首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Various 2-benzylidene-6-(nitrobenzylidene)cyclohexanones were prepared as candidate cytotoxins in which the nitro group was located in the ortho, meta and para positions leading to series 13, respectively. The CC50 values towards human HSC-2 and HSC-4 oral squamous cell carcinomas as well as human HL-60 promyelocytic leukemic cells are in the low micromolar range in general. On the other hand, most of the compounds afforded clear evidence of being far less toxic towards human HGF gingival fibroblasts, HPC pulp cells and HPLF periodontal ligament fibroblasts which are non-malignant cells. Selectivity index (SI) figures were generated which are the ratios of the average CC50 values towards normal cells and the CC50 figure towards a malignant cell line. Huge SI values were obtained for many of the compounds. In particular 1c, 2f, 3c and 3g which have average SI values of >76, >38, 124 and 341, respectively, are clearly lead molecules affording direction for amplification of this area of study. A lead compound 1c caused internucleosomal DNA fragmentation and activation of caspase-3 in HL-60 cells but not in HSC-2 carcinomas. In a short-term toxicity study, doses up to and including 300 mg/kg of the majority of the compounds prepared in this study did not cause any mortalities to mice. Some guidelines for development of these tumor-selective cytotoxins are presented.  相似文献   

2.
A series of 1-acyl-3,5-bis(benzylidene)-4-piperidones 37 were designed and synthesized as novel cytotoxic agents. These compounds displayed potent cytotoxic properties towards human Molt4/C8, CEM, HSC-2, HSC-3 and HSC-4 neoplasms and also to murine L1210 cells. The majority of the compounds have sub-micromolar or very low micromolar IC50 and CC50 values and are significantly more potent than the reference alkylating drug melphalan. Evaluation of these compounds against non-malignant HGF and HPLF cells revealed the tumour-specific toxicity. In particular, 3e emerged as a promising lead cytotoxic agent which caused apoptosis and PARP1 cleavage in HSC-2 cells.  相似文献   

3.
Chalcones and Mannich bases are a group of compounds known for their cytotoxicities. In this study restricted chalcone analogue, compound 2-(4-hydroxybenzylidene)-2,3-dihydroinden-1-one MT1, was used as a starting compound to synthesize new mono Mannich bases since Mannich bases may induce more cytotoxicity than chalcone analogue that they are derived from by producing additional alkylating center for cellular thiols. In this study, cyclic and acyclic amines were used to synthesize Mannich bases. All compounds were tested against Ca9–22 (gingival carcinoma), HSC-2, HSC-3 and HSC-4 (oral squamous cell carcinoma) as tumour cell lines and HGF (gingival fibroblasts), HPC (pulp cells) and HPLF (periodontal ligament fibroblasts) human normal oral cells as non tumour cell lines. Cytotoxicity, selectivity index (SI) values and potency selectivity expression (PSE) values expressed as a percentage were determined for the compounds. According to data obtained, the compound MT8 with the highest PSE value bearing N-methylpiperazine moiety seems to be a good candidate to develop new cytotoxic compounds and is suited for further investigation.  相似文献   

4.
A series of 2-(3-aryl-2-propenoyl)-3-methylquinoxaline-1,4-dioxides 3a–l were prepared by condensation of various aryl aldehydes with 2-acetyl-3-methylquinoxaline-1,4-dioxide 2. These compounds inhibit the growth of human Molt 4/C8 and CEM T-lymphocytes and the IC50 values are mainly in the 5–30 μM range. The quinoxaline 1,4-dioxide 3j inhibited the growth of 58 human tumor cell lines, particularly leukemic and breast cancer neoplasms. All of the compounds 3a–l reversed the multidrug resistance (MDR) properties of murine L-5178Y leukemic cells which were transfected with the human MDR1 gene. The MDR-reversing effect may be due to the conjugated π-electron system forming a weak electron charge transfer complex with the P-glycoprotein-mediated efflux pump. The compounds in series 2 and 3 were assessed against HL-60, HSC-2, HSC-3 and HSC-4 malignant cells as well as HGF, HPC and HPLF normal cell lines which revealed that the majority of the compounds displayed a greater toxicity to neoplastic than normal cells. Various ways in which the project may be expanded are presented.  相似文献   

5.
In this study, the compounds having acrylophenone structure, 1-aryl-2-(N-methylpiperazinomethyl)-2-propen-1-one dihydrochlorides, were synthesized and their chemical structures were identified with 1H NMR, 13C NMR and HRMS spectra. The cytotoxicities of the compounds were tested towards Ca9-22 (human gingival carcinoma), HSC-2 (human oral squamous carcinoma), HSC-3 (human oral squamous carcinoma) and HSC-4 (human oral squamous carcinoma) cell lines as tumor cell lines and HGF (gingival fibroblasts), HPLF (periodontal ligament fibroblasts) and HPC (pulp cells) cell lines as non-tumor cell lines. PSE of the compound TA2, which has a methyl substituent on phenyl ring, pointed out the compound TA2 as a leader compound to be considered.  相似文献   

6.
4-(3-Substitutedphenyl-5-polymethoxyphenyl-4,5-dihydro-1H-pyrazol-1-yl)benzenesulfonamides (916) were synthesized and their chemical structures were elucidated by 1H NMR, 13C NMR, and HRMS. The compounds designed include pyrazoline and sulfonamide pharmacophores in a single molecule by hibrit molecule approach which is a useful technique in medicinal chemistry in designing new compounds with potent activity for the desired several bioactivities. Inhibition potency of the sulfonamides were evaluated against human CA isoenzymes (hCA I and hCA II) and acetylcholinesterase (AChE) enzyme and also their cytotoxicities were investigated towards oral squamous cancer cell carcinoma (OSCC) cell lines (Ca9-22, HSC-2, HSC-3, and HSC-4) and non-tumor cells (HGF, HPLF, and HPC). Cytosolic hCA I and hCA II isoenzymes were inhibited by the sulfonamide derivatives (916) and Ki values were found in the range of 27.9 ± 3.2–74.3 ± 28.9 nM and 27.4 ± 1.4–54.5 ± 11.6 nM, respectively. AChE enzyme was strongly inhibited by the sulfonamide derivatives with Ki values in the range of 37.7 ± 14.4–89.2 ± 30.2 nM The CC50 values of the compounds were found between 15 and 200 µM towards OSCC malign cell lines. Their tumor selectivities were also calculated with two ways. Compound’s selectivities towards cancer cell line were found generally low, except compounds bearing 3,4-dimethoxyphenyl 14 (TS1 = 1.3, TS2 = 1.4) and 10 (TS2 = 1.4). All sulfonamide derivatives studied here can be considered as good candidates to develop novel CAs or AChE inhibitor candidates based on the enzyme inhibition potencies with their low cytotoxicity and tumor selectivity.  相似文献   

7.
Inhibition of carbonic anhydrases (CAs, EC 4.2.1.1) has clinical importance for the treatment of several diseases. They participate in crucial regulatory mechanisms for balancing intracellular and extracellular pH of the cells. Among CA isoforms, selective inhibition of hCA IX has been linked to decreasing of cell growth for both primary tumors and metastases. The discovery of novel CA inhibitors as anticancer drug candidates is a current topic in medicinal chemistry. 1,3,5-Trisubstituted pyrazoles carrying benzenesulfonamide were evaluated against physiologically abundant cytosolic hCA I and hCA II and trans-membrane, tumor-associated hCA IX isoforms by a stopped-flow CO2 hydrase method. Their in vitro cytotoxicities were screened against human oral squamous cell carcinoma (OSCC) cell lines (HSC-2) and human mesenchymal normal oral cells (HGF) via 3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide (MTT) test. Compounds 6, 8, 9, 11, and 12 showed low nanomolar hCA II inhibitory potency with Ki < 10 nM, whereas compounds 9 and 12 displayed Ki < 10 nM against hCA IX isoenzyme when compared with reference Acetazolamide (AZA). Compound 9, 4-(3-(hydrazinecarbonyl)-5-(4-nitrophenyl)-1H-pyrazol-1-yl)benzenesulfonamide, can be considered as the most selective hCA IX inhibitor over off-target cytosolic isoenzymes hCA I and hCA II with the lowest Ki value of 2.3 nM and selectivity ratios of 3217 (hCA I/hCA IX) and 3.9 (hCA II/hCA IX). Isoform selectivity profiles were also discussed using in silico modelling. Cytotoxicity results pointed out that compounds 5 (CC50 = 37.7 μM) and 11 (CC50 = 58.1 μM) can be considered as lead cytotoxic compounds since they were more cytotoxic than 5-Fluorouracil (5-FU) and Methotrexate (MTX).  相似文献   

8.
A series of novel 2-(phenylaminocarbonylmethylthio)-6-(2,6-dichlorobenzyl)-pyrimidin-4(3H)-ones have been designed and synthesized. All of the new compounds were evaluated for their anti-HIV activities in MT-4 cells. Most of these new compounds showed moderate to potent activities against wild-type HIV-1 with an EC50 ranging from 4.48 μM to 0.18 μM. Among them, 2-[(4-bromophenylamino)carbonylmethylthio]-6-(2,6-dichlorobenzyl)-5-methylpyrimidin-4(3H)-one 4b3 was identified as the most promising compound (EC50 = 0.18 ± 0.06 μM, CC50 >243.56 μM, SI >1326). The structure–activity relationship (SAR) of these new congeners is discussed.  相似文献   

9.
A group of unnatural 1-(2-deoxy-β-D-ribofuranosyl)isocarbostyrils having a variety of C-7 substituents [H, 4,7-(NO2)2, I, CF3, CN, (E)-CH=CH-I, -C═CH, -C═C-I, -C═C-Br, -C═C-Me], designed as nucleoside mimics, were synthesized for evaluation as anticancer and antiviral agents. This class of compounds exhibited weak cytotoxicity in a MTT assay (CC50=10?3 to 10?5 M range) with the 4,7-dinitro derivative being the most cytotoxic, relative to thymidine (CC50=10?3 to 10?5 M range), against a variety of cancer cell lines. The 4,7-dinitro, 7-I and 7-C═CH compounds exhibited similar cytotoxicity against non-transfected (KBALB, 143B), and HSV-1 TK+ gene transfected (KBALB-STK, 143B-LTK) cancer cell lines possessing the herpes simplex virus type 1 (HSV-1) thymidine kinase gene (TK+). This observation indicates that these compounds are not substrates for HSV type-1 TK, and are therefore unlikely to be useful in gene therapy based on the HSV gene therapy paradigm.

  相似文献   

10.
Programmed cell death-ligand 1 (PD-L1), which is a ligand of programmed cell death-1 (PD-1), is a type I transmembrane glycoprotein that is expressed on antigen-presenting cells and several tumor cells, including melanoma and lung cancer cells. There is a strong correlation between human PD-L1 (hPD-L1) expression on tumor cells and negative prognosis in cancer patients. In this study, we produced a novel anti-hPD-L1 monoclonal antibody (mAb), L1Mab-4 (IgG2b, kappa), using cell-based immunization and screening (CBIS) method and investigated hPD-L1 expression in oral cancers. L1Mab-4 reacted with oral cancer cell lines (Ca9-22, HO-1-u-1, SAS, HSC-2, HSC-3, and HSC-4) in flow cytometry and stained oral cancers in a membrane-staining pattern. L1Mab-4 stained 106/150 (70.7%) of oral squamous cell carcinomas, indicating the very high sensitivity of L1Mab-4. These results indicate that L1Mab-4 could be useful for investigating the function of hPD-L1 in oral cancers.  相似文献   

11.
A series of N-(4-(6,7-disubstituted-quinolin-4-yloxy)-3-fluorophenyl)-2-oxo-3-phenylimidazolidine-1-carboxamides targeting c-Met and VEGFR2 tyrosine kinases was designed and synthesized. The compounds were potent against these two enzymes with IC50 values in the low nanomolar range in vitro, possessed favorable pharmacokinetic profiles and showed high efficacy in vivo in several human tumor xenograft models in mice.  相似文献   

12.
Abstract

A group of 1-[(2-hydroxyethoxy)methyl]- (12) and 1-[(1,3-dihydroxy-2-propoxy)methyl]- (13) derivatives of 2,4-difluorobenzene possessing a variety of C-5 substituents (R = Me, H, I, NO2) were designed with the expectation that they may serve as acyclic 5-substituted-2′-deoxyuridine (thymidine) mimics. Compounds 12 and 13 (R = Me, H, I) were inactive as anticancer agents (C50 = 10?3 to 10?4 M range), whereas the 5-nitro compounds (12d, 13d) exhibited weak-to-moderate cytotoxicity (CC50 = 10?5 to 10?6 M range) against a variety of cancer cell lines. All compounds prepared (12a-d, 13a-d) were inactive as antiviral agents in a broad-spectrum antiviral screen that also included the human immunodeficiency virus (HIV-1 and HIV-2) and herpes simplex virus (HSV-1 and HSV-2).  相似文献   

13.
Novel 1-(2-aminopyrazin-3-yl)methyl-2-thioureas are described as inhibitors of mitogen-activated protein kinase-activated protein kinase 2 (MK-2). These compounds demonstrate potent in vitro activity against the enzyme with IC50 values as low as 15 nM, and suppress expression of TNFα in THP-1 cells and in vivo in an acute inflammation model in mice. The synthesis, structure–activity relationship (SAR), and biological evaluation of these compounds are discussed.  相似文献   

14.
A series of substituted 3-(benzylthio)-5-(1H-indol-3-yl)-4H-1,2,4-triazol-4-amines has been synthesised and tested in vitro as potential pro-apoptotic Bcl-2-inhibitory anticancer agents. Synthesis of the target compounds was readily accomplished in good yields through a cyclisation reaction between indole-3-carboxylic acid hydrazide and carbon disulfide under basic conditions, followed by S-benzylation. Active compounds, such as the nitrobenzyl analogue 6c, were found to exhibit sub-micromolar IC50 values in Bcl-2 expressing human cancer cell lines. Molecular modelling and ELISA studies further implicated anti-apoptotic Bcl-2 as a candidate molecular target underpinning anticancer activity.  相似文献   

15.
New derivatives of azidothymidine (AZT) substituted by alkyl and alkylsulphonyl groups at N-3 and C-5′, respectively, have been synthesized. The new synthesized derivatives showed remarkable anti-HIV-1 and HIV-2 activity in MT-4 cells. Compounds 8 and 10 have IC50 values of 0.83 and 0.31 μg/mL against HIV-1 with therapeutic index of 83 and 403, respectively, and IC50 values of 0.93 and 0.29 μg/mL against HIV-2 with therapeutic index of 74 and 431, respectively. This means that compounds 8 and 10 were cytotoxic to MT-4 cells at CC50 of 69.2 μg/mL and 125 μg/mL, respectively.  相似文献   

16.
A series of novel 5-((1-aroyl-1H-indol-3-yl)methylene)-2-thioxodihydropyrimidine-4,6(1H,5H)-diones (3az) have been evaluated for in vitro cytotoxicity against a panel of 60 human tumor cell lines. Compound 3k exhibited the most potent growth inhibition against melanoma MDA-MB-435 cells (GI50 = 850 nM), against leukemia SR cancer cells (GI50 = 1.45 μM), and OVCAR-3 (GI50 = 1.26 μM) ovarian cancer cell lines. The structurally related compound 3s had a GI50 value of 1.77 μM against MDA-MB-435 cells. The N-naphthoyl analogue 3t had GI50 values of 1.30 and 1.91 μM against HOP-92 non-small cell lung cancer and MDA-MB-435 melanoma cell lines, respectively. The related analogue 3w had GI50 values of 1.09 μM against HOP-92 non-small cell lung cancer cell lines. Interestingly, docking of the two active molecules 3k and 3w into the active site of COX-2 indicates that these compounds are COX-2 ligands with strong hydrophobic and hydrogen bonding interactions. Thus, compounds 3k, 3t, 3s, and 3w constitute a new class of anticancer/anti-inflammatory agents that may have unique potential for cancer therapy.  相似文献   

17.
A series of N-(3-fluoro-4-(2-arylthieno[3,2-b]pyridin-7-yloxy)phenyl)-2-oxo-3-phenylimidazolidine-1-carboxamides targeting c-Met and VEGFR2 tyrosine kinases was designed and synthesized. The compounds were potent against these two enzymes with IC50 values in the low nanomolar range in vitro, possessed favorable pharmacokinetic profiles and showed high efficacy in vivo in several human tumor xenograft models in mice.  相似文献   

18.
4-(4-[N-1-carboxy-3-(3,5-dibromo-4-hydroxyphenyl)-3-oxo-propylamino]phenyl)-4-oxo-butyric acid (V), 4-(3- & 4-[N-1-carboxy-3-(3,5-dibromo-4-hydroxyphenyl)-3-oxo-propylaminophenyl]-2-aryl-4-oxo-butyric acids (Xa–e) and 4-(2-alkyl-2-[N-3-(3,5-dibromo-4-hydroxyphenyl)-1-carboxy-3-oxo-propylamino]acetamido) benzoate esters (XVa–e) were designed, synthesized and biologically evaluated as anti-HCV for genotypes 1b and 4a. The design was based on their docking scores with HCV NS3/4A protease-binding site of the genotype 1b (1W3C), which is conserved in the genotype 4a structure. The docking scores predicted that most of these molecules have higher affinity to the HCV NS3/4A enzyme more than Indoline lead. These compounds were synthesized and evaluated for their cytopathic inhibitory activity against RAW HCV cell cultures of genotype 4a and also examined against Huh 5–2 HCV cell culture of genotype 1b, utilizing Luciferase and MTS assays. Compounds Xa and Xb have 95 and 80% of the activity of Ribavirin against genotype 4a and compounds XVa, XVb and XVd exerted high percentage inhibitory activity against genotype 1b equal 87.7, 84.3 and 82.8%, respectively, with low EC50 doses.  相似文献   

19.
The propargyl alcohol on reaction with aldoxime and NaOCl in DCM gave exclusively (3-arylisoxazol-5-yl) methanol 1. The compound 1 was oxidized to an aldehyde 2 followed by reaction with aniline resulted in Schiff’s base 3. The compounds 3 were further reacted with various aldehydes having α-hydrogen using molecular iodine as catalyst and which yielded 5-(3-alkylquinolin-2-yl)-3-aryl isoxazole derivatives 4. All the final compounds 4 were screened against four human cancer cell lines (A549, COLO 205, MDA-MB 231 and PC-3) and among these compounds 4n showed potent cytotoxicity against all the cell lines at IC50 values of <12 μM.  相似文献   

20.
A series of 1-(3-aryloxyaryl)benzimidazoles incorporating a sulfone substituent (6) was prepared. High affinity LXR ligands were identified (LXRβ binding IC50 values <10 nM), some with excellent agonist potency and efficacy in a functional assay of LXR activity measuring ABCA1 mRNA increases in human macrophage THP1 cells. The compounds were typically stable in liver microsome preparations and had good oral exposure in mice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号