首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A new series of peptidyl allyl sulfone inhibitors was discovered while trying to synthesize epoxy sulfone inhibitors from vinyl sulfones using basic oxidizing conditions. The various dipeptidyl allyl sulfones were evaluated with calpain I, papain, cathepsins B and L, cruzain and rhodesain and found to be potent inhibitors. In comparison to the previously developed class of vinyl sulfone inhibitors, the novel dipeptidyl allyl sulfones were more potent inhibitors than the corresponding dipeptidyl vinyl sulfones. It was observed that the stereochemistry of the vinyl sulfone precursor played a role in the potency of the dipeptidyl allyl sulfone inhibitor.  相似文献   

2.
Cruzain is the major cysteine protease of Trypanosoma cruzi, the infectious agent responsible for Chagas disease, and cruzain inhibitors display considerable antitrypanosomal activity. In the present work we elucidated crystallographic data of fukugetin, a biflavone isolated from Garcinia brasiliensis, and investigated the role of this molecule as cysteine protease inhibitor. The kinetic analyses demonstrated that fukugetin inhibited cruzain and papain by a slow reversible type inhibition with KI of 1.1 and 13.4 µM, respectively. However, cruzain inhibition was about 12 times faster than papain inhibition. Lineweaver–Burk plots demonstrated partial competitive inhibition for cruzain and hyperbolic mixed-type inhibition for papain. Furthermore, the docking results showed that the biflavone binds to ring C′ in the S2 pocket and to ring C in the S3 pocket through hydrophobic interactions and hydrogen bonds. Finally, fukugetin also presented inhibitory activity on proteases of the T. cruzi extract, with IC50 of 7 µM.  相似文献   

3.
The inhibition of cysteine proteases is being studied as a strategy to combat parasitic diseases such as Chagas' disease, leishmaniasis, and malaria. Cruzain is the major cysteine protease of Trypanosoma cruzi, the etiologic agent of Chagas' disease. A crystal structure of cruzain, covalently inactivated by fluoromethyl ketone inhibitor 1 (Cbz-Phe-Ala-FMK), was used as a template to design potential inhibitors. Conformationally constrained γ-lactams containing electrophilic aldehyde (12, 17, 18, 25, 26, and 29) or vinyl sulfone (43, 44, and 46) units were synthesized. Constrained lactam 26 had IC50 values of ca. 20 nM against the Leishmania major protease and ca. 50 nM versus falcipain, an important cysteine protease isolated from Plasmodium falciparum. However, all of the conformationally constrained inhibitors were weak inhibitors of cruzain, compared to unconstrained peptide aldehyde (e.g. 5) and vinyl sulfone inhibitors (e.g. 48, which proved to be an excellent inhibitor of cruzain with an apparent second order inhibition rate constant (kinact/Ki) of 634,000 s−1M−1). A significant reduction in activity was also observed with acyclic inhibitors 30 and 51 containing -methyl phenylalanine residues at the P2 position. These data indicate that the pyrrolidinone ring, especially the quarternary center at P2, interferes with the normal substrate binding mode with cruzain, but not with falcipain or the leishmania protease.  相似文献   

4.
A family of dipeptidyl enoates has been prepared and tested against the parasitic cysteine proteases rhodesain, cruzain and falcipain-2 related to sleeping sickness, Chagas disease and malaria, respectively. They have also been tested against human cathepsins B and L1 for selectivity. Dipeptidyl enoates resulted to be irreversible inhibitors of these enzymes. Some of the members of the family are very potent inhibitors of parasitic cysteine proteases displaying k2nd (M?1s?1) values of seven orders of magnitude. In vivo antiprotozoal testing was also performed. Inhibitors exhibited IC50 values in the micromolar range against Plasmodium falciparum, Trypanosoma brucei, Trypanosoma cruzi and even more promising lower values against Leishmania donovanii.  相似文献   

5.
Cysteine proteases of malaria parasites   总被引:13,自引:0,他引:13  
A number of cysteine proteases of malaria parasites have been described, and many more putative cysteine proteases are suggested by analysis of the Plasmodium falciparum genome sequence. Studies with protease inhibitors have suggested roles for cysteine proteases in hemoglobin hydrolysis, erythrocyte rupture, and erythrocyte invasion by erythrocytic malaria parasites. The best characterised Plasmodium cysteine proteases are the falcipains, a family of papain-family (clan CA) enzymes. Falcipain-2 and falcipain-3 are hemoglobinases that appear to hydrolyse host erythrocyte hemoglobin in the parasite food vacuole. This function was recently confirmed for falcipain-2, with the demonstration that disruption of the falcipain-2 gene led to a transient block in hemoglobin hydrolysis. A role for falcipain-1 in erythrocyte invasion was recently suggested, but disruption of the falcipain-1 gene did not alter parasite development. Other papain-family proteases predicted by the genome sequence include dipeptidyl peptidases, a calpain homolog, and serine-repeat antigens. The serine-repeat antigens have cysteine protease motifs, but in some the active site Cys is replaced by a Ser. One of these proteins, SERA-5, was recently shown to have serine protease activity. As SERA-5 and some other serine-repeat antigens localise to the parasitophorous vacuole in mature parasites, they may play a role in erythrocyte rupture. The P. falciparum genome sequence also predicts more distantly related (clan CD and CE) cysteine proteases, but biochemical characterisation of these proteins has not been done. New drugs for malaria are greatly needed, and cysteine proteases may provide useful new drug targets. Cysteine protease inhibitors have demonstrated potent antimalarial effects, and the optimisation and testing of falcipain inhibitor antimalarials is underway.  相似文献   

6.
The physiological significance of the squamous cell carcinoma antigens 1 (SCCA1) and SCCA2, members of the ovalbumin serpin family, remains unresolved. In this study, we examined whether SCCA1 or SCCA2 inhibits protozoa- or helminth-derived cysteine proteases. SCCA1, but not SCCA2, potently inhibited the cysteine protease activities of CPB2.8 from Leishmania mexicana, cruzain from Trypanosoma cruzi, rhodesain from Trypanosoma brucei rhodesience, and cathepsin L2 from Fasciola hepatica. The inhibitory activities of SCCA1 were due to its resistance to cleavage by the cysteine proteases. The findings indicate that induction of cysteine protease inhibitors might be a novel defense mechanism against parasite development.  相似文献   

7.
Proteolytic activity in the digestive system of the pistachio green stink bug, Brachynema germari, was investigated. The maximum total proteolytic activity in the midgut extract was observed at pH 5, suggesting the presence of cysteine proteases. Hydrolyzing the specific substrates for cysteine proteases revealed the presence of cathepsin B and cathepsin L activities in the midgut extract. The presence of cysteine proteases was confirmed by their noticeable inhibition and activation due to specific inhibitors and activators, respectively. The significant inhibition of chymotryptic activity by the inhibitors showed the presence of chymotrypsin in the midgut. No considerable tryptic activity was observed in the midgut extract. There was no detectable total proteolytic activity in the salivary gland extract. Tryptic activity of the salivary gland extract was also inhibited by the specific inhibitors. The substrates for cysteine proteases were also slightly hydrolyzed by the salivary gland extract. Zymogram analysis showed at least one distinct band due to cysteine protease activity in the midgut extract, and the cysteine protease inhibitor caused almost complete disappearance of the band. Cathepsin B and L activities were mainly detected in midgut divisions m1 and m3, respectively, and maximum chymotrypsin and trypsin activities were observed in m3. In general, the results revealed the significant presence of cathepsin B, cathepsin L, and chymotrypsin proteases in the midgut extract. The major proteolytic activity in the salivary glands seems to be conducted by trypsin-like proteases.  相似文献   

8.
Cathepsin V is a lysosomal cysteine protease that is expressed in the thymus, testis and corneal epithelium. We have determined the 1.6 A resolution crystal structure of human cathepsin V associated with an irreversible vinyl sulfone inhibitor. The fold of this enzyme is similar to the fold adopted by other members of the papain superfamily of cysteine proteases. This study provides a framework for understanding the structural basis for cathepsin V's activity and will aid in the design of inhibitors of this enzyme. A comparison of cathepsin V's active site with the active sites of related proteases revealed a number of differences, especially in the S2 and S3 subsites, that could be exploited in identifying specific cathepsin V inhibitors or in identifying inhibitors of other cysteine proteases that would be selective against cathepsin V.  相似文献   

9.
Dipeptidyl peptidase I (DPPI, cathepsin C) is a lysosomal cysteine protease that can activate zymogens of several different serine proteases by one step or sequential removal of dipeptides from the N-termini of the pro-protease protein substrates. To find DPPI inhibitors more suitable for cellular applications than diazomethyl ketones, we synthesized three types of inhibitors: dipeptide acyloxymethyl ketones, fluoromethyl ketones, and vinyl sulfones (VS). The acyloxymethyl ketones inhibited DPPI slowly and are moderate inhibitors of cellular DPPI. The fluoromethyl ketones were potent, but the inhibited DPPI regained activity quickly. The dipeptide vinyl sulfones were effective inhibitors for DPPI, but they also inhibited cathepsins B, H, and L weakly. The best inhibitor, Ala-Hph-VS-Ph, had a k2/K(I) of 2,000,000M(-1)s(-1). The vinyl sulfones also inhibited intracellular DPPI, and for this application the more stable inhibitors exhibit better potency. We conclude that vinyl sulfones are promising inhibitors to study the intracellular functions of DPPI.  相似文献   

10.
Abstract

Eight different di- and tripeptidyl aldehyde derivatives, each having at its C-terminus an aldehyde analog of L-norleucine, L-methionine, or L-phenylalanine with a preceding L-leucine residue, were synthesized and tested for their inhibitory effects on several serine and cysteine endopeptidases. These compounds showed almost no inhibition of trypsin, and only weak inhibition of α-chymotrypsin and cathepsin H, while they exhibited marked inhibition of cathepsin B < calpain II ≈ calpain I < cathepsin L, being stronger in this order. The mode of inhibition of these cysteine proteinases was competitive for the peptide substrate used and inhibitor constants (Ki) were calculated from the Dixon plot. The best inhibitors found were: 4-phenyl-butyryl-Leu-Met-H for calpain I (Ki, 36 nM) and calpain II (Ki, 50 nM); acetyl-Leu-Leu-nLeu-H for cathepsin L (Ki, 0.5nM); acetyl-Leu-Leu-Met-H for cathepsin B (Ki, 100nM).  相似文献   

11.
We present here a comprehensive analysis of proteases in the peptide substrate space and demonstrate its applicability for lead discovery. Aligned octapeptide substrates of 498 proteases taken from the MEROPS peptidase database were used for the in silico analysis. A multiple‐category naïve Bayes model, trained on the two‐dimensional chemical features of the substrates, was able to classify the substrates of 365 (73%) proteases and elucidate statistically significant chemical features for each of their specific substrate positions. The positional awareness of the method allows us to identify the most similar substrate positions between proteases. Our analysis reveals that proteases from different families, based on the traditional classification (aspartic, cysteine, serine, and metallo), could have substrates that differ at the cleavage site (P1–P1′) but are similar away from it. Caspase‐3 (cysteine protease) and granzyme B (serine protease) are previously known examples of cross‐family neighbors identified by this method. To assess whether peptide substrate similarity between unrelated proteases could reliably translate into the discovery of low molecular weight synthetic inhibitors, a lead discovery strategy was tested on two other cross‐family neighbors—namely cathepsin L2 and matrix metallo proteinase 9, and calpain 1 and pepsin A. For both these pairs, a naïve Bayes classifier model trained on inhibitors of one protease could successfully enrich those of its neighbor from a different family and vice versa, indicating that this approach could be prospectively applied to lead discovery for a novel protease target with no known synthetic inhibitors.  相似文献   

12.
Cysteine proteases of the papain superfamily are implicated in a number of cellular processes and are important virulence factors in the pathogenesis of parasitic disease. These enzymes have therefore emerged as promising targets for antiparasitic drugs. We report the crystal structures of three major parasite cysteine proteases, cruzain, falcipain-3, and the first reported structure of rhodesain, in complex with a class of potent, small molecule, cysteine protease inhibitors, the vinyl sulfones. These data, in conjunction with comparative inhibition kinetics, provide insight into the molecular mechanisms that drive cysteine protease inhibition by vinyl sulfones, the binding specificity of these important proteases and the potential of vinyl sulfones as antiparasitic drugs.Sleeping sickness (African trypanosomiasis), caused by Trypanosoma brucei, and malaria, caused by Plasmodium falciparum, are significant, parasitic diseases of sub-Saharan Africa (1). Chagas'' disease (South American trypanosomiasis), caused by Trypanosoma cruzi, affects approximately, 16–18 million people in South and Central America. For all three of these protozoan diseases, resistance and toxicity to current therapies makes treatment increasingly problematic, and thus the development of new drugs is an important priority (24).T. cruzi, T. brucei, and P. falciparum produce an array of potential target enzymes implicated in pathogenesis and host cell invasion, including a number of essential and closely related papain-family cysteine proteases (5, 6). Inhibitors of cruzain and rhodesain, major cathepsin L-like papain-family cysteine proteases of T. cruzi and T. brucei rhodesiense (710) display considerable antitrypanosomal activity (11, 12), and some classes have been shown to cure T. cruzi infection in mouse models (11, 13, 14).In P. falciparum, the papain-family cysteine proteases falcipain-2 (FP-2)6 and falcipain-3 (FP-3) are known to catalyze the proteolysis of host hemoglobin, a process that is essential for the development of erythrocytic parasites (1517). Specific inhibitors, targeted to both enzymes, display antiplasmodial activity (18). However, although the abnormal phenotype of FP-2 knock-outs is “rescued” during later stages of trophozoite development (17), FP-3 has proved recalcitrant to gene knock-out (16) suggesting a critical function for this enzyme and underscoring its potential as a drug target.Sequence analyses and substrate profiling identify cruzain, rhodesain, and FP-3 as cathepsin L-like, and several studies describe classes of small molecule inhibitors that target multiple cathepsin L-like cysteine proteases, some with overlapping antiparasitic activity (1922). Among these small molecules, vinyl sulfones have been shown to be effective inhibitors of a number of papain family-like cysteine proteases (19, 2327). Vinyl sulfones have many desirable attributes, including selectivity for cysteine proteases over serine proteases, stable inactivation of the target enzyme, and relative inertness in the absence of the protease target active site (25). This class has also been shown to have desirable pharmacokinetic and safety profiles in rodents, dogs, and primates (28, 29). We have determined the crystal structures of cruzain, rhodesain, and FP-3 bound to vinyl sulfone inhibitors and performed inhibition kinetics for each enzyme. Our results highlight key areas of interaction between proteases and inhibitors. These results help validate the vinyl sulfones as a class of antiparasitic drugs and provide structural insights to facilitate the design or modification of other small molecule inhibitor scaffolds.  相似文献   

13.
Activity-Based Probes (ABPs) are small molecules that form stable covalent bonds with active enzymes thereby allowing detection and quantification of their activities in complex proteomes. A number of ABPs that target proteolytic enzymes have been designed based on well-characterized mechanism-based inhibitors. We describe here the evaluation of a novel series of ABPs based on the aza-aspartate inhibitory scaffold. Previous in vitro kinetic studies showed that this scaffold has a high degree of selectivity for the caspases, clan CD cysteine proteases activated during apoptotic cell death. Aza-aspartate ABPs containing either an epoxide or Michael acceptor reactive group were potent labels of executioner caspases in apoptotic cell extracts. However they were also effective labels of the clan CD protease legumain and showed unexpected crossreactivity with the clan CA protease cathepsin B. Interestingly, related aza peptides containing an acyloxymethyl ketone reactive group were relatively weak but highly selective labels of caspases. Thus azapeptide electrophiles are valuable new ABPs for both detection of a broad range of cysteine protease activities and for selective targeting of caspases. This study also highlights the importance of confirming the specificity of covalent protease inhibitors in crude proteomes using reagents such as the ABPs described here.  相似文献   

14.
The oral toxicity of the C‐type allatostatin, Manduca sexta allatostatin (Manse‐AS) and the analogue δR3δR5Manse‐AS, where R residues were replaced by their D‐isomers, were tested against the peach‐potato aphid Myzus persicae by incorporation into an artificial diet. Both peptides had significant dose‐dependent effects on mortality, growth, and fecundity compared with control insects. The analogue, δR3δR5Manse‐AS, had an estimated LC50 of 0.31 µg/µl diet and was more potent than Manse‐AS (estimated LC50 of 0.58 µg/µl diet). At a dose of 0.35 µg δR3δR5Manse‐AS/µl diet, 76% of the aphids were dead after 6 days and all were dead after 10 days. In comparison, three times the dose of Manse‐AS was required to achieve 74% mortality after 8 days and 98% mortality after 16 days. The degradation of both peptides by extracts prepared from the gut of M. persicae was investigated. The estimated half‐life of Manse‐AS, when incubated with the gut extract from M. persicae, was 31 min. Degradation was due to a cathepsin L‐like cysteine protease, carboxypeptidase‐like activity, endoprotease activity with glutamine specificity, pyroglutamate aminopeptidase activity, and possibly trypsin‐like proteases. The half‐life of the δR3δR5 Manse‐AS analogue was enhanced (73 min) with the D‐isomers of R appearing to prevent cleavage around the R residues by cathepsin L‐like cysteine proteases or from trypsin‐like proteases. The greater stability of the analogue may explain its increased potency in M. persicae. This work demonstrates the potential use of Manse‐AS and analogues, with greater resistance to enzymatic attack, in aphid control strategies. © 2010 Wiley Periodicals, Inc.  相似文献   

15.
West Nile virus (WNV) is a member of the flavivirus genus belonging to the Flaviviridae family. The viral serine protease NS2B/NS3 has been considered an attractive target for the development of anti-WNV agents. Although several NS2B/NS3 protease inhibitors have been described so far, most of them are reversible inhibitors. Herein, we present a series of α-aminoalkylphosphonate diphenyl esters and their peptidyl derivatives as potent inhibitors of the NS2B/NS3 protease. The most potent inhibitor identified was Cbz-Lys-Arg-(4-GuPhe)P(OPh)2 displaying Ki and k2/Ki values of 0.4 µM and 28 265 M?1s?1, respectively, with no significant inhibition of trypsin, cathepsin G, and HAT protease.  相似文献   

16.
Apoptosis is a highly complex and regulated cell death pathway that safeguards the physiological balance between life and death. Over the past decade, the role of Ca2+ signalling in apoptosis and the mechanisms involved have become clearer. The initiation and execution of apoptosis is coordinated by three distinct groups of cysteines proteases: the caspase, calpain and cathepsin families. Beyond its physiological importance, the ability to evade apoptosis is a prominent hallmark of cancer cells. In this review, we will explore the involvement of Ca2+ in the regulation of caspase, calpain and cathepsin activity, and how the actions of these cysteine proteases alter intracellular Ca2+ handling during apoptosis. We will also explore how apoptosis resistance can be achieved in cancer cells through deregulation of cysteine proteases and remodelling of the Ca2+ signalling toolkit.  相似文献   

17.
Aza-peptide epoxides are a new class of irreversible cysteine protease inhibitors. Derivatives containing a P1 aza-asparagine residue are specific for Schistosoma mansoni and pig kidney legumains, which are clan CD cysteine proteases. The inhibitors have second-order rate constants of up to 10(4) M(-1) s(-1) with pig kidney legumain and IC50 values as low as 45 nM with S. mansoni legumain. The most potent epoxides contain an ester moiety with S,S stereochemistry attached to the epoxide. Interestingly, amide and amino acid derivatives of the epoxysuccinate moiety were not inhibitors of legumain, while disubstituted amide derivatives are quite potent. The inhibitors have little or no inhibitory activity with other proteases such as caspases, chymotrypsin, papain, cathepsin B, granzyme B, and various aspartyl proteases.  相似文献   

18.

Background

Trypanosoma brucei is the etiological agent of Human African Trypanosomiasis, an endemic parasitic disease of sub-Saharan Africa. TbCatB and rhodesain are the sole Clan CA papain-like cysteine proteases produced by the parasite during infection of the mammalian host and are implicated in the progression of disease. Of considerable interest is the exploration of these two enzymes as targets for cysteine protease inhibitors that are effective against T. brucei.

Methods and Findings

We have determined, by X-ray crystallography, the first reported structure of TbCatB in complex with the cathepsin B selective inhibitor CA074. In addition we report the structure of rhodesain in complex with the vinyl-sulfone K11002.

Conclusions

The mature domain of our TbCat•CA074 structure contains unique features for a cathepsin B-like enzyme including an elongated N-terminus extending 16 residues past the predicted maturation cleavage site. N-terminal Edman sequencing reveals an even longer extension than is observed amongst the ordered portions of the crystal structure. The TbCat•CA074 structure confirms that the occluding loop, which is an essential part of the substrate-binding site, creates a larger prime side pocket in the active site cleft than is found in mammalian cathepsin B-small molecule structures. Our data further highlight enhanced flexibility in the occluding loop main chain and structural deviations from mammalian cathepsin B enzymes that may affect activity and inhibitor design. Comparisons with the rhodesain•K11002 structure highlight key differences that may impact the design of cysteine protease inhibitors as anti-trypanosomal drugs.  相似文献   

19.
A novel cathepsin L-like protease from dermestid beetle Dermestes frischii maggot guts was obtained and investigated. The protease was isolated through affinity chromatography at arginine-diasorb followed by FPLC gel-filtration at Superdex 75. Protease is active against chromogenic peptide substrates, containing Arg or Leu in P1 position and a hydrophobic residue in P2 position. PH optimum is about 4,5 and temperature optimum at 40 °C. Enzyme is inhibited completely by HgCl2 and leupeptin that prove it’s belonging to cysteine proteases of papain family.cDNA analysis of cathepsin L-like protease showed that protein sequence consists of 339 amino acid residues. Mature cysteine protease contains 219 amino acid residues corresponding to molecular mass 24027.20 Da. Residues of the active site were identified: Gln140, Cys146, His285, Asn306 and Trp308. Calculated pI is 4,73. The amino acid sequence of the cystein protease from dermestid beetle displays high structural homology with cathepsin L of other insects.  相似文献   

20.
Calpains, Ca2+-activated cysteine proteases, are cytosolic enzymes implicated in numerous cellular functions and pathologies. We identified a mitochondrial Ca2+-inducible protease that hydrolyzed a calpain substrate (SLLVY-AMC) and was inhibited by active site-directed calpain inhibitors as calpain 10, an atypical calpain lacking domain IV. Immunoblot analysis and activity assays revealed calpain 10 in the mitochondrial outer membrane, intermembrane space, inner membrane, and matrix fractions. Mitochondrial staining was observed when COOH-terminal green fluorescent protein-tagged calpain 10 was overexpressed in NIH-3T3 cells and the mitochondrial targeting sequence was localized to the NH2-terminal 15 amino acids. Overexpression of mitochondrial calpain 10 resulted in mitochondrial swelling and autophagy that was blocked by the mitochondrial permeability transition (MPT) inhibitor cyclosporine A. With the use of isolated mitochondria, Ca2+-induced MPT was partially decreased by calpain inhibitors. More importantly, Ca2+-induced inhibition of Complex I of the electron transport chain was blocked by calpain inhibitors and two Complex I proteins were identified as targets of mitochondrial calpain 10, NDUFV2, and ND6. In conclusion, calpain 10 is the first reported mitochondrially targeted calpain and is a mediator of mitochondrial dysfunction through the cleavage of Complex I subunits and activation of MPT. protease; respiration  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号