首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new series of asymmetric salicyl-, furanyl-, thienyl- and pyrrolyl-derived ONNO, NNNO, ONNS & NNNS donor antibacterial and antifungal Schiff-bases and their copper(II) and zinc(II) metal complexes have been synthesized and characterized. IR spectra indicated the ligands to act as quartdentate towards divalent metal ions via two azomethine-N, deprotonated-O of salicyl, furanyl-O, thienyl-S and/or pyrrolyl-N. The magnetic moments and electronic spectral data suggest octahedral geometry for Cu(II) and Zn(II) complexes. NMR spectral data of the ligands and their diamagnetic zinc(II) complexes well-define their proposed structures/geometries. Elemental analyses data of the ligands and metal complexes agree with their proposed structures/geometries. The synthesized ligands, along with their metal complexes were screened for their antibacterial activity against B. cereus, C. diphtheriae, E. coli, K. pneumoniae, P. mirabilis, P. aeruginosa, S. typhi, S. dysenteriae and S. aureus strains and for in-vitro antifungal activity against T. schoenleinii, C. glabrata, P. boydii, C. albicans, A. niger, M. canis and T. mentagrophytes. The results of these studies show the metal complexes to be more antibacterial/antifungal against one or more species as compared to the uncomplexed ligands. The brine shrimp bioassay was also carried out to study their in-vitro cytotoxic properties. Eight compounds, L4, (1), (7), (8), (11), (17), (19) and (23) displayed potent cytotoxic activity with LD50 = 1.445 × 10? 3, 1.021 × 10? 3, 7.478 × 10? 4, 8.566 × 10? 4, 1.028 × 10? 3, 9.943 × 10? 4, 8.730 × 10? 4 and 1.124 × 10? 3 M respectively, against Artemia salina.  相似文献   

2.
Synthesis, characterization and biological studies of Schiff base-derived sulfonamides and their Co (II), Cu (II), Ni (II) and Zn (II) complexes have been reported and screened for in-vitro antibacterial activity against six Gram-negative; E. coli, K. pneumoniae, P. aeruginosa, P. mirabilis, S. typhi and S. dysenteriae and four Gram-positive; B. cereus, C. diphtheriae, S. aureus and S. pyogenes bacterial strains and for in-vitro antifungal activity against T. longifusus, C. albicans, A. flavus, M. canis, F. solani, and C. glaberata. All compounds showed moderate to significant antibacterial activity, however, the zinc (II) complexes were found to be more active. Some of the compounds also showed significant antifungal activity against various fungal strains. Only compounds (6) and (10) displayed potent cytotoxic activity with LD50 = 4.644 × 10? 4 and 4.106 × 10? 4 moles/mL respectively, against Artemia salina. The X-ray structure of 4-[(2-hydroxybenzylidene)amino]benzenesulfonamide is also reported.  相似文献   

3.
Triazole derived Schiff bases and their metal complexes (cobalt(II), copper(II), nickel(II), and zinc(II)) have been prepared and characterized using IR, 1H and 13C NMR, mass spectrometry, magnetic susceptibility and conductivity measurements, and CHN analysis data. The structure of L2, N-[(5-methylthiophen-2-yl)methylidene]-1H-1,2,4-triazol-3-amine, has also been determined by the X-ray diffraction method. All the metal(II) complexes showed octahedral geometry except the copper(II) complexes, which showed distorted octahedral geometry. The triazole ligands and their metal complexes have been screened for their in vitro antibacterial, antifungal, and cytotoxic activity. All the synthesized compounds showed moderate to significant antibacterial activity against one or more bacterial strains. It is revealed that all the synthesized complexes showed better activity than the ligands, due to coordination.  相似文献   

4.
Some 2,6-diarylpiperidin/tetrahydrothiopyran/tetrahydropyran-4-one oximes were synthesized in dry media under microwave irradiation and were evaluated for their in vitro antibacterial activity against clinically isolated bacterial strains i.e. S.aureus, β-H.Streptococcus, E.coli, P.aeruginosa, S.typhii and in vitro antifungal activities against fungal strains i.e. C.albicans, Rhizopus, A.niger and A.flavus. Structure-activity relationships for the synthesized compounds showed that compounds 12 and 15 exerted excellent antibacterial activity against all the tested bacterial strains except 15 against S.aureus and β-H.streptococcus. Against C.albicans and A.flavus, compound 15 exerted potent antifungal activities while against Rhizopus, compound 16 showed promising activity.  相似文献   

5.
The reaction of cobalt(II) chloride with a new class of thiosemicarbazones viz; cis-3,7-dimethyl-2,6-octadienthiosemicarbazone(CDOTSC; L1H) and 3,7-dimethyl-6-octenethiosemicarbazone (DOTSC; L2H) and N-phthaloyl derivative of DL-glycine(A1H), L-alanine(A2H) or L-valine(A3H) in 1:1:1 molar ratio in dry refluxing ethanol have been studied. All the isolated complexes have the general composition [Co(L)(A)]. Tentative structures are proposed for these complexes based upon elemental analysis, electrical conductances, magnetic moment, molecular weight determination and spectral (IR, electronic) studies.The ligands and Co(II) complexes have been tested for their antibacterial and antifungal activities against three bacterial strains S. aureus, B. subtilis, E. coli and two fungal strains F. moniliformae and M. phaseolina. Attempts have been made to establish a correlation between the antibacterial and antifungal activity and the structures of products.  相似文献   

6.
A series of antibacterial and antifungal sulfonamide (sulfanilamide, sulfaguanidine, sulfamethaxozole, 4-aminoethylbenzenesulfonamide and 4-amino-6-trifluoromethyl-benzene-1,3-disulfonamide) derived chromones, previously reported as inhibitors of carbonic anhydrase, have been screened for in-vitro antibacterial activity against four Gram-negative (Escherichia coli, Pseudomonas aeruginosa, Salmonella typhi and Shigella flexeneri) and two Gram-positive (Bacillus subtilis and Staphylococcus aureus) bacterial strains, and for in-vitro antifungal activity against Trichophyton longifusus, Candida albicans, Aspergillus flavus, Microsporum canis, Fusarium solani, Candida glaberata. All compounds (1)–(5) showed significant antibacterial activity against all four Gram-negative species and both Gram-positive species. However, three of them, (1), (4) and (5), were found to be comparatively much more active compared to (2) and (3). Of these, (5) was found to be the most active one. For antifungal activity, generally compounds (1) and (2) showed significant activity against more than three strains whereas (3)–(5) also showed significant activity against varied fungal strains. In the brine shrimp bioassay for in-vitro cytotoxic properties, only two compounds, (4) and (5) displayed potent cytotoxic activity, LD50 = 2.732 × 10? 4 M) and LD50 = 2.290 × 10? 4 M) respectively, against Artemia salina.  相似文献   

7.
Abstract

A series of three bioactive thiourea (carboxamide) derivatives, N-(dipropylcarbamothioyl)-thiophene-2-carboxamide (L1), N-(dipropylcarbamothioyl)-5-methylthiophene-2-carboxamide (L2) and 5-bromo-N-(dipropylcarbamothioyl)furan-2-carboxamide (L3) and their cobalt(II), copper(II), nickel(II) and zinc(II) complexes (1)–(12) have been synthesized and characterized by their IR,1H-NMR spectroscopy, mass spectrometry and elemental analysis data. The Crystal structure of one of the ligand, N-(dipropylcarbamothioyl)thiophene-2-carboxamide (L1) and its nickel(II) and copper(II) complexes were determined from single crystal X-ray diffraction data. All the ligands and metal(II) complexes have been subjected to in vitro antibacterial and antifungal activity against six bacterial species (Escherichia coli. Shigella flexneri. Pseudomonas aeruginosa. Salmonella typhi. Staphylococcus aureus and Bacillus subtilis) and for antifungal activity against six fungal strains (Trichophyton longifusus. Candida albicans. Aspergillus flavus. Microsporum canis. Fusarium solani and Candida glabrata). The in vitro antibacterial and antifungal bioactivity data showed the metal(II) complexes to be more potent than the parent ligands against one or more bacterial and fungal strains.  相似文献   

8.
Herein, we report synthesis, characterization, antimicrobial and antimalarial activities of azines Schiff base ligands (L1−L4) and their palladium (II) complexes ( C1−C4 ) of [Pd(L)(OAc)2] type. The azine ligands (L1−L4) were prepared by condensation of carbonyl compounds with hydrazine hydrate and their complexes by the reaction of palladium acetate with L1−L4 ligands in 1 : 1 molar ratio. The prepared ligands and their complexes were characterized by spectral characterization using 1H &13C-NMR, FT-IR and mass spectral studies, which revealed that the ligands coordinates via azomethine nitrogen and heteroatom or aryl carbon with palladium. Moreover, Schiff bases and their palladium (II) complexes have been screened for their antibacterial (S. aureus, B. subtillis, and S. typhi, P. aeruginosa), antifungal (C. albicans, A. niger, and A. clavatus) and antimalarial (P. falciparum) activities. The Schiff base L4 showed good results for antibacterial against S. aureus (MIC, 50 μg/mL) and antimalarial against P. falciparum (IC50, 0.83 μg/mL). The complex C1 showed best antibacterial activity (MIC, 62.5 μg/mL) against S. typhi and the complex C4 exhibited remarkable antimalarial activity (IC50, 0.42 μg/mL) among the tested compounds. Thus, azines based ligands and their Pd complexes can be good antimicrobial and antimalarial agents if explored further.  相似文献   

9.
A series of novel 2-phenyl-3-(4,6-diarylpyrimidin-2-yl)thiazolidin-4-ones 23-33 were synthesized, and studied for their in vitro antibacterial and antifungal activities against clinically isolated strains. Generally compounds possessing electron donating groups showed good antibacterial activity. Compound 31, which contain both electron withdrawing chloro and electron donating methyl groups showed potent activity against all the tested Gram positive and Gram negative bacterial strains whereas compounds 32 and 33 which contain electron donating methoxy functional group at the para position of the phenyl ring attached to pyrimidine ring showed promising activity against S.aureus, S.typhii and E.coli. Compounds 32 and 33, both containing electron withdrawing groups (-Cl, -F) showed excellent activities against all the tested A. flavus, Mucor, Rhizopus and M.gypsuem fungal strains. while against Mucor, compound 27 which contains an electron donating methyl group at the para position of the phenyl ring attached to pyrimidine ring showed promising activity. Also compound 31, which contains both electron withdrawing chloro and electron donating methyl groups showed potent activity against A. flavus and Rhizopus.  相似文献   

10.
Some isatin derived sulfonamides and their transition metal [Co(II), Cu(II), Ni(II), Zn(II)] complexes have been synthesized and characterized. The structure of synthesized compounds and their nature of bonding have been inferred on the basis of their physical (magnetic susceptibility and conductivity measurements), analytical (elemental analyses) and spectral (IR, 1H NMR and 13C NMR) properties. An octahedral geometry has been suggested for Co(II), Ni(II) and Zn(II) and square-planar for Cu(II) complexes. In order to assess the antibacterial and antifungal behavior, the ligands and their metal(II) complexes were screened for their in vitro antibacterial activity against four Gram-negative species, Escherichia coli, Shigella flexneri, Pseudomonas aeruginosa and Salmonella typhi and two Gram-positive species, Staphylococcus aureus and Bacillus subtilis and, for in vitro antifungal activity against Trichophyton longifusus, Candida albicans, Aspergillus flavus, Microsporum canis, Fusarium solani and Candida glaberata. In vitro cytotoxic properties of all the compounds were also studied against Artemia salina by brine shrimp bioassay. The results of average antibacterial/antifungal activity showed that zinc(II) complexes were found to be the most active against one or more bacterial/fungal strains as compared to the other metal complexes.  相似文献   

11.
Antibacterial and antifungal activities of the two isolated compounds from Conyza canadensis have been reported in the current study. The two isolated compounds i.e. Conyzolide (1) and Conyzoflavone (2) were tested against six bacterial and five fungal strains, employing hole diffusion and macrodilution methods. Both the compounds showed significant activities against the tested pathogens with special reference to E. coli, P. aeruginosa, S. aureus, Trichophytom longifusus, C. albicans, and C. glaberata. Conyzolide revealed comparatively better antibacterial activity against E. coli (minimum inhibitory concentration (MIC): 25 µg/mL) in comparison to Conyzoflavone. However, in case of antifungal activities, Conyzoflavone exhibited superior antifungal activity against C. albicans (MIC: 10 µg/mL) as compared to Conyzolide.  相似文献   

12.
Two series of carbazole analogs of 8‐methoxy‐N‐substituted‐9H‐carbazole‐3‐carboxamides (series 1) and carbazolyl substituted rhodanines (series 2) were synthesized through facile synthetic routes. All the final compounds from these two series were evaluated for their preliminary in vitro antifungal and antibacterial activity against four fungal (Candida albicans, Cryptococcus neoformans, Cryptococcus tropicalis and Aspergillus niger) and four bacterial (Staphylococcus aureus, Bacillus subtilis, Escherichia coli and Pseudomonas aeruginosa) strains, respectively. Among the tested compounds, three compounds of series 1 displayed promising antifungal and antibacterial activity, especially against C. neoformans and S. aureus. In addition, one compound of series 1 displayed notable antimicrobial activity (MIC: 6.25 μg/mL) against clinical isolates of C. albicans and C. neoformans (MIC: 12.5 μg/mL). From the second series, four compounds exhibited significant antifungal and antibacterial activity, especially against C. neoformans and S. aureus. The most active compound of series 2 displayed a prominent antimicrobial activity against C. neoformans (MIC: 3.125 μg/mL) and S. aureus (MIC: 1.56 μg/mL), respectively.  相似文献   

13.
Some antibacterial and antifungal furanylmethyl-and thienylmethyl dithiolenes and, their Co(II), Cu(II), Ni (II) and Zn (II) complexes have been synthesized, characterized and screened for their in vitro antibacterial activity against four Gram-negative; Escherichia coli, Pseudomonas aeruginosa, Salmonella typhi and Shigella flexeneri, and two Gram-positive; Bacillus subtilis and Staphylococcus aureus bacterial strains, and for in-vitro antifungal activity against Trichophyton longifusus, Candida albicans, Aspergillus flavus, Microsporum canis, Fusarium solani and Candida glaberata. All compounds showed significant antibacterial and antifungal activity. The metal complexes, however, were shown to possess better activity as compared to the simple ligands. The brine shrimp bioassay was also carried out to study their in-vitro cytotoxic properties.  相似文献   

14.
A new series of 4-({[2, 4-dioxo-2H-chromen-3 (4H)-ylidene] methyl} amino) sulfonamides have been obtained by the condensation reaction of 4-hydroxycoumarin with various sulfonamides (sulfanilamide, sulfaguanidine, p-aminomethylsufanilamide, p-aminoethylsufanilamide, sulfathiazole, sulfamethoxazole, sulfamethazine and 4-[(2-amino-4-pyrimidinyl) amino] benzenesulfonamide) in the presence of an excess of ethylorthoformate. These compounds were screened for their in-vitro antibacterial activity against four Gram-negative (E. coli, S. flexneri, P. aeruginosa and S. typhi) and two Gram-positive (B. subtilis and S. aureus) bacterial strains and for in-vitro antifungal activity against T. longifusus, C. albicans, A. flavus, M. canis, F. solani and C. glaberata. Results revealed that a significant antibacterial activity was observed by compounds (4) and (5), (6) and (8) against two Gram-negative, (P. aeruginosa and S. typhi) and two Gram-positive (B. subtilis and S. aureus) species, respectively. Of these (4) was found to be the most active. Similarly, for antifungal activity compounds (3) and (8) showed significant activity against M. canis and, (6) and (8) against F. solani. The brine shrimp bioassay was also carried out to study their in-vitro cytotoxic properties and only two compounds, (4) and (8) possessing LD50 = 2.9072 × 10? 4 and 3.2844 × 10? 4 M, respectively, displayed potent cytotoxic activity against Artemia salina  相似文献   

15.
A new series of antibacterial and antifungal furanyl-derived sulfonamides and their cobalt (II), copper (II), nickel (II) and zinc (II) metal complexes have been synthesized, characterized and screened for their in-vitro antibacterial activity against four Gram-negative (Escherichia coli, Shigella flexneri, Pseudomonas aeruginosa and Salmonella typhi) and two Gram-positive (Bacillus subtilis and Staphylococcus aureus) bacterial strains and, for in-vitro antifungal activity against Trichophyton longifusus, Candida albicans, Aspergillus flavus, Microsporum canis, Fusarium solani and Candida glaberata. The results of these studies revealed that all compounds showed significant to moderate antibacterial activity. However, the zinc (II) complexes were found to be comparatively much more active as compared to the others. For antifungal activity generally, compounds (22) and (24) showed significant activity against Escherichia coli (a), (6) against Shigella flexeneri (b), (16) and (22) against Pseudomonas aeruginosa (c), (14) and (16) against Salmonella typhi (d), (9) against Staphylococcus aureus (e) and, (14) and (16) against Bacillus subtilis (f) fungal strains. The brine shrimp (Artemia salina) bioassay was also carried out to study their in-vitro cytotoxic properties. Only three compounds, (6), (10) and (23) displayed potent cytotoxic activity with LD50 = 1.8535 × 10? 4, 1.8173 × 10? 4 and 1.9291 × 10? 4 respectively.  相似文献   

16.
Organometallic-based, 1,1′-diacetylferrocene-derived antibacterial and antifungal thiocarbohydrazone, carbohydrazone, thiosemicarbazone and semicarbazone have been prepared by condensing equimolar amount of 1,1′-diacetylferrocene with thiocarbohydrazide, carbohydrazide thiosemicarbazide and semicarbazide, respectively. These were used as ligands for the preparation of their cobalt (II), copper (II), nickel (II) and zinc (II) metal complexes. All the synthesized ligands and their complexes were characterized by IR, NMR, elemental analyses, molar conductances, magnetic moments and electronic spectral data. These synthesized compounds were screened for their antibacterial activity against Escherichia coli, Bacillus subtillis, Staphylococcus aureus, Pseudomonas aeruginosa and Salmonella typhi, and for antifungal activity against Trichophyton longifusus, Candida albicans, Aspergillus flavus, Microsporum canis, Fusarium solani and Candida glaberata using the agar-well diffusion method. All the compounds showed good antibacterial and antifungal activity which increased on coordination with the metal ions thus, introducing a novel class of organometallic-based antibacterial and antifungal agents.  相似文献   

17.
A series of novel hybrid heterocyclic compounds, 3-(3-alkyl-2,6-diarylpiperin-4-ylidene)-2-thioxoimidazolidin-4-ones were synthesised and a comparative study was also carried out under microwave irradiation. The synthesised compounds were characterised by their melting points, elemental analysis, MS, FT-IR, one-dimensional NMR (1H, D2O exchanged 1H and 13C), two dimensional HOMOCOSY and NOESY spectroscopic data. All the synthesised title compounds were screened for their in vitro antibacterial and antifungal activity against clinically isolated strains namely B. subtilis, M. luteus, S. typhii, S. paratyphii B, S. felxneri, P. vulgaris, A. niger, Mucor, Rhizopus and M. gypsuem and the results were discussed.  相似文献   

18.
A series of novel substituted 1-(4-methoxybenzyl)-3-cyclopropyl-1H-pyrazol-5-amine benzamides 9(a–h) were synthesized to determine their antibacterial and antifungal activities as well as possible structure–activity relationships (SARs) to improve therapeutic efficacy. The pyrazol-5-amine benzamides were screened for their antibacterial activity against standard strains of Gram-positive (Streptococcus pyogenes NCIM 2608, Staphylococcus aureus ATCC 29737, Bacillus subtilis NCIM 2010) and Gram-negative (Escherichia coli ATCC 25922, Pseudomonas aeruginosa ATCC 20852, Klebsiella pneumoniae MTCC 618) bacteria by using streptomycin as positive control. They were also tested for their antifungal activities against mycotoxic strains of Fusarium verticillioides, Aspergillus ochraceous, Aspergillus flavus, Alternaria alternata, and Penicillium chrysogenum using nystatin as positive control. Among the synthesized compounds, 9d, 9g, and 9h showed potent antimicrobial activities.  相似文献   

19.
2-Hydroxy-1-naphthaldehyde derived sulfonamides and their first row d-transition metal chelates [cobalt (II), copper (II), nickel (II) and zinc (II)] have been synthesized and characterized. The nature of bonding and structure of all the compounds have been deduced from elemental analyses, infrared, 1H NMR, 13C NMR, mass spectrometry, electronic spectra, magnetic susceptibility and conductivity measurements. An octahedral geometry has been suggested for all the complexes. The metal complexes were screened for their antibacterial and antifungal activities on different species of pathogenic bacteria and fungi and their biopotency has been discussed. The results of these studies revealed that all compounds showed moderate to significant antibacterial activity against all bacterial strains and good antifungal activity against various fungal strains. In-vitro cytotoxic properties of all the compounds against Artemia salina was also studies by brine shrimp bioassay.  相似文献   

20.
A convenient method for the ‘one-pot’ synthesis of novel target molecule 2,7-diaryl-[1,4]-diazepan-5-ones from the respective 2,6-diaryl-piperidin-4-ones was catalyzed by NaHSO4.Al2O3 heterogeneous catalyst in dry media under microwave irradiation in solvent-free conditions. Moreover, the catalyst could be recovered and re-used up to 4 times after washing with ethyl acetate. They were evaluated for potential antibacterial activity against Staphylococcus aureus, β-Haemolytic streptococcus, Vibreo cholerae, Salmonella typhii, Escherichia coli, Klebsiella pneumonia, Pseudomonas and antifungal activity against Aspergillus flavus, Aspergillus fumigatus, Mucor, Candida albicans and Rhizopus. Structure-Activity Relationship (SAR) led to the conclusion that, of all the compounds 25–32 tested, compound 30 exerted strong in vitro antibacterial activity against S. aureus, S. typhii, and Pseudomonas and all the compounds 25–32 were less active against E. coli, whereas all the compounds 25–32 displayed potent in vitro antifungal activity against all the fungal strains used, except compound 30, which was more effectual against Mucor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号