首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The model biological organisms Drosophila melanogaster and Drosophila virilis have been utilized to assess effects on apoptotic cell death of follicles during oogenesis and reproductive capacity (fecundity) decline. A total of 280 different experiments were performed using newly emerged flies exposed for short time daily for 3–7?d to various EMF sources including: GSM 900/1800?MHz mobile phone, 1880–1900?MHz DECT wireless base, DECT wireless handset, mobile phone-DECT handset combination, 2.44?GHz wireless network (Wi-Fi), 2.44?GHz blue tooth, 92.8?MHz FM generator, 27.15?MHz baby monitor, 900?MHz CW RF generator and microwave oven’s 2.44?GHz RF and magnetic field components. Mobile phone was used as a reference exposure system for evaluating factors considered very important in dosimetry extending our published work with D. melanogaster to the insect D. virilis. Distance from the emitting source, the exposure duration and the repeatability were examined. All EMF sources used created statistically significant effects regarding fecundity and cell death-apoptosis induction, even at very low intensity levels (0.3?V/m blue tooth radiation), well below ICNIRP’s guidelines, suggesting that Drosophila oogenesis system is suitable to be used as a biomarker for exploring potential EMF bioactivity. Also, there is no linear cumulative effect when increasing the duration of exposure or using one EMF source after the other (i.e. mobile phone and DECT handset) at the specific conditions used. The role of the average versus the peak E-field values as measured by spectrum analyzers on the final effects is discussed.  相似文献   

2.
An acute rise in blood pressure has been reported in normal volunteers during exposure to signals from a mobile phone handset. To investigate this finding further we carried out a double blind study in 120 healthy volunteers (43 men, 77 women) in whom we measured mean arterial pressure (MAP) during each of six exposure sessions. At each session subjects were exposed to one of six different radio frequency signals simulating both GSM and TETRA handsets in different transmission modes. Blood catechols before and after exposure, heart rate variability during exposure, and post exposure 24 h ambulatory blood pressure were also studied. Despite having the power to detect changes in MAP of less than 1 mmHg none of our measurements showed any effect which we could attribute to radio frequency exposure. We found a single statistically significant decrease of 0.7 mmHg (95% CI 0.3-1.2 mmHg, P = .04) with exposure to GSM handsets in sham mode. This may be due to a slight increase in operating temperature of the handsets when in this mode. Hence our results have not confirmed the original findings of an acute rise in blood pressure due to exposure to mobile phone handset signals. In light of this negative finding from a large study, coupled with two smaller GSM studies which have also proved negative, we are of the view that further studies of acute changes in blood pressure due to GSM and TETRA handsets are not required.  相似文献   

3.
This paper reports the results of an exposure level survey of radiofrequency electromagnetic energy originating from mobile telephone base station antennas. Measurements of CDMA800, GSM900, GSM1800, and 3G(UMTS) signals were performed at distances ranging over 50 to 500 m from 60 base stations in five Australian cities. The exposure levels from these mobile telecommunications base stations were found to be well below the general public exposure limits of the ICNIRP guidelines and the Australian radiofrequency standard (ARPANSA RPS3). The highest recorded level from a single base station was 7.8 x 10(-3) W/m(2), which translates to 0.2% of the general public exposure limit.  相似文献   

4.
In this article, personal electromagnetic field measurements are converted into whole‐body specific absorption rates for exposure of the general public. Whole‐body SAR values calculated from personal exposure meter data are compared for different human spheroid phantoms: the highest SAR values (at 950 MHz) are obtained for the 1‐year‐old child (99th percentile of 17.9 µW/kg for electric field strength of 0.36 V/m), followed by the 5‐year‐old child, 10‐year‐old child, average woman, and average man. For the 1‐year‐old child, whole‐body SAR values due to 9 different radiofrequency sources (FM, DAB, TETRA, TV, GSM900 DL, GSM1800 DL, DECT, UMTS DL, WiFi) are determined for 15 different scenarios. An SAR matrix for 15 different exposure scenarios and 9 sources is provided with the personal field exposure matrix. Highest 95th percentiles of the whole‐body SAR are equal to 7.9 µW/kg (0.36 V/m, GSM900 DL), 5.8 µW/kg (0.26 V/m, DAB/TV), and 7.1 µW/kg (0.41 V/m, DECT) for the 1‐year‐old child, with a maximal total whole‐body SAR of 11.5 µW/kg (0.48 V/m) due to all 9 sources. All values are below the basic restriction of 0.08 W/kg for the general public. 95th percentiles of whole‐body SAR per V/m are equal to 60.1, 87.9, and 42.7 µW/kg for GSM900, DAB/TV, and DECT sources, respectively. Functions of the SAR versus measured electric fields are provided for the different phantoms and frequencies, enabling epidemiological and dosimetric studies to make an analysis in combination with both electric field and actual whole‐body SAR. Bioelectromagnetics 31:286–295, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

5.
Nowadays, due to the wide use of mobile phones, extensive studies have been carried out on the effects of magnetic field (MF) on public health. In this paper, we study the effect of 217 Hz MF similar to that generated by GSM900 mobile phones on cancer and healthy cells treated with electric pulse and cytotoxic drug. The experiments conducted include exposure to (a) electric pulses alone (4000 square-wave electric pulses with low amplitude of 70 V/cm and frequency of 5 kHz), (b) electric pulses following MF exposure, (c) electrochemotherapy (electric pulses and cytotoxic drug) alone and (d) MF exposure with subsequent electrochemotherapy. The results indicate that the percentage of apoptosis decreases significantly (p < 0.05) in treatment groups using electrochemotherapy after MF exposure compared to that in treatment groups using electrochemotherapy alone. We observed that 217 Hz MF similar to that generated by GSM900 mobile phones can incur resistance of the cells in response to electric pulses. Our findings implied the existence of amplitude window effect in alternations induced by extremely low-frequency MF.  相似文献   

6.
Abstract

The growing spread of mobile phone use is raising concerns about the effect on human health of the electromagnetic field (EMF) these devices emit. The purpose of this study was to investigate the effects on rat pup heart tissue of prenatal exposure to a 900 megahertz (MHz) EMF. For this purpose, pregnant rats were divided into experimental and control groups. Experimental group rats were exposed to a 900?MHz EMF (1?h/d) on days 13–21 of pregnancy. Measurements were performed with rats inside the exposure box in order to determine the distribution of EMF intensity. Our measurements showed that pregnant experimental group rats were exposed to a mean electrical field intensity of 13.77?V/m inside the box (0.50?W/m2). This study continued with male rat pups obtained from both groups. Pups were sacrificed on postnatal day 21, and the heart tissues were extracted. Malondialdehyde, superoxide dismutase and catalase values were significantly higher in the experimental group rats, while glutathione values were lower. Light microscopy revealed irregularities in heart muscle fibers and apoptotic changes in the experimental group. Electron microscopy revealed crista loss and swelling in the mitochondria, degeneration in myofibrils and structural impairments in Z bands. Our study results suggest that exposure to EMF in the prenatal period causes oxidative stress and histopathological changes in male rat pup heart tissue.  相似文献   

7.
The mechanism of biological effects of extremely-low-frequency electric and magnetic fields may involve induced changes of Ca2+ transport through plasma membrane ion channels. In this study we investigated the effects of externally applied, low-intensity 60 Hz electric (E) fields (0.5 V/m, current density 0.8 A/m2+) on the agonist-induced Ca2+ fluxes of HL-60 leukemia cells. The suspensions of HL-60 cells received E-field or sham exposure for 60 min and were simultaneously stimulated either by 1 μM ATP or by 100 μM histamine or were not stimulated at all. After E-field or sham exposure, the responses of the intracellular calcium levels of the cells to different concentrations of ATP (0.2–100 μM) were assessed. Compared with control cells, exposure of ATP-activated cells to an E-field resulted in a 20–30% decrease in the magnitude of [Ca2+]i elevation induced by a low concentration of ATP (<1 μM). In contrast, exposure of histamine-activated HL-60 cells resulted in a 20–40% increase of ATP-induced elevation of [Ca2+]i. E-field exposure had no effect on non-activated cells. Kinetic analysis of concentration-response plots also showed that compared with control cells, exposure to the E-field resulted in increases of the Michaelis constant, Km, value in ATP-treated cells and of the maximal [Ca2+]i peak rise in histamine-treated HL-60 cells. The observed effects were reversible, indicating the absence of permanent structural damages induced by acute 60 min exposure to electric fields. These results demonstrate that low-intensity electric fields can alter calcium distribution in cells, most probably due to the effect on receptor-operated Ca2+ and/or ion channels. Bioelectromagnetics 19:366–376, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

8.
Epidemiological studies of mobile phone use and risk of brain cancer have relied on self-reported use, years as a subscriber, and billing records as exposure surrogates without addressing the level of radiofrequency (RF) power output. The objective of this study was to measure environmental, behavioral and engineering factors affecting the RF power output of GSM mobile phones during operation. We estimated the RF-field exposure of volunteer subjects who made mobile phone calls using software-modified phones (SMPs) that recorded output power settings. Subjects recruited from three geographic areas in the U.S. were instructed to log information (place, time, etc.) for each call made and received during a 5-day period. The largest factor affecting energy output was study area, followed by user movement and location (inside or outside), use of a hands-free device, and urbanicity, although the two latter factors accounted for trivial parts of overall variance. Although some highly statistically significant differences were identified, the effects on average energy output rate were usually less than 50% and were generally comparable to the standard deviation. These results provide information applicable to improving the precision of exposure metrics for epidemiological studies of GSM mobile phones and may have broader application for other mobile phone systems and geographic locations.  相似文献   

9.
The specific absorption rate (SAR) measurements are carried out for compliance testing of personal 3G Mobile phone. The accuracy of this experimental setup has been checked by comparing the SAR in 10?gm of simulated tissue and an arbitrary shaped box. This has been carried out using a 3G mobile Phone at 1718.5?MHz, in a medium simulating brain and muscle phantom. The SAR measurement system consists of a stepper motor to move a monopole E-field probe in two dimensions inside an arbitrary shaped box. The phantom is filled with appropriate frequency-specific fluids with measured electrical properties (dielectric constant and conductivity). That is close to the average for gray and white matters of the brain at the frequencies of interest (1718.5?MHz). Induced fields are measured using a specially designed monopole probe in its close vicinity. The probe is immersed in the phantom material. The measured data for induced fields are used to compute SAR values at various locations with respect to the mobile phone location. It is concluded that these SAR values are position dependent and well below the safety criteria prescribed for human exposure.  相似文献   

10.
The ever increasing use of cellular phones and the increasing number of associated base stations are becoming a widespread source of nonionizing electromagnetic radiation. Some biological effects are likely to occur even at low-level EM fields. In this study, a gigahertz transverse electromagnetic (GTEM) cell was used as an exposure environment for plane wave conditions of far-field free space EM field propagation at the GSM base transceiver station (BTS) frequency of 945 MHz, and effects on oxidative stress in rats were investigated. When EM fields at a power density of 3.67 W/m2 (specific absorption rate = 11.3 mW/kg), which is well below current exposure limits, were applied, MDA (malondialdehyde) level was found to increase and GSH (reduced glutathione) concentration was found to decrease significantly (p < 0.0001). Additionally, there was a less significant (p = 0.0190) increase in SOD (superoxide dismutase) activity under EM exposure.  相似文献   

11.
The present study investigated the possible effects of the electromagnetic field (EMF) emitted by an ordinary GSM mobile phone (902.4 MHz pulsed at 217 Hz) on brainstem auditory processing. Auditory brainstem responses (ABR) were recorded in 17 healthy young adults, without a mobile phone at baseline, and then with a mobile phone on the ear under EMF‐off and EMF‐on conditions. The amplitudes, latencies, and interwave intervals of the main ABR components (waves I, III, V) were compared among the three conditions. ABR waveforms showed no significant differences due to exposure, suggesting that short‐term exposure to mobile phone EMF did not affect the transmission of sensory stimuli from the cochlea up to the midbrain along the auditory nerve and brainstem auditory pathways. Bioelectromagnetics 31:48–55, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

12.
A framework for the combination of near‐field (NF) and far‐field (FF) radio frequency electromagnetic exposure sources to the average organ and whole‐body specific absorption rates (SARs) is presented. As a reference case, values based on numerically derived SARs for whole‐body and individual organs and tissues are combined with realistic exposure data, which have been collected using personal exposure meters during the Swiss Qualifex study. The framework presented can be applied to any study region where exposure data is collected by appropriate measurement equipment. Based on results derived from the data for the region of Basel, Switzerland, the relative importance of NF and FF sources to the personal exposure is examined for three different study groups. The results show that a 24‐h whole‐body averaged exposure of a typical mobile phone user is dominated by the use of his or her own mobile phone when a Global System for Mobile Communications (GSM) 900 or GSM 1800 phone is used. If only Universal Mobile Telecommunications System (UMTS) phones are used, the user would experience a lower exposure level on average caused by the lower average output power of UMTS phones. Data presented clearly indicate the necessity of collecting band‐selective exposure data in epidemiological studies related to electromagnetic fields. Bioelectromagnetics 34:366–374, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

13.
14.
Organisms are exposed to electromagnetic fields from the introduction of wireless networks that send information all over the world. In this study we examined the impact of exposure to the fields from mobile phone base stations (GSM 900?MHz) on the reproductive capacity of small, virgin, invertebrates. A field experiment was performed exposing four different invertebrate species at different distances from a radiofrequency electromagnetic fields (RF EMF) transmitter for a 48-h period. The control groups were isolated from EMF exposure by use of Faraday cages. The response variables as measured in the laboratory were fecundity and number of offspring. Results showed that distance was not an adequate proxy to explain dose-response regressions. No significant impact of the exposure matrices, measures of central tendency and temporal variability of EMF, on reproductive endpoints was found. Finding no impact on reproductive capacity does not fully exclude the existence of EMF impact, since mechanistically models hypothesizing non-thermal-induced biological effects from RF exposure are still to be developed. The exposure to RF EMF is ubiquitous and is still increasing rapidly over large areas. We plea for more attention toward the possible impacts of EMF on biodiversity.  相似文献   

15.
Hazardous health effects resulting from exposure to radiofrequency electromagnetic radiation (RF-EMR) emitted from cell phones have been reported in the literature. However, the cellular and molecular targets of RF-EMR are still controversial. The aim of this study was to examine the oxidant/antioxidant status in saliva of cell phone users. Saliva samples collected before using a cell phone as well as at the end of 15 and 30?min calls were tested for two commonly used oxidative stress biomarkers: malondialdehyde (MDA) and 8-oxo-7,8-dihydro-2′-deoxyguanosine (8-Oxo-dG). The 8-oxo-dG levels were determined by enzyme-linked immunosorbent (ELISA) competitive assay, while the MDA levels were measured using the OxiSelect MDA adduct ELISA Kit. The antioxidant capacity of the saliva was evaluated using the oxygen radical absorption capacity (ORAC) and the hydroxyl radical averting capacity (HORAC) assays according to the manufacture instructions. The mean 8-oxo-dG and the Bradford protein concentrations (ng/ml and mg/ml, respectively) peaked at 15?min. The levels of HORAC, ORAC and MDA progressively increased with time and reached maximum at 30?min. However, there was no significant effect of talking time on the levels of 8-OxodG and MDA. Similarly, there was no statistically significant effect of talking time on the oxygen and hydroxyl radicals averting capacities, (ORAC) and (HORAC), respectively. These findings suggest that there is no relationship between exposure to radio frequency radiation (RFR) and changes in the salivary oxidant/antioxidant profile.  相似文献   

16.
According to international guidelines, the assessment of biophysical effects of exposure to electromagnetic fields (EMF) generated by hand-operated sources needs the evaluation of induced electric field (E in) or specific energy absorption rate (SAR) caused by EMF inside a worker's body and is usually done by the numerical simulations with different protocols applied to these two exposure cases. The crucial element of these simulations is the numerical phantom of the human body. Procedures of E in and SAR evaluation due to compliance analysis with exposure limits have been defined in Institute of Electrical and Electronics Engineers standards and International Commission on Non-Ionizing Radiation Protection guidelines, but a detailed specification of human body phantoms has not been described. An analysis of the properties of over 30 human body numerical phantoms was performed which has been used in recently published investigations related to the assessment of EMF exposure by various sources. The differences in applicability of these phantoms in the evaluation of E in and SAR while operating industrial devices and SAR while using mobile communication handsets are discussed. The whole human body numerical phantom dimensions, posture, spatial resolution and electric contact with the ground constitute the key parameters in modeling the exposure related to industrial devices, while modeling the exposure from mobile communication handsets, which needs only to represent the exposed part of the human body nearest to the handset, mainly depends on spatial resolution of the phantom. The specification and standardization of these parameters of numerical human body phantoms are key requirements to achieve comparable and reliable results from numerical simulations carried out for compliance analysis against exposure limits or within the exposure assessment in EMF-related epidemiological studies.  相似文献   

17.
In the course of modern daily life, individuals are exposed to numerous sources of electromagnetic radiation that are not present in the natural environment. The strength of the electromagnetic fields from sources such as hairdryers, computer display units and other electrical devices is modest. However, in many home and office environments, individuals can experience perpetual exposure to an “electromagnetic smog”, with occasional peaks of relatively high electromagnetic field intensity. This has led to concerns that such radiation can affect health. In particular, emissions from mobile phones or mobile phone masts have been invoked as a potential source of pathological electromagnetic radiation. Previous reports have suggested that cellular calcium (Ca2+) homeostasis is affected by the types of radiofrequency fields emitted by mobile phones. In the present study, we used a high-throughput imaging platform to monitor putative changes in cellular Ca2+ during exposure of cells to 900 MHz GSM fields of differing power (specific absorption rate 0.012–2 W/Kg), thus mimicking the type of radiation emitted by current mobile phone handsets. Data from cells experiencing the 900 Mhz GSM fields were compared with data obtained from paired experiments using continuous wave fields or no field. We employed three cell types (human endothelial cells, PC-12 neuroblastoma and primary hippocampal neurons) that have previously been suggested to be sensitive to radiofrequency fields. Experiments were designed to examine putative effects of radiofrequency fields on resting Ca2+, in addition to Ca2+ signals evoked by an InsP3-generating agonist. Furthermore, we examined putative effects of radiofrequency field exposure on Ca2+ store emptying and store-operated Ca2+ entry following application of the Ca2+ATPase inhibitor thapsigargin. Multiple parameters (e.g., peak amplitude, integrated Ca2+ signal, recovery rates) were analysed to explore potential impact of radiofrequency field exposure on Ca2+ signals. Our data indicate that 900 MHz GSM fields do not affect either basal Ca2+ homeostasis or provoked Ca2+ signals. Even at the highest field strengths applied, which exceed typical phone exposure levels, we did not observe any changes in cellular Ca2+ signals. We conclude that under the conditions employed in our experiments, and using a highly-sensitive assay, we could not detect any consequence of RF exposure.  相似文献   

18.
Irreversible electroporation (IRE) is a novel technique that deals with killing undesirable cells, mainly cancer cells, directly without using any cytotoxic drugs. Commonly in this technique very high electric field up to 1000?V/cm is used but for very short exposure time (nanoseconds). Low electric fields (LEFs) are used before to internalize molecules and drugs inside the cells (electroendocytosis) but mainly not in killing the cells. The aim of this work is to determine the ability of using LEFs to kill cancer cells (Hela cells). The Physics idea is in making LEFs energy equivalent to IRE energy. Four IRE protocols were selected to represent very high, high, moderate and mild voltages IRE, then we make equivalent energy for each of these protocols using different LEFs’ parameters of different amplitudes (7, 10, 14 and 20?V), different pulse numbers (40, 80, 160 and 320 pulses), different frequencies from 0.5 to 106.86?Hz and different pulse widths from 9.38 to 2000?ms. Each of the calculated LEF equivalent to IRE was applied on Hela cell line. The results show complete destruction of the cancer cells for all the tested exposure protocols. This damage was not due to thermal effect because the measured temperature was not changed before and after the exposure. The possible effect mechanism is discussed. It was concluded that the lethal effect on the cancer cells can be achieved using LEFs if the same energy equivalent to IRE is used. This work will help in using low-risk drug-free techniques in cancer treatment.  相似文献   

19.
The purpose of this study using a total of 1170 B6C3F1 mice was to detect and evaluate possible carcinogenic effects in mice exposed to radio-frequency-radiation (RFR) from Global System for Mobile Communication (GSM) and Digital Personal Communications System (DCS) handsets as emitted by handsets operating in the center of the communication band, that is, at 902 MHz (GSM) and 1747 MHz (DCS). Restrained mice were exposed for 2 h per day, 5 days per week over a period of 2 years to three different whole-body averaged specific absorption rate (SAR) levels of 0.4, 1.3, 4.0 mW/g bw (SAR), or were sham exposed. Regarding the organ-related tumor incidence, pairwise Fisher's test did not show any significant increase in the incidence of any particular tumor type in the RF exposed groups as compared to the sham exposed group. Interestingly, while the incidences of hepatocellular carcinomas were similar in EMF and sham exposed groups, in both studies the incidences of liver adenomas in males decreased with increasing dose levels; the incidences in the high dose groups were statistically significantly different from those in the sham exposed groups. Comparison to published tumor rates in untreated mice revealed that the observed tumor rates were within the range of historical control data. In conclusion, the present study produced no evidence that the exposure of male and female B6C3F1 mice to wireless GSM and DCS radio frequency signals at a whole body absorption rate of up to 4.0 W/kg resulted in any adverse health effect or had any cumulative influence on the incidence or severity of neoplastic and non-neoplastic background lesions, and thus the study did not provide any evidence of RF possessing a carcinogenic potential.  相似文献   

20.
The public health situation in Sweden has become drastically worse since the Autumn of 1997. A massive roll-out of GSM main transmitter towers and roof-mounted transmitters that became allowed after mid-1997 led to a booming sale of GSM handsets all over Sweden. The authorities in Sweden have issued a brochure on ‘Radiation from Mobile Systems’ [] stating that good transmitter coverage leads to low handset output power that can vary from 2 W down to 0.001 W []. Thus, we examined health statistics data and GSM coverage in all counties in Sweden, Norway and Denmark. Here, we show that there is a very strong correlation between health degradation and weak GSM coverage, while there is no such relation noticed for the time period 1981–1991 when no handset power regulation was applied. The immediate implications from this study are the needs for: 1) a deeper analysis of handset power levels and health statistics and, 2) reconsideration of the planned massive roll-out of yet another mobile system (3G).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号