首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到5条相似文献,搜索用时 0 毫秒
1.
This paper presents a bioelectrical conception of connective tissue regulation in bone, cartilage, and tendon, as well as other mechanically stressed connective tissues, based on the biological hypothesis of a biosensor and nerve-like signal conducting function of the native collagen fibril in the extracellular matrix. The various levels of existing conceptions of bioelectrical connective tissue regulation as well as some questions of classical connective tissue research (e.g., neutral and acid protease activity) are discussed from this electrophysiological point of view. Part I presented the topic in the form of classical biophysics and physicochemistry. This paper, Part II, makes use of the concept for a discussion of the “living state” of the extracellular matrix, biochemical aspects of acid and neutral protease activity, and nanoelectronic, relativistic, and coherent aspects of connective tissue regulation.  相似文献   

2.
Abstract: Thylakoid membranes of the cryptophyte Rhodomonas sp. were solubilized with the mild detergent dodecyl-β-maltoside and subjected to sucrose density gradient centrifugation. The resulting gradients showed six pigment-bearing bands which were characterized further by means of absorption and fluorescence emission (77K) spectroscopy, polyacrylamide gel electrophoresis and Western immunoblotting. Two of the bands showed characteristics of light-harvesting complexes, other bands could be attributed to photosystem II and photosystem I. Up to 10 different light-harvesting proteins could be identified, some of which are specific for photosystem I, others for photosystem II. The polypeptides of the light-harvesting complex of photosystem II show a higher chlorophyll c/a ratio than the antenna proteins of photosystem I. As in vascular plants, they represent the bulk of the membrane-intrinsic light-harvesting proteins.  相似文献   

3.
Using a mode-locked laser (λ, 632.8 nm), fluorescence decay of chlorophyll (Chl) a in the green alga Chlorella pyrenoidosa, the red alga Porphyridium cruentum, and the blue-green alga Anacystis nidulans was measured by the phase-shift method under conditions when photosynthesis was not operative (3-(3,4-dichlorophenyl)-1,1-dimethylurea [DCMU] poisoning, or cooling to 77°K). In the presence of 10-5 M DCMU, the lifetime of Chl a fluorescence (τ) at room temperature is about 1.7 nsec in Chlorella, 1.0 nsec in Porphyridium, and 0.7 nsec in Anacystis. At 77°K, τ is 1.4 nsec (for fluorescence at about 685 nm, F-685) and 2.3 nsec (for F-730) in Chlorella, 0.9 nsec (F-685) and 1.2 nsec (F-730) in Porphyridium, and 0.8 nsec (F-685 and F-730) in Anacystis. From the above measurement, and the assumption that τ0 (the intrinsic fluorescence lifetime) for Chl a in all three algae is 15.2 nsec, we have calculated the rate constants of radiationless transition (that includes energy transfer to weakly fluorescent system I) processes competing with fluorescence at room temperature to be about 5 × 108 sec-1 in Chlorella, 9 × 108 sec-1 in Porphyridium, and 13 × 108 sec-1 in Anacystis. At 77°K, this rate constant for Chl a that fluoresces at 685 nm remains, in the first approximation, the same as at room temperature. From the τ data, the rate constant for the trapping of excitation energy is calculated to be about 1.2 × 109 sec-1 for Chlorella, 2 × 109 sec-1 for Porphyridium, and 2 × 109 sec-1 for Anacystis. The efficiency of trapping is calculated to be about 66% (Chlorella), 68% (Porphyridium), and 60% (Anacystis). (It is recognized that variations in the above values are to be expected if algae grown under different conditions are used for experimentation.) The maximum quantum yield of Chl a fluorescence for system II (λ, 632.8 nm), calculated from τ measurements, is about 10% in Chlorella, 6-7% in Porhyridium, and 5% in Anacystis under conditions when photosynthesis is not operative; the values at 77°K appear to be very close to those with DCMU added at room temperature. ø for F-730 at 77°K, however, is somewhat higher than for F-685. The predicted quantum yields of fluorescence for Chl a in intact cells (both systems I and II) at low intensities of 632.8 nm light are about 2-3, 1-2, and 1% for Chlorella, Porphyridium, and Anacystis, respectively.  相似文献   

4.
5.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号