首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
BackgroundTrypanosoma cruzi cytosolic tryparedoxin peroxidase (c-TXNPx) is a 2-Cys peroxiredoxin that plays an important role in coping with host cell oxidative response during the infection process, for which it has been described as a virulence factor.MethodsFour residues corresponding to c-TXNPx catalytic and solvent-exposed cysteines were individually mutated to serine by site-specific mutagenesis. Susceptibility to redox treatments and oligomeric dynamics were investigated by western-blot and gel filtration chromatography. Chaperone and peroxidase activities were determined.ResultsIn this study we demonstrated that c-TXNPx exists as different oligomeric forms, from decameric to high molecular mass aggregates. Moreover, c-TXNPx functions as a dual-function protein acting both as a peroxidase and as a molecular chaperone. Its chaperone function was shown to be independent of the presence of catalytic cysteines, even in the reduced and decameric forms, although it is enhanced when the protein is overoxidized leading to the formation of high molecular mass aggregates.Conclusionsc-TXNPx has chaperone activity which does not depend on the redox state. c-TXNPx does not undergo the dimer-decamer transition in the oxidized state described for other peroxiredoxins. Overoxidized c-TXNPx exists as different oligomeric forms from decamer to high molecular mass aggregates which are in a very slow dynamic equilibrium. The non-catalytic C57 residue may have a role in the maintenance of the decameric form, but seems not to have an alternative CP and CR role.General significanceThis study provides novel insights into some key aspects of the oligomerization dynamics and function of c-TXNPx.  相似文献   

2.
《Free radical research》2013,47(4):439-444
Abstract

The peroxidase-type reactivity of cytochrome c is proposed to play a role in free radical production and/or apoptosis. This study describes cytochrome c catalysis of peroxide consumption by ascorbate. Under conditions where the sixth coordination position at the cytochrome c heme iron becomes more accessible for exogenous ligands (by carboxymethylation, cardiolipin addition or by partial denaturation with guanidinium hydrochloride) this peroxidase activity is enhanced. A reaction intermediate is detected by stopped-flow UV-vis spectroscopy upon reaction of guanidine-treated cytochrome c with peroxide, which resembles the spectrum of globin Compound II species and is thus proposed to be a ferryl species. The ability of physiological levels of ascorbate (10–60 µM) to interact with this species may have implications for mechanisms of cell signalling or damage that are based on cytochrome c/peroxide interactions.  相似文献   

3.
Wang  Tietao  Gao  Fen  Kang  Yiwen  Zhao  Chao  Su  Tao  Li  Muhang  Si  Meiru  Shen  Xihui 《Biotechnology letters》2016,38(7):1221-1228
Objectives

To investigate mycothiol peroxidase (MPx) of Corynebacterium glutamicum that is a novel CysGPx family peroxidase using both the mycoredoxin and thioredoxin reducing systems as proton donors for peroxide detoxification and may be involved in the relief of acid stress.

Results

A Δmpx mutant exhibited significantly decreased resistance to acid stress and markedly increased accumulation of reactive oxygen species (ROS) and protein carbonylation levels in vivo. Over-expression of mpx increased the resistance of C. glutamicum to acid stress by reducing ROS accumulation. The stress-responsive extracytoplasmic function-sigma (ECF-σ) factor, SigH, mediated acid-induced expression of mpx in the wild-type under acid conditions, which in turn directly contributed to tolerance to acid stress.

Conclusion

MPx is essential for combating acid stress by reducing intracellular ROS levels induced by acid stress in C. glutamicum, which adds a new dimension to the general physiological functions of CysGPx.

  相似文献   

4.
BackgroundPeroxidation of PUFAs by a variety of endogenous and xenobiotic electrophiles is a recognized pathophysiological process that can lead to adverse health effects. Although secondary products generated from peroxidized PUFAs have been relatively well studied, the role of primary lipid hydroperoxides in mediating early intracellular oxidative events is not well understood.MethodsLive cell imaging was used to monitor changes in glutathione (GSH) oxidation in HAEC expressing the fluorogenic sensor roGFP during exposure to 9-hydroperoxy-10E,12Z-octadecadienoic acid (9-HpODE), a biologically important long chain lipid hydroperoxide, and its secondary product 9-hydroxy-10E,12Z-octadecadienoic acid (9-HODE). The role of hydrogen peroxide (H2O2) was examined by direct measurement and through catalase interventions. shRNA-mediated knockdown of glutathione peroxidase 4 (GPx4) was utilized to determine its involvement in the relay through which 9-HpODE initiates the oxidation of GSH.ResultsExposure to 9-HpODE caused a dose-dependent increase in GSH oxidation in HAEC that was independent of intracellular or extracellular H2O2 production and was exacerbated by NADPH depletion. GPx4 was involved in the initiation of GSH oxidation in HAEC by 9-HpODE, but not that induced by exposure to H2O2 or the low molecular weight alkyl tert-butyl hydroperoxide (TBH).ConclusionsLong chain lipid hydroperoxides can directly alter cytosolic EGSH independent of secondary lipid oxidation products or H2O2 production. NADPH has a protective role against 9-HpODE induced EGSH changes. GPx4 is involved specifically in the reduction of long-chain lipid hydroperoxides, leading to GSH oxidation.SignificanceThese results reveal a previously unrecognized consequence of lipid peroxidation, which may provide insight into disease states involving lipid peroxidation in their pathogenesis.  相似文献   

5.
ABSTRACT

Sixteen species of Gymnosperms have been screened for cytosolic ascorbate peroxidase by means of native polyacrylamide gel electrophoresis. This analysis shows that a single form of the enzyme is the most common situation. The enzyme reveals a similar electrophoretic mobility in species belonging to the same genus and sometimes to different genera. In some Pinaceae, two bands of activity were observed. The presence in the archaic spermatophyte Ginkgo biloba, as well as in the more advanced monocotyledons, of three isoforms of ascorbate peroxidase, might suggest that three different cytosolic ascorbate peroxidase genes were already present in this archaic species.  相似文献   

6.
ABSTRACT

Six species of the Quercus genus (Quercus ilex L., Q. coccifera L., Q. suber L., Q. trojana Webb, Q. macrolepis Kotschy, Q. cerris L.) have been screened for cytosolic ascorbate peroxidase (APX) by means of native polyacrylamide gel electrophoresis (PAGE). A single isozyme was found in five species (Q. trojana, Q. suber, Q. cerris, Q. macrolepis and Q. coccifera), while Q. ilex shows two different APX proteins. The data showed marked similarities among Q. trojana, Q. suber, Q. cerris and Q. macrolepis with respect to the electrophoretic mobility. The validity of APX electrophoretic patterns in systematic studies is discussed.  相似文献   

7.
AimsTo clarify the mechanism of the protective effect of non-steroidal anti-inflammatory drugs (NSAIDs) on Alzheimer's disease, inactivation of cholinesterase (ChE) induced by NSAIDs was examined.Main methodsEquine ChE and rat brain homogenate were incubated with NSAIDs and horseradish peroxidase (HRP) and H2O2 (HRP–H2O2). ChE activity was measured by using 5,5'-dithiobis(nitrobenzoic acid). By using electron spin resonance, NSAID radicals induced by reaction with HRP–H2O2 were detected in the presence of spin trap agents.Key findingsEquine ChE was inactivated by mefenamic acid with HRP–H2O2. ChE activity in rat brain homogenate decreased dependent on the concentration of mefenamic acid in the presence of HRP–H2O2. NSAIDs diclofenac, indomethacin, phenylbutazone, piroxicam and salicylic acid inactivated ChE. Oxygen radical scavengers did not prevent inactivation of ChE induced by mefenamic acid with HRP–H2O2. However, spin trap agents 5,5-dimethyl-1-pyrroline-l-oxide and N-methyl-nitrosopropane, reduced glutathione and ascorbic acid strongly inhibited inactivation of ChE, indicating participation of mefenamic acid radicals. Fluorescent emission of ChE peaked at 400 nm, and the Vmax value of ChE changed during interaction of mefenamic acid with HRP–H2O2, indicating that ChE may be inactivated through modification of tyrosine residues by mefenamic radicals.SignificanceThe protective effect of NSAIDs on Alzheimer's disease seems to occur through inactivation of ChE induced by NSAIDs radicals.  相似文献   

8.
BackgroundCancer is one of the major threats to human health and current cancer therapies have been unsuccessful in eradicating it. Ferroptosis is characterized by iron-dependence and lipid hydroperoxides accumulation, and its primary mechanism involves the suppression of system Xc-GSH (glutathione)-GPX4 (glutathione peroxidase 4) axis. Co-incidentally, cancer cells are also metabolically characterized by iron addiction and ROS tolerance, which makes them vulnerable to ferroptosis. This may provide a new tactic for cancer therapy.Scope of reviewThe general features and mechanisms of ferroptosis, and the basis that makes cancer cells vulnerable to ferroptosis are described. Further, we emphatically discussed that disrupting GSH may not be ideal for triggering ferroptosis of cancer cells in vivo, but directly inhibiting GPX4 and its compensatory members could be more effective. Finally, the various approaches to directly inhibit GPX4 without disturbing GSH were described.Major conclusionsTargeting system Xc or GSH may not effectively trigger cancer cells' ferroptosis in vivo the existence of other compensatory pathways. However, directly targeting GPX4 and its compensatory members without disrupting GSH may be more effective to induce ferroptosis in cancer cells in vivo, as GPX4 is essential in preventing ferroptosis.General significanceCancer is a severe threat to human health. Ferroptosis-based cancer therapy strategies are promising, but how to effectively induce ferroptosis in cancer cells in vivo is still a question without clear answers. Thus, the viewpoints raised in this review may provide some references and different perspectives for researchers working on ferroptosis-based cancer therapy.  相似文献   

9.
BackgroundHorseradish peroxidase (HRP) catalyzes H2O2 dismutation while undergoing heme inactivation. The mechanism underlying this process has not been fully elucidated. The effects of nitroxides, which protect metmyoglobin and methemoglobin against H2O2-induced inactivation, have been investigated.MethodsHRP reaction with H2O2 was studied by following H2O2 depletion, O2 evolution and heme spectral changes. Nitroxide concentration was followed by EPR spectroscopy, and its reactions with the oxidized heme species were studied using stopped-flow.ResultsNitroxide protects HRP against H2O2-induced inactivation. The rate of H2O2 dismutation in the presence of nitroxide obeys zero-order kinetics and increases as [nitroxide] increases. Nitroxide acts catalytically since its oxidized form is readily reduced to the nitroxide mainly by H2O2. The nitroxide efficacy follows the order 2,2,6,6-tetramethyl-piperidine-N-oxyl (TPO) > 4-OH-TPO > 3-carbamoyl proxyl > 4-oxo-TPO, which correlates with the order of the rate constants of nitroxide reactions with compounds I, II, and III.ConclusionsNitroxide catalytically protects HRP against inactivation induced by H2O2 while modulating its catalase-like activity. The protective role of nitroxide at μM concentrations is attributed to its efficient oxidation by P940, which is the precursor of the inactivated form P670. Modeling the dismutation kinetics in the presence of nitroxide adequately fits the experimental data. In the absence of nitroxide the simulation fits the observed kinetics only if it does not include the formation of a Michaelis-Menten complex.General SignificanceNitroxides catalytically protect heme proteins against inactivation induced by H2O2 revealing an additional role played by nitroxide antioxidants in vivo.  相似文献   

10.
Abstract

We have shown that 1,2-diacylglycerol hydroperoxides activate protein kinase C (PKC) as efficiently as does phorbol ester [Takekoshi S, Kambayashi Y, Nagata H, Takagi T, Yamamoto Y, Watanabe K. Activation of protein kinase C by oxidized diacylglycerol. Biochem Biophys Res Commun 1995; 217: 654-660]. 1,2-Diacylglycerol hydroperoxides also stimulate human neutrophils to release superoxide whereas their hydroxides do not [Yamamoto Y, Kambayashi Y, Ito T, Watanabe K, Nakano M. 1,2-Diacylglycerol hydroperoxides induce the generation and release of superoxide anion from human polymorphonuclear leukocytes. FEBS Lett 1997; 412: 461-464]. One of the proposed mechanisms for the formation of 1,2-diacylglycerol hydroperoxides is the hydrolysis of phosphatidylcholine hydroperoxides by phospholipase C (PLC). To confirm this hypothesis, we incubated 1-palmitoyl-2-linoleoyl-phosphatidylcholine (PLPC) liposomes containing PLPC hydroperoxides (PLPC-OOH) with Bacillus cereus PLC and found 1-palmitoyl-2-linoleoylglycerol (PLG) and its hydroperoxide (PLG-OOH) were produced. PLC hydrolyzed the two substrates without preference, as the yields of PLG and PLG-OOH were the same even though cholesterol was incorporated into liposomes to increase bilayer integrity. Phospholipid hydroperoxide glutathione peroxidase (PHGPX) reduced PLG-OOH to its hydroxide in the presence of glutathione while the conventional cytosolic glutathione peroxidase did not. These data suggest that PLC hydrolyzes oxidized biomembranes to give 1,2-diacylglycerol hydroperoxides for PKC stimulation but PHGPX may prevent neutrophil stimulation by reducing 1,2-diacylglycerol hydroperoxides to their hydroxides.  相似文献   

11.
Abstract

Textile industries account for two-thirds of the total dyestuff market been responsible for the production of a large volume of effluent with unfixed dye. Aromatic dyes as potassium indigo-trisulfonate dye (PIT) are characterized as a chemically stable and complex molecule with high heat and light stability and with high toxicity even at low concentration. In order to evaluate an environmentally friendly method to remove potassium indigo-trisulfonate dye from aqueous solution, a commercial peroxidase (horseradish peroxidase, HPR) was used in the experimental and the data were modelled by the Arrhenius equation. According to the results, the best reaction conditions were obtained using 80?mg.L?1 of dye concentration, 45?°C, pH 5.0, 349.35?U.mL?1, and 4.5?mM hydrogen peroxide concentration leading to a 96% of dye discolouration.  相似文献   

12.
Abstract

Over 80 Angiosperms have been screened for cytosolic ascorbate peroxidase by means of native-polyacrylamide gel electrophoresis techniques. The results of our analysis show that the presence of a single cytosolic ascorbate peroxidase form is the most common case in the Angiosperms investigated when seedlings or young tissues are analized. This is a conserved character in orders of the Dicots. Two electrophoretic distinct AApx forms have been identified in Magnoliales, the ancestor group from which both Monocots and Dicots were originated and in few other orders. A notable increase in the isoenzyme number is observed in the advanced Monocots (Poales), thus suggesting the existence of an evolutionary trend leading in Monocots to an apparently progressive rise in the ascorbate-dependent enzymatic scavenging of hydrogen peroxide.  相似文献   

13.
ABSTRACT

Horseradish peroxidase (HRP) isoenzyme C1a is one of the most widely used enzymes for various analytical methods in bioscience research and medical fields. In these fields, real-time monitoring of HRP activity is highly desirable because the utility of HRP as a reporter enzyme would be expanded. In this study, we developed a simple assay system enabling real-time monitoring of HRP activity by using biolayer interferometry (BLI). The HRP activity was quantitatively detected on a BLI sensor chip by tracing a binding response of tyramide, a substrate of HRP, onto an immobilized protein. This system could be applied to analyses related to oxidase activity, as well as to the functional analysis of recombinant HRP.  相似文献   

14.
《Free radical research》2013,47(4):487-502
Abstract

Glutathione peroxidase (GPx) is a well-known seleno-enzyme that protects cells from oxidative stress (e.g., lipid peroxidation and oxidation of other cellular proteins and macromolecules), by catalyzing the reduction of harmful peroxides (e.g., hydrogen peroxide: H2O2) with reduced glutathione (GSH). However, the catalytic mechanism of GPx kinetics is not well characterized in terms of a mathematical model. We developed here a mechanistic mathematical model of GPx kinetics by considering a unified catalytic scheme and estimated the unknown model parameters based on different experimental data from the literature on the kinetics of the enzyme. The model predictions are consistent with the consensus that GPx operates via a ping-pong mechanism. The unified catalytic scheme proposed here for GPx kinetics clarifies various anomalies, such as what are the individual steps in the catalytic scheme by estimating their associated rate constant values and a plausible rationale for the contradicting experimental results. The developed model presents a unique opportunity to understand the effects of pH and product GSSG on the GPx activity under both physiological and pathophysiological conditions. Although model parameters related to the product GSSG were not identifiable due to lack of product-inhibition data, the preliminary model simulations with the assumed range of parameters show that the inhibition by the product GSSG is negligible, consistent with what is known in the literature. In addition, the model is able to simulate the bi-modal behavior of the GPx activity with respect to pH with the pH-range for maximal GPx activity decreasing significantly as the GSH levels decrease and H2O2 levels increase (characteristics of oxidative stress). The model provides a key component for an integrated model of H2O2 balance under normal and oxidative stress conditions.  相似文献   

15.
Red calli occur frequently in callus cultures of Prunus incisa Thunb. Calli that become red in color stop growing and turn brown while calli that remain green continue to grow. This study was carried out to compare the accumulation of antioxidant activity in red and green calli. The anthocyanin content, peroxidase isoforms and peroxidase activity were different in red and green calli. Red calli contained higher levels of anthocyanins, cell wall peroxidase activity and lower soluble peroxidase activity than green calli. A basic cell wall peroxidase (pI 10.0) was present only in red calli. Two acidic peroxidases (pI 6.0 and 6.8) had higher accumulation in green calli than in red calli. In the cell wall fraction of red calli, a peroxidase isoform with an apparent molecular mass of 30 kDa was found. MALDI -TOF mass spectrometry and internal amino acid sequence analysis indicate that this protein has a very high similarity with the cell wall peroxidase of Beta vulgarisL .  相似文献   

16.
Key message

A class III peroxidase from Artemisia annua has been shown to indicate the possibility of cellular localization-based role diversity, which may have implications in artemisinin catabolism as well as lignification.

Abstract

Artemisia annua derives its importance from the antimalarial artemisinin. The –O–O– linkage in artemisinin makes peroxidases relevant to its metabolism. Earlier, we identified three peroxidase-coding genes from A. annua, whereby Aa547 showed higher expression in the low-artemisinin plant stage whereas Aa528 and Aa540 showed higher expression in the artemisinin-rich plant stage. Here we carried out tertiary structure homology modelling of the peroxidases for docking studies. Maximum binding affinity for artemisinin was shown by Aa547. Further, Aa547 showed greater binding affinity for post-artemisinin metabolite, deoxyartemisinin, as compared to pre-artemisinin metabolites (dihydroartemisinic hydroperoxide, artemisinic acid, dihydroartemisinic acid). It also showed significant binding affinity for the monolignol, coniferyl alcohol. Moreover, Aa547 expression was related inversely to artemisinin content and directly to total lignin content as indicated by its transient silencing and overexpression in A. annua. Artemisinin reduction assay also indicated inverse relationship between Aa547 expression and artemisinin content. Subcellular localization using GFP fusion suggested that Aa547 is peroxisomal. Nevertheless, dual localization (intracellular/extracellular) of Aa547 could not be ruled out due to its effect on both, artemisinin and lignin. Taken together, this indicates possibility of localization-based role diversity for Aa547, which may have implications in artemisinin catabolism as well as lignification in A. annua.

  相似文献   

17.
Abstract

Objectives

The objective of this study was to investigate the effects of catechin and epicatechin on the activity of the endogenous antioxidant enzymes superoxide dismutase (SOD) and glutathione peroxidase (GPx) (as well as the total antioxidant capacity (TAC)) of rats after intra-peritoneal (i.p.) administration.

Methods

Twenty-four Wistar rats were randomly divided into two groups: the experimental group which was administered daily with a 1:1 mixture of epicatechin and catechin at a concentration of 23 mg/kg body weight for 10 days and the control group which was injected daily with an equal amount of saline. Blood and urine samples were collected before and after the administration period, as well as 10 days after (follow-up).

Results

Intra-peritoneal administration of catechins led to a potent decrease in GPx levels and a significant increase in SOD levels. TAC was significantly increased in plasma and urine. Malonaldehyde levels in urine remained stable. In the animals treated with catechins, SOD activity showed a moderate negative correlation with GPx activity.

Discussion

Boosting the activity of the antioxidant enzymes could be a potential adjuvant approach for the treatment of the oxidative stress-related diseases.  相似文献   

18.
The second-order rate constant (k4) for the oxidation of monosubstituted phenols and anilines by lactoperoxidase compound II was examined by Chance's method [B. Chance, Arch. Biochem. Biophys. 71 (1957), 130–136]. When the electronic states of these substrates were calculated by an ab initio molecular orbital method, it was found that the log k4 value correlates well with the highest occupied molecular orbital (HOMO) energy level but not with the net charge or frontier electron density. These results are essentially similar to those reported previously in the case of horseradish peroxidase [J. Sakurada, R. Sekiguchi, K. Sato, and T. Hosoya, Biochemistry 29 (1990), 4093–4098], showing some dissimilar features which are considered to reflect the structural difference between the two enzymes.Abbreviations HOMO highest occupied molecular orbital - HRP horseradish peroxidase - LPO lactoperoxidase (EC 1.11.1.7) - LUMO lowest unoccupied molecular orbital  相似文献   

19.
Abstract

Singlet oxygen (1O2) is a highly reactive form of molecular oxygen that may harm living systems by oxidizing critical cellular macromolecules. A soluble protein from Saccharomyces cerevisiae specifically provides protection against a thiol-containing metal-catalyzed oxidation system (thiol/Fe3+/O2) but not against an oxidation system without thiol. This 25 kDa protein acts as a peroxidase but requires the NADPH-dependent thioredoxin system or a thiol-containing intermediate, and was named thioredoxin peroxidase (TPx). The role of TPx in the cellular defense against oxidative stress induced by singlet oxygen was investigated in Escherichia coli containing an expression vector with a yeast genomic DNA fragment that encodes TPx and mutant in which the catalytically essential amino acid cysteine (Cys-47) has been replaced with alanine by a site-directed mutagenesis. Upon exposure to methylene blue and visible light, which generates singlet oxygen, there was a distinct difference between the two strains in regard to growth kinetics, viability, the accumulation of oxidized proteins and lipids, and modulation of activities of superoxide dismutase and catalase. The results suggest that TPx may play an important protective role in a singlet oxygen-mediated cellular damage.  相似文献   

20.
《Free radical research》2013,47(3):228-235
Abstract

Gastrointestinal glutathione peroxidase (GI-GPx, GPx2) is a selenium-dependent enzyme and regarded as the first line of defense against oxidative stress caused by ingested pro-oxidants or gut microbes. As the essential part of the catalytic site of GPx2, selenocysteine (Sec) is encoded by an in-frame UGA stop codon, which makes the expression of human GPx2 (hGPx2) using traditional recombinant DNA technology difficult. In order to produce bioactive recombinant hGPx2, the gene of hGPx2 was designed with the conversion of the codons for four cysteine (Cys) residues to the codons for serine (Ser) residues and the codon for Sec-40 was changed to the codon for Cys. This recombinant seleno-hGPx2 mutant was obtained using a single protein production system in a cysteine (Cys) auxotrophic strain, in which Sec was introduced into the protein via tRNACys misleading. The activity of this mutant was in the same order of magnitude as that of hGPx4, but about one order of magnitude lower than that of hGPx1 and hGPx3. Further study showed that the mutant exhibited pH and temperature optima of 7.4 and 25°C, respectively. The results obtained from the kinetic analysis demonstrated that it followed a typical ping-pong mechanism similar to native GPx. As there was no report on the activity of purified GPx2, this research was valuable in recognizing native GPx2. In addition, a three-dimensional structure of seleno-hGPx2 mutant was constructed, which could facilitate further analysis of the role and the catalytic mechanism of native GPx2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号