63 by CK2 enhanced its binding to Sec62.

Conclusions

Protein kinase CK2 phosphorylation of Sec63 leads to an enhanced binding of Sec63 to Sec62. This complex formation is a prerequisite for a functional ER protein translocon.

General significance

Thus, our present data indicate a regulatory role of CK2 in the ER protein translocation.  相似文献   

15.
16.
Previous studies from our laboratory had indicated that cytochrome c-independent processing and activation of caspase-9 by caspase-8 contributed to early amplification of the caspase cascade in tumor necrosis factor (TNF)-alpha-treated murine cells. Here we show that murine caspase-9 is phosphorylated by casein kinase 2 (CK2) on a serine near the site of caspase-8 cleavage. CK2 has been shown to regulate cleavage of the pro-apoptotic Bid protein by phosphorylating serine residues near its caspase-8 cleavage site. Similarly, CK2 modification of Ser(348) on caspase-9 appears to render the protease refractory to cleavage by active caspase-8. This phosphorylation did not affect the ability of caspase-9 to autoprocess. Substitution of Ser(348) abolished phosphorylation but not cleavage, and a phospho-site mutant promoted apoptosis in TNF-alpha-treated caspase-9 knock-out mouse embryo fibroblasts. Furthermore, inhibition of CK2 activity and RNA interference-mediated knockdown of the kinase accelerated caspase-9 activation, whereas phosphatase inhibition delayed both caspase-9 activation and death in response to TNF receptor occupation. Taken together, these studies show that TNF receptor cross-linking promotes dephosphorylation of caspase-9, rendering it susceptible to processing by activated caspase-8 protein. Thus, our data suggest that modification of procaspase-9 to protect it from inappropriate cleavage and activation is yet another mechanism by which the oncogenic kinase CK2 promotes survival.  相似文献   

17.
Apoptosis, or programmed cell death, is a vital cellular process often impaired in diseases such as cancer. Aspartic acid-directed proteases known as caspases cleave a broad spectrum of cellular proteins and are central constituents of the apoptotic machinery. Caspases are regulated by a variety of mechanisms including protein phosphorylation. One intriguing mechanism by which protein kinases can modulate caspase pathways is by blocking substrate cleavage through phosphorylation of residues adjacent to caspase cleavage sites. To explore this mechanism in detail, we recently undertook a systematic investigation using a combination of bioinformatics, peptide arrays, and peptide cleavage assays to identify proteins with overlapping protein kinase and caspase recognition motifs (Duncan et al., Sci Signal 4:ra30, 2011). These studies implicated protein kinase CK2 as a global regulator of apoptotic pathways. In this article, we extend the analysis of proteins with overlapping CK2 and caspase consensus motifs to examine the convergence of CK2 with specific caspases and to identify CK2/caspase substrates known to be phosphorylated or cleaved in cells. Given its constitutive activity and elevated expression in cancer, these observations suggest that the ability of CK2 to modulate caspase pathways may contribute to a role in promoting cancer cell survival and raise interesting prospects for therapeutic targeting of CK2.  相似文献   

18.
19.
Ecto-phosphorylation is emerging as an important mechanism to regulate cellular ligand interactions and signal transduction. Here we show that extracellular phosphorylation of the cell surface receptor collagen XVII regulates shedding of its ectodomain. Collagen XVII, a member of the novel family of collagenous transmembrane proteins and component of the hemidesmosomes, mediates adhesion of the epidermis to the dermis in the skin. The ectodomain is constitutively shed from the cell surface by metalloproteinases of the ADAM (a disintegrin and metalloproteinase) family, mainly by tumor necrosis factor-alpha converting enzyme (TACE). We used biochemical, mutagenesis, and structural modeling approaches to delineate mechanisms controlling ectodomain cleavage. A standard assay for extracellular phosphorylation, incubation of intact keratinocytes with cell-impermeable [gamma-(32)P]ATP, led to collagen XVII labeling. This was significantly diminished by both broad-spectrum extracellular kinase inhibitor K252b and a specific casein kinase 2 (CK2) inhibitor. Collagen XVII peptides containing a putative CK2 recognition site were phosphorylated by CK2 in vitro, disclosing Ser(542) and Ser(544) in the ectodomain as phosphate group acceptors. Phosphorylation of Ser(544) in vivo and in vitro was confirmed by immunoblotting of epidermis and HaCaT keratinocyte extracts with phosphoepitope-specific antibodies. Functionally, inhibition of CK2 kinase activity or mutation of the phosphorylation acceptor Ser(544) to Ala significantly increased ectodomain shedding, whereas overexpression of CK2alpha inhibited cleavage of collagen XVII. Structural modeling suggested that the phosphorylation of serine residues prevents binding of TACE to its substrate. Thus, extracellular phosphorylation of collagen XVII by ecto-CK2 inhibits its shedding by TACE and represents novel mechanism to regulate adhesion and motility of epithelial cells.  相似文献   

20.
CK1 constitutes a protein kinase subfamily that is involved in many important physiological processes. However, there is limited knowledge about mechanisms that regulate their activity. Isoforms CK1δ and CK1ε were previously shown to autophosphorylate carboxy‐terminal sites, a process which effectively inhibits their catalytic activity. Mass spectrometry of CK1α and splice variant CK1αL has identified the autophosphorylation of the last four carboxyl‐end serines and threonines and also for CK1αS, the same four residues plus threonine‐327 and serine‐332 of the S insert. Autophosphorylation occurs while the recombinant proteins are expressed in Escherichia coli. Mutation of four carboxy‐terminal phosphorylation sites of CK1α to alanine demonstrates that these residues are the principal but not unique sites of autophosphorylation. Treatment of autophosphorylated CK1α and CK1αS with λ phosphatase causes an activation of 80–100% and 300%, respectively. Similar treatment fails to stimulate the CK1α mutants lacking autophosphorylation sites. Incubation of dephosphorylated enzymes with ATP to allow renewed autophosphorylation causes significant inhibition of CK1α and CK1αS. The substrate for these studies was a synthetic canonical peptide for CK1 (RRKDLHDDEEDEAMS*ITA). The stimulation of activity seen upon dephosphorylation of CK1α and CK1αS was also observed using the known CK1 protein substrates DARPP‐32, β‐catenin, and CK2β, which have different CK1 recognition sequences. Autophosphorylation effects on CK1α activity are not due to changes in Kmapp for ATP or for peptide substrate but rather to the catalytic efficiency per pmol of enzyme. This work demonstrates that CK1α and its splice variants can be regulated by their autophosphorylation status. J. Cell. Biochem. 106: 399–408, 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号