首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The goal of the present research was try to explain the physiological mechanism for the influence of the geomagnetic field (GMF) disturbance, reflected by the indices of the geomagnetic activity (K, K(p), A(k), and A(p) indices), on cardiovascular regulation. One hundred forty three experimental runs (one daily) comprising 50 min hemodynamic monitoring sequences were carried out in rabbits sedated by pentobarbital infusion (5 mg/kg/h). We examined the arterial baroreflex effects on the short term blood pressure and heart rate (HR) variabilities reflected by the standard deviation (SD) of the average values of the mean femoral arterial blood pressure (MAP) and the HR. Baroreflex sensitivity (BRS) was estimated from blood pressure/HR response to intravenous (i.v.) bolus injections of vasoconstrictor (phenylephrine) and vasodilator (nitroprusside) drugs. We found a significant negative correlation of increasing GMF disturbance (K(p)) with BRS (P = 0.008), HR SD (P =0.022), and MAP SD (P = 0.002) signifying the involvement of the arterial baroreflex mechanism. The abrupt change in geomagnetic disturbance from low (K = 0) to high (K = 4-5) values was associated with a significant increase in MAP (83 +/- 5 vs. 99 +/- 5 mm Hg, P = 0.045) and myocardial oxygen consumption, measured by MAP and HR product (24100 +/- 1800 vs. 31000 +/- 2500 mm Hg. bpm, P = 0.034), comprising an additional cardiovascular risk. Most likely, GMF affects brainstem and higher neural cardiovascular regulatory centers modulating blood pressure and HR variabilities associated with the arterial baroreflex.  相似文献   

2.
Increasing evidence suggests that time-varying and static magnetic fields in the environment might affect the cardiovascular system. To explore the underlying physiology, the effect of static magnetic fields (SMFs) on the carotid baroreflex control of microcirculation was studied. Twenty-four hemodynamic monitorings were performed in rabbits sedated by pentobarbital infusion (5 mg/kg/h) during experiments that lasted 120 min. Mean femoral artery blood pressure, heart rate, and ear lobe skin microcirculatory blood flow, measured by microphotoelectric plethysmogram (MPPG), were simultaneously recorded before and after a 40 min exposure of the sinocarotid baroreceptors to Nd2–Fe14–B alloy magnets (n = 14) or sham magnets (n = 10, control series). The local SMF field was 350 mT, at the baroreceptors’ site. Arterial baroreflex sensitivity (BRS) was estimated from heart rate/blood pressure response to intravenous bolus injections of nitroprusside and phenylephrine. A significant positive correlation was found between the SMF-induced increase in BRS (ΔBRS = BRSafterSMF − BRSpriorSMF) and the increment in microvascular blood flow (ΔMPPG = MPPGafterSMF − MPPGpriorSMF) (r = 0.66, p < 0.009). The SMF probably modulated the arterial baroreflex-mediated microcirculatory control. This could represent one possible mechanism how environmental magnetic fields act on the cardiovascular system, and a method how to complexly adjust macro- and microcirculation with potential clinical implementation.  相似文献   

3.
Spreading evidence suggests that environmental and artificial magnetic fields have a significant impact on cardiovascular system. The modulation of cardiovascular regulatory mechanisms may play a key role in observed effects. The objective was to study interrelated impacts of artificial static magnetic field (SMF) and natural geomagnetic field (GMF) on arterial baroreceptors. We studied baroreflex sensitivity (BRS) in conscious rabbits before and after 40 min of sham (n = 20) or application of Nd2-Fe14-B alloy magnets (n = 26) to the sinocarotid baroreceptor region in conjunction with GMF disturbance during the actual experiment, determined by K- and A(k)-indexes from a local geomagnetic observatory. SMF at the position of baroreceptors was 0.35 T. BRS was estimated from peak responses of mean arterial pressure (MAP) and heart rate expressed as percentages of the resting values preceding each pair of pressure (phenylephrine) and depressor drug (nitroprusside) injections. We observed a significant increase in BRS for the nitroprusside depressor test (0.78 +/- 0.1 vs. 1.15 +/- 0.14 bpm/mmHg%, initial value vs. SMF exposure, P <.0002) and a tendency for phenylephrine pressor test to increase in BRS. Prior to SMF exposure, a significant positive correlation was found between actual K index values and MAP (t = 2.33, P =.025, n = 46) and a negative correlation of the K index with BRS (t = -3.6, P =.001, n = 46). After SMF exposure we observed attenuation of the geomagnetic disturbance induced a decrease in BRS. Clinical trials should be performed to support these results, but there is a strong expectation that 0.35 T SMF local exposure to sinocarotid baroreceptors will be effective in cardiovascular conditions with arterial hypertension and decreased BRS, due to a favorable SMF effect on the arterial baroreflex. Magnets to the sinocarotid triangle along with modification of the pharmacotherapy for hypertension should be especially effective on days with intense geomagnetic disturbance, in moderating sympathetic activation and baroreceptor dysfunction.  相似文献   

4.
One hundred subjects, males and females with ages ranging between 18 and 48 years, were studied under both field-exposed and sham-exposed conditions. A 50 Hz, 100 μT magnetic field (MF) was used. To examine the effect of field exposure on performance, a two-alternative, forced-choice, duration-discrimination task with three levels of difficulty was used. The subject's task was to decide which of two sequentially presented light flashes had the longer duration. The standard duration was 50 ms, and the alternative durations were 65, 100, or 125 ms. Both reaction time and percentage of correct responses were recorded for each subject. MF and sham exposure were for 9 min each. Blood pressure and heart rate were also measured before and following MF exposure and sham-exposure trials. The study was performed double blind, with the exposure order counterbalanced. Compared to sham exposure, MF exposure significantly decreased reaction time on the hardest level of the performance task. MF exposure did not reliably affect percentage correct or cardiovascular performance. It was demonstrated that a relatively high level of statistical power was the basis for the observed MF effect, and the need to pay closer attention to power levels in future research is discussed. © 1996 Wiley-Liss, Inc.  相似文献   

5.
Spreading evidence suggests that geomagnetic field (GMF) modulates artificial magnetic fields biological effect and associated with increased cardiovascular morbidity. To explore the underlying physiological mechanism we studied 350 mT static magnetic field (SMF) effect on arterial baroreflex-mediated skin microcirculatory response in conjunction with actual geomagnetic activity, reflected by K and K p indices. Fourteen experiments were performed in rabbits sedated by pentobarbital infusion (5 mg/kg/h). Mean femoral artery blood pressure, heart rate, and the ear lobe skin microcirculatory blood flow, measured by microphotoelectric plethysmogram (MPPG), were simultaneously recorded before and after 40 min of NdFeB magnets local exposure to sinocarotid baroreceptors. Arterial baroreflex sensitivity (BRS) was estimated from heart rate/blood pressure response to intravenous bolus injections of nitroprusside and phenylephrine. We found a significant positive correlation between SMF-induced increase in BRS and increment in microvascular blood flow (ΔBRS with ΔMPPG, r=0.7, p<0.009) indicated the participation of the arterial baroreflex in the regulation of the microcirculation and its enhancement after SMF exposure. Geomagnetic disturbance, as opposed to SMF, decreased both microcirculation and BRS, and counteracted SMF-induced increment in microcirculatory blood flow (K-index with ΔMPPG; r s=−0.55, p<0.041). GMF probably affected central baroreflex pathways, diminishing SMF direct stimulatory effect on sinocarotid baroreceptors and on baroreflex-mediated vasodilatatory response. The results herein may thus point to arterial baroreflex as a possible physiological mechanism for magnetic-field cardiovascular effect. It seems that geomagnetic disturbance modifies artificial magnetic fields biological effect and should be taken into consideration in the assessment of the final effect. An erratum to this article can be found at  相似文献   

6.
The sequences technique is frequently used for time domain assessment of the arterial-cardiac baroreceptor reflex sensitivity (BRS). The BRS is estimated by the slope between systolic blood pressure and RR interval values in baroreflex sequences (BSs) and an overall estimate is obtained by slope averaging. However, only 25% of all beats are in BSs with 60% of those located in 3-beat length segments. Also, in cases of BSs absence (usually associated with poor BRS function), the BRS cannot be quantified.Here, baroreflex events (BEs) are introduced and used with global/total slope estimators to improve BRS assessment. The performance of the novel method is evaluated using the EuroBaVar dataset. The events technique benefits from a higher number of beats: 50% of all beats are in BEs with more than 70% exceeding 3-beat length. It always provides a BRS estimate, even when BSs cannot be identified. When BSs are available, estimates from BEs and BSs are highly correlated. The estimates from BEs for the cases without BSs are lower than the estimates for the remaining cases, indicating poorer BRS function. The events technique also offers superior ability to discriminate lying from standing position in the EuroBaVar dataset (23/23 versus 18/23 for the sequences technique).  相似文献   

7.
Previously we found an opposite effect of artificial static magnetic field (SMF) and natural geomagnetic field (GMF) on arterial baroreceptors. A 0.35 T SMF increased baroreflex sensitivity (BRS), whereas GMF disturbance decreased BRS. Here, we investigated interrelated impacts on arterial baroreceptors of 0.35 T SMF, generated by Nd(2)-Fe(14)-B alloy magnets, GMF, and verapamil, a Ca(2+) channel blocking agent. We measured BRS in rabbits before and after local SMF exposure of sinocarotid baroreceptors or after simultaneous SMF and verapamil application, in conjunction with geomagnetic disturbance during actual experimental run (determined by K-index) and geomagnetic disturbance over the preceding 24 h of each experiment (A(k)-index). BRS was estimated from peak responses of mean arterial pressure (MAP) and heart rate, expressed as percentages of the resting values preceding each pair of pressure (phenylephrine) and depressor drug (nitroprusside) injections. Prior to verapamil and/or SMF application we found a significant positive correlation of K-index with MAP (t = 2.39, P =.021, n = 44), but negative with BRS (t = -4.60, P =.0003, n = 44), and found a negative correlation of A(k)-index with BRS (t = -2.7, P = 0.01, n = 44). SMF induced an increase in BRS (0.79 +/- 0.1 vs. 1.15 +/- 0.1 bpm%/mmHg%, initial value vs. SMF exposure, P <.0002, n = 26). Verapamil infusion blocked the SMF and GMF effect on BRS, indicating Ca(2+) channels as a possible site of both fields' impact. SMF and GMF probably affect baroreceptor sensory transduction, modulating baroreceptor membranes' Ca(2+) channel permeability.  相似文献   

8.
Cheng JH  Wang SY  Zhang LF  Liu X  Liu Y  Ma J 《生理学报》2008,60(1):74-82
本文旨在观察模拟失重28 d大鼠解除尾部悬吊前、后(2 h内),清醒自由活动状态下动脉收缩压(systolic bloodpressure,SBP)、舒张压(diastolic blood pressure,DBP)和心率(heart rate,HR)的变化.采用自回归模型法对不同时间点的收缩压变异性(SBP variability,SBPV)和心率变异性(HR variability,HRV)进行自谱与互谱分析,并比较自回归法与周期图法的自谱分析结果:由传递函数分析得到反映压力感受器-心率反射敏感性(baroreceptor-heart rate reflex sensitivity,BRS)变化的有关数据.结果显示,用自回归模型法对清醒大鼠血压信号进行短时程谱分析可得到较为平滑、谱峰清楚的谱估计曲线.28 d模拟失重大鼠解除尾部悬吊前、后,SBP、DBP和HR及其主要谱指标,以及高、低频段传递函数的平均增益均无显著性变化,不同时间点的谱指标也无显著差别;但模拟失重组的SBP、DBP和HR却显著高于对照组.上述结果提示,中期模拟失重大鼠恢复正常体位后,其清醒状态的BPV与HR均处于升高状态,但其短时程BPV与HRV谱及BRS均无显著变化,与最近报道的航天员HRV与BRS无显著改变一致.  相似文献   

9.
It has been demonstrated that disruption of social bonds and perceived isolation (loneliness) are associated with an increased risk of cardiovascular morbidity and mortality. Adolescence is proposed as a period of vulnerability to stress. Nevertheless, the impact of chronic social stress during this ontogenic period in cardiovascular function is poorly understood. Therefore, the purpose of this study was to compare the impact in cardiovascular function of social isolation for 3 weeks in adolescent and adult male rats. Also, the long‐term effects of social isolation during adolescence were investigated longitudinally. Social isolation reduced body weight in adolescent, but not in adult animals. Disruption of social bonds during adolescence increased arterial pressure without affecting heart rate and pulse pressure (PP). Nevertheless, social isolation in adulthood reduced systolic arterial pressure and increased diastolic arterial pressure, which in turn decreased PP without affecting mean arterial pressure. Cardiovascular changes in adolescents, but not adults, were followed by facilitation of both baroreflex sensitivity and vascular reactivity to the vasodilator agent acetylcholine. Vascular responsiveness to either the vasodilator agent sodium nitroprusside or the vasoconstrictor agent phenylephrine was not affected by social isolation. Except for the changes in body weight and baroreflex sensitivity, all alterations evoked by social isolation during adolescence were reversed in adulthood after moving animals from isolated to collective housing. These findings suggest a vulnerability of adolescents to the effects of chronic social isolation in cardiovascular function. However, results indicate minimal cardiovascular consequences in adulthood of disruption of social bonds during adolescence. © 2015 Wiley Periodicals, Inc. Develop Neurobiol 76: 34–46, 2016  相似文献   

10.
《Chronobiology international》2013,30(8):1636-1646
Although the effects of aerobic exercise on resting heart rate, heart rate variability, and blood pressure have been investigated, there are scant data on the effects of aerobic exercise on the circadian rhythm of such cardiovascular parameters. In this study, we investigated the effects of aerobic exercise on the 24?h rhythm of heart rate and ambulatory blood pressure in the morning, when cardiovascular events are more common. Thirty-five healthy young subjects were randomized to control and aerobic exercise groups. Subjects in the latter group participated in their respective exercise program for two months, while those in the former group did not exercise. Twenty-four-hour electrocardiogram and ambulatory blood pressure monitoring data were obtained at baseline and at the end of the exercise intervention. The control group showed no changes, while the aerobic exercise group showed a significant decrease in heart rate (73.7?±?6.6?bpm to 69.5?±?5.1?bpm, p?<?0.005) and sympathetic activity such as LF/HF ratio (2.0?±?0.7 to 1.8?±?0.6, p?<?0.05) throughout the 24?h period, particularly in the daytime. The decrease in the heart rate was most prominent in the morning. However, heart rate and LF/HF ratio showed no statistical changes during the night. No significant changes were observed in blood pressure. These findings suggest aerobic exercise exerts beneficial effects on the circadian rhythm of heart rate, especially in the morning. (Author correspondence: hshio@kobe-u.ac.jp)  相似文献   

11.
We showed previously in rabbits that 0.2 and 0.35 T static magnetic field (SMF) modulated systemic hemodynamics by arterial baroreceptors. We now have measured the effect of 0.25 T SMF on microcirculation within cutaneous tissue of the rabbit ear lobe by the rabbit ear chamber (REC) method. Forty experimental runs (20 controls and 20 SMF) were carried out in eight different rabbits with an equal number of control and SMF experiments on each individual. Rabbits were sedated by pentobarbital sodium (5 mg/kg/h, i.v.) during the entire 80 min experiment. SMF was generated by four neodium-iron-boron alloy (Nd2-Fe14-B) magnets (15 x 25 x 30 mm, Neomax, PIP - Tokyo Co., Ltd., Tokyo, Japan), positioned around the REC on the observing stage of an optical microscope. The direct intravital microscopic observation of the rabbit's ear microvascular net, along with simultaneous blood flow measurement by microphotoelectric plethysmography (MPPG), were performed PRE (20 min, baseline), DURING (40 min), and POST (20 min) magnetic field exposure. The control experiments were performed under the same conditions and according to the same time course, but without magnetic field. Data were analyzed comparing MPPG values and percent change from baseline in the same series, and between corresponding sections of control and SMF runs. In contrast to control series (100+/-0.0%-90.0+/-5.4%-87.7+/-7.1%, PRE-EXPOSURE-POST), after magnetic field exposure we observed increased blood flow (100+/-0.0%-117.8+/-9.6%*-113.8+/-14.0%, *P<0.05) which gradually decreased after exposure cessation. We propose that long exposure of a high level nonuniform SMF probably modifies microcirculatory homeostasis through modulation of the local release of endothelial neurohumoral and paracrine factors that act directly on the smooth muscle of the vascular wall, presumably by affecting ion channels or second messenger systems.  相似文献   

12.
13.
Objective: To investigate the cardiovascular autonomic function in pediatric obesity of different duration by using standard time domain, spectral heart rate variability (HRV), and nonlinear methods. Research Methods and Procedures: Fifty obese children (13.9 ± 1.7 years) were compared with 12 lean subjects (12.9 ± 1.6 years). Obese children were classified as recent obese (ROB) (<4 years), intermediate obese (IOB) (4 to 7 years), and long‐term obese (OB) (>7 years). In all participants, we performed blood pressure (BP) measurements, laboratory tests, and 24‐hour electrocardiogram/ambulatory BP monitoring. The spectral power was quantified in total power, very low‐frequency (LF) power, high‐frequency (HF) power, and LF to HF ratio. Total, long‐term, and short‐term time domain HRV were calculated. Poincaré plot and quadrant methods were used as nonlinear techniques. Results: All obese groups had higher casual and ambulatory BP and higher glucose, homeostasis model assessment, and triglyceride levels. All parameters reflecting parasympathetic tone (HF band, root mean square successive difference, proportion of successive normal‐to‐normal intervals, and scatterplot width) were significantly and persistently reduced in all obese groups in comparison with lean controls. LF normalized units, LF/HF, and cardiac acceleration (reflecting sympathetic activation) were significantly increased in the ROB group. In IOB and OB groups, LF, but not nonlinear, measures were similar to lean controls, suggesting biphasic behavior of sympathetic tone, whereas nonlinear analysis showed a decreasing trend with the duration of obesity. Long‐term HRV measures were significantly reduced in ROB and IOB. Discussion: Autonomic nervous system changes in adolescent obesity seem to be related to its duration. Nonlinear methods of scatterplot and quadrant analysis permit assessment of autonomic balance, despite measuring different aspects of HRV.  相似文献   

14.
ABSTRACT

Hyperphosphatemia is a common complication of chronic kidney disease (CKD) and is associated with cardiovascular disease (CVD), which has contributed to an increase in mortality of CKD patients. The onset of CVD often varies by time-of-day. Acute myocardial infarction or ventricular arrhythmia occurs most frequently during early morning. Blood pressure (BP) and heart rate circadian rhythms account for the diurnal variations in CVD. Preservation of normal circadian time structure from the cardiomyocyte level to the whole organ system is essential for cardiovascular health and CVD prevention. Independent risk factors, such as reduced heart rate variability (HRV) and increased BP variability (BPV), are particularly prevalent in patients with CKD. Analysis of HRV is an important clinical tool for characterizing cardiac autonomic status, and reduced HRV has prognostic significance for various types of CVD. Circadian BP rhythms are classified as extreme dipper, dipper, non-dipper or riser. It has been reported that nocturnal riser BP pattern contributes to cardiovascular threats. Previous studies have indicated that the circadian rhythm of serum phosphate in CKD patients is consistent with the general population, with the highest diurnal value observed in the early morning hours, followed by a progressive decrease to the lowest value of the day, which occurs around 11:00 am. Rhythm abnormalities have become the main therapeutic target for treating CVD in CKD patients. It has been reported that high levels of serum phosphate are associated with reduced HRV and increased BPV in CKD patients. However, the mechanisms related to interactions between hyperphosphatemia, HRV and BPV have not been fully elucidated. This review focuses on the evidence and discusses the potential mechanisms related to the effects of hyperphosphatemia on HRV and BPV.  相似文献   

15.
Jia YX  Dong JW  Wu XX  Ma TM  Shi AY 《生理学报》1998,50(3):309-314
本工作利用两肾一夹肾性高血压大鼠模型,观察枸杞多糖对高血压大鼠血压的影响以及离体主动脉环丙皮细胞在调节血管张力中的功能改变,探讨LBP对高血压发生发展的影响及其机制。结果表明,LBP可防止2K1C大鼠高血压的形成。离体主动脉环灌流表明RH组对苯肾上腺素的收缩反应明显高于对照组,去除内皮后组间差异消失.  相似文献   

16.
The effect of magnetic field (MF) exposure on microcirculation and microvasculature is not clear or widely explored. In the limited body of data that exists, there are contradictions as to the effects of MFs on blood perfusion and pressure. Approximately half of the cited studies indicate a vasodilatory effect of MFs; the remaining half indicate that MFs could trigger either vasodilation or vasoconstriction depending on initial vessel tone. Few studies indicate that MFs cause a decrease in perfusion or no effect. There is a further lack of investigation into the cellular effects of MFs on microcirculation and microvasculature. The role of nitric oxide (NO) in mediating microcirculatory MF effects has been minimally explored and results are mixed, with four studies supporting an increase in NO activity, one supporting a biphasic effect, and five indicating no effect. MF effects on angiogenesis are also reported: seven studies supporting an increase and two a decrease. Possible reasons for these contradictions are explored. This review also considers the effects of magnetic resonance imaging (MRI) and anesthetics on microcirculation. Recommendations for future work include studies aimed at the cellular/mechanistic level, studies involving perfusion measurements both during and post-exposure, studies testing the effect of MFs on anesthetics, and investigation into the microcirculatory effects of MRI.  相似文献   

17.

1. 1.|The effect of hypothermia (24°C) on the pressor action of angiotensin II (ANG II) was studied in anaesthetized rats.

2. 2.|Hypothermia prolonged the pressor response to ANG II leading to an increase in the estimated half-life of ANG II.

3. 3.|Hypothermia also caused a significant increase in stroke volume and a significant decrease in heart rate with no change in cardiac output.

4. 4.|It is conclued that hypothermia causes a prolongation of the pressor action of ANG II probably by reducing the activity of the catabolic enzymes leading to an increase in ANG II half-life.

Author Keywords: Cold; cardiac output; stroke volume; heart rate; blood pressure; angiotensin catabolism; rats  相似文献   


18.
Exposure to fast-rise-time ultra-wideband (UWB) electromagnetic pulses has been postulated to result in effects on biological tissue (including the cardiovascular system). In the current study, 10 anesthetized Sprague-Dawley rats were exposed to pulses produced by a Sandia UWB pulse generator (average values of exposures over three different pulse repetition rates: rise time, 174–218 ps; peak E field, 87–104 kV/m; pulse duration, 0.97–0.99 ns). Exposures to 50, 500 and 1000 pulses/s resulted in no significant changes in heart rate or mean arterial blood pressure measured every 30 s during 2 min of exposure and for 2 min after the exposure. The results suggest that acute UWB whole-body exposure under these conditions does not have an immediate detrimental effect on these cardiovascular system variables in anesthetized rats. Bioelectromagnetics 19:330–333, 1998. Published 1998 Wiley-Liss, Inc.  相似文献   

19.
急性低氧对家兔血压心率微血管反应性及自由基的影响   总被引:6,自引:1,他引:5  
目的 :探讨不同急性低氧下的血压、心率、微血管反应性和自由基的影响。方法 :实验采用家兔人工吸入含氧量为 12 .5 %和 8.5 %氮氧混合气体 (模拟 4 0 0 0m和 6 5 0 0m高原急性低氧 )。急性低氧时间分别为 5、10、15、2 0min ,观察血压、心率、微血管反应性和自由基影响。结果 :①急性低氧 5min时收缩压略有升高 ,以后变为降低 ;舒张压在急性低氧 2 0min后明显降低 (P <0 .0 5 ) ;②心率随急性低氧时间的延长变慢 ,尤其含氧量 8.5 %急性低氧组明显 (P <0 .0 5 )。③眼结膜微血管管径随急性低氧时间延长呈现扩张 (P <0 .0 5 ) ,血细胞流速减慢 (P <0 .0 5 ,P <0 .0 1)。④急性低氧 2 0min后SOD活力明显降低 (P <0 .0 5 ) ,MDA含量升高 (P <0 .0 5 )。结论 :急性低氧可使血压降低 ,心率减慢 ,微血管管径变大和血细胞流速减慢 ,同时体内自由基产生增加。  相似文献   

20.
Opercular and surfacing activity were observed in the Indian catfish Clarias batrachus and Heteropneustes fossilis. In the series A experiments, the opercular activity was monitored under two experimental conditions, viz., (1) surfacing allowed and (2) surfacing prevented. A statistically significant elevation of the rate of opercular activity was observed when air breathing was prevented in both species. In addition, a significant prevention effect and a time of day dependence of that were noticed in both species. In the series B experiments, temporal patterns of surfacing and air-gulping activities were examined under an artificial LD 12:12 schedule at 2-h intervals over a period of 48 h. The inter air-gulping interval in minutes between two consecutive bouts was also recorded four times each day in both species. A significant 24-h rhythm was found for the rate of surfacing activity and length of the inter air-gulping interval in both species. However, the overall activity appears to be much higher in Heteropneustes fossilis as compared to Clarias batrachus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号