首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Carbonic anhydrases (CA) catalyze activated ester hydrolysis in addition to the hydration of CO2 to bicarbonate. They also show phosphatase activity with 4-nitrophenyl phosphate as substrate but not sulfatase with the corresponding sulfate. Here we prove that the enzyme is catalyzing the synthesis of cyclic diols from sulfate esters. 5-, 6- and 8-membered ring cyclic sulfates incorporating a neighboring secondary alcohol moiety were treated with CA II and yielded the corresponding cyclic diols. Inhibitory properties of obtained cyclic and original sulfate esters were then investigated on human carbonic anhydrase I (hCA I), hCA II, hCA IV and hCA VI (h?=?human isoform). KI-s of these compounds ranged between 32.7–423 μM against hCA I, 2.13–32.4 μM against hCA II, 13.7–234 μM against hCA IV and 76–278 μM against CA VI, respectively. The sulfatase activity of CA with such esters is amazing considering the fact that 4-nitrophenyl-sulfate is not a substrate of these enzymes.  相似文献   

2.
Carbonic anhydrases (CA) catalyze activated ester hydrolysis in addition to the hydration of CO(2) to bicarbonate. They also show phosphatase activity with 4-nitrophenyl phosphate as substrate but not sulfatase with the corresponding sulfate. Here we prove that the enzyme is catalyzing the synthesis of cyclic diols from sulfate esters. 5-, 6- and 8-membered ring cyclic sulfates incorporating a neighboring secondary alcohol moiety were treated with CA II and yielded the corresponding cyclic diols. Inhibitory properties of obtained cyclic and original sulfate esters were then investigated on human carbonic anhydrase I (hCA I), hCA II, hCA IV and hCA VI (h?=?human isoform). K(I)-s of these compounds ranged between 32.7-423 μM against hCA I, 2.13-32.4 μM against hCA II, 13.7-234 μM against hCA IV and 76-278 μM against CA VI, respectively. The sulfatase activity of CA with such esters is amazing considering the fact that 4-nitrophenyl-sulfate is not a substrate of these enzymes.  相似文献   

3.
Four human (h) carbonic anhydrase isoforms (CA, EC 4.2.1.1), hCA I, II, IV, and VII, were investigated for their activation profile with piperazines belonging to various classes, such as N-aryl-, N-alkyl-, N-acyl-piperazines as well as 2,4-disubstituted derivatives. As the activation mechanism involves participation of the activator in the proton shuttling between the zinc-coordinated water molecule and the external milieu, these derivatives possessing diverse basicity and different scaffolds were appropriate for being investigated as CA activators (CAAs). Most of these derivatives showed CA activating properties against hCA I, II, and VII (cytosolic isoforms) but were devoid of activity against the membrane-associated hCA IV. For hCA I, the KAs were in the range of 32.6–131?µM; for hCA II of 16.2–116?µM, and for hCA VII of 17.1–131?µM. The structure-activity relationship was intricate and not easy to rationalize, but the most effective activators were 1-(2-piperidinyl)-piperazine (KA of 16.2?µM for hCA II), 2-benzyl-piperazine (KA of 17.1?µM for hCA VII), and 1-(3-benzylpiperazin-1-yl)propan-1-one (KA of 32.6?µM for hCA I). As CAAs may have interesting pharmacologic applications in cognition and for artificial tissue engineering, investigation of new classes of activators may be crucial for this relatively new research field.  相似文献   

4.
A series of phenolic and saponin type natural products such as quercetin, rutin, catechin, epicatechin, silymarin, trojanoside H, astragaloside IV, astragaloside VIII and astrasieversianin X, were investigated for their inhibitory effects against the metalloenzyme carbonic anhydrase (CA, EC 4.2.1.1). We here report inhibitory effects of these compounds against five α-CA isozymes (hCA I, hCA II, bCA III, hCA IV and hCA VI). Most of the phenolic and saponin type compounds inhibited the isoenzymes quite effectively at low micromolar KI-s ranging between 0.1 and 4 µM, whereas a few derivatives were ineffective (KI-s > 100 µM). The results were remarkable which might lead to design of novel CAIs with a diverse inhibition mechanism compared to sulfonamide/sulfamate inhibitors.  相似文献   

5.
Here we determined the in vitro inhibitory effects of 5-(2-hydroxyethyl)-3,4-dimethylthiazolium iodide (1), 3-Benzyl-5-(2-hydroxyethyl)-4-methylthiazolium chloride (2) and thiamine (3) on human erythrocyte carbonic anhydrase I, II isozymes (hCA I and hCA II) and secreted isoenzyme CA VI. KI values ranged from 0.38 to 2.27 µM for hCA I, 0.085 to 0.784 µM for hCA II and 0.062 to 0.593 µM for hCA VI, respectively. The compounds displayed relatively strong actions on hCA II, in the same range as the clinically used sulfonamidesethoxzolamide, zonisamide and acetazolamide.  相似文献   

6.
This study explores the correlation between human carbonic anhydrase (CA, EC 4.2.1.1) isoforms I and II (hCA I, II) and the inhibitory features of some spirobisnaphthalene derivatives. A group of spirobisnaphthalenes was synthesized and their hCA I and II inhibitory effects was investigated. The Ki values were similar for both CA isoenzymes, the compounds showing good inhibitory activity. Ki values ranged between 1.60 and 460.42?µM for hCA I and between 0.39 and 419.42?µM for hCA II, respectively. The spirobisnaphthalenes derivatives might be useful for designing CA inhibitors belonging to novel chemotypes compared to the highly investigated sulfonamides, sulfamates or coumarins.  相似文献   

7.
Studies on carbonic anhydrase (CA, EC 4.2.1.1) inhibitors have increased due to several therapeutic applications while there are few investigations on activators. Here we investigated CA inhibitory and activatory capacities of a series of dopaminergic compounds on human carbonic anhydrase (hCA) isozymes I, II, and VI. 2-Amino-1,2,3,4-tetrahydronaphthalene-6,7-diol hydrobromide and 2-amino-1,2,3,4-tetrahydronaphthalene-5,6-diol hydrobromide were found to show effective inhibitory action on hCA I and II whereas 2-amino-5,6-dibromoindan hydrobromide and 2-amino-5-bromoindan hydrobromide exhibited only moderate inhibition against both isoforms, being more effective inhibitors of hCA VI. Ki values of the molecules 36 were in the range of 41.12–363 μM against hCA I, of 0.381–470 μM against hCA II and of 0.578–1.152 μM against hCA VI, respectively. Compound 7 behaved as a CA activator with KA values of 27.3 μM against hCA I, of 18.4 μM against hCA II and of 8.73 μM against hCA VI, respectively.  相似文献   

8.
A series of novel sulphonamide derivatives was obtained from sulphanilamide which was N4-alkylated with ethyl bromoacetate followed by reaction with hydrazine hydrate. The hydrazide obtained was further reacted with various aromatic aldehydes. The novel sulphonamides were characterised by infrared, mass spectrometry, 1H- and 13C-NMR and purity was determined by high-performance liquid chromatography (HPLC). Human (h) carbonic anhydrase (CA, EC 4.2.1.1) isoforms hCA I and II and Mycobacterium tuberculosis β-CA encoded by the gene Rv3273 (mtCA 3) inhibition activity was investigated with the synthesised compounds which showed promising inhibition. The KIs were in the range of 54.6?nM–1.8?µM against hCA I, in the range of 32.1?nM–5.5?µM against hCA II and of 127?nM–2.12?µM against mtCA 3.  相似文献   

9.
A series of 4-substituted-spinaceamine (4,5,6,7-tetrahydro-imidazolo[4,5-c]pyridine) were prepared from histamine and aromatic aldehydes Schiff bases, and investigated as activators of four human (h) carbonic anhydrase (CA, EC 4.2.1.1) isoforms, the cytosolic hCA I, II and VII, and the membrane-associated hCA IV. All isoforms were effectively activated by the new derivatives, and the nature of the moiety in position 4 of the bicyclic system was the factor influencing activation properties against all isoforms. For hCA I, these compounds showed KAs in the range of 2.52–21.5?µM, the most effective activator being 4-(2-hydroxyphenyl)-spinaceamine. For hCA II the activation constants ranged between 0.60 and 17.2?µM, with 4-(2,3,5,6-tetrafluorophenyl)- spinaceamine the best activator. Affinity for hCA IV was in the range of 0.52–63.8?µM, and the same compound as for hCA II was the most effective activator. The most sensitive isoform for activation was the brain-associated hCA VII, for which KAs in the range of 82?nM–4.26?µM were observed. Effective hCA VII activators were the (2-bromophenyl)-, 2,3,5,6-tetrafluorophenyl- and furyl-substituted spineaceamines (KAs of 82–95?nM). As CA activators may have pharmacologic applications in various fields, this work provides interesting derivatives for further studies.  相似文献   

10.
A series of sulfonamide derivatives incorporating substituted 3-formylchromone moieties were investigated for the inhibition of three human carbonic anhydrase (hCA, EC 4.2.1.1) isoforms, hCA I, II, and VI. All these compounds, together with the clinically used sulfonamide acetazolamide, were investigated as inhibitors of the physiologically relevant isozymes I, II (cytosolic), and VI (secreted isoform). These sulfonamides showed effective inhibition against all these isoforms with KI’s in the range of 0.228 to 118 µM. Such molecules can be used as leads for discovery of novel effective CA inhibitors against other isoforms with medicinal chemistry applications.  相似文献   

11.
The new antitumor sulfamate EMD 486019 was investigated for its interaction with twelve catalytically active mammalian carbonic anhydrase (CA, EC 4.2.1.1) isozymes, hCA I – XIV. Similarly to 667-Coumate, a structurally related compound in phase II clinical trials as steroid sulfatase/CA inhibitor with potent antitumor properties, EMD 486019 acts as a strong inhibitor of isozymes CA II, VB, VII, IX, XII, and XIV (KIs in the range of 13–19 nM) being less effective against other isozymes (KIs in the range of 66–3600 nM against hCA I, IV, VA, VI, and mCA XIII, respectively). The complete inhibition profile of 667-Coumate against these mammalian CAs is also reported here for the first time. Comparing the X-ray crystal structures of the two adducts of CA II with EMD 486019 and 667-Coumate, distinct orientations of the bound sulfamates within the enzyme cavity were observed, which account for their distinct inhibition profiles. CA II/IX potent inhibitors belonging to the sulfamate class are thus valuable clinical candidates with potential for development as antitumor agents with a multifactorial mechanism of action.  相似文献   

12.
A newly series of water-soluble 1-alkyl-3-(4-methyl-7, 8-dihydroxy-2H-chromen-2-one) benzimidazolium chloride salts (3a-j) were synthesized and their inhibitory effects on the activity of purified human carbonic anhydrase (hCA) I and II were evaluated. hCA I and II from human erythrocytes were purified by a simple one step procedure by using Sepharose 4B-L-tyrosine-sulphanilamide affinity column. The result showed that all the synthesized compounds were inhibited the CA isoenzymes activity. Among them, 3g and 3j were found to be most active (IC50 = 22.09 µM and 20.33 µM) for hCA I and hCA II, respectively.  相似文献   

13.
Inhibitors of carbonic anhydrase (CA) have been carried out in many therapeutic applications, especially antiglaucoma activity. In this study, we investigated some uracil derivatives (412) to inhibit human CA I (hCA I) and II (hCA II) isoenzymes. The KI values of the compounds 412 are in the range of 0.085–428?µM for hCA I and of 0.1715–645?µM against hCA II, respectively. It is concluded from the kinetic investigations, all compounds used in the study act as competitive inhibitors with substrate, 4-NPA. Uracil derivatives are emerging agents for the inhibiton of carbonic anhydrase which could be used in biomedicine.  相似文献   

14.
With an aim to develop novel heterocyclic hybrids as potent anticancer agents, we synthesized a series of coumarin-1,3,4-oxadiazole hybrids (7a-t) and evaluated for their inhibitory activity against the four physiologically relevant human carbonic anhydrase (hCA, EC 4.2.1.1) isoforms CA I, CA II, CA IX and CA XII. The CA inhibition results clearly indicated that the coumarin-1,3,4-oxadiazole derivatives (7a-t) exhibited selective inhibition of the tumor associated isoforms, CA IX and CA XII over CA I and II isoforms. Among all, compound 7b, exhibited significant inhibition in lower micromolar potency against hCA XII, with a Ki of 0.16 µM and compound 7n, exhibited significant inhibition in lower micromolar potency against hCA IX, with a Ki of 2.34 µM respectively. Therefore, compound 7b and 7n could be the potential leads for development of selective anticancer agents by exhibiting a novel mechanism of action through hCA IX and XII inhibition.  相似文献   

15.
N-Protected amino acids (Gly, Ala and Phe) were reacted with amino substituted coumarin and quinolinone derivatives, leading to the corresponding N-protected amino acid–coumarin/quinolinone conjugates. The carbonic anhydrase (CA, EC 4.2.1.1) inhibitory activity of the new compounds was assessed against various human (h) isoforms, such as hCA I, hCA II, hCA IV and hCA XII. The quinolinone conjugates were inactive as enzyme inhibitors, whereas the coumarins were ineffective hCA I/II inhibitors (KIs?>?50?μM) but were submicromolar hCA IV and XII inhibitors, with inhibition constants ranging between 92?nM and 1.19?μM for hCA IV, and between 0.11 and 0.79?μM for hCA XII. These coumarin derivatives, as many others reported earlier, thus show an interesting selective inhibitory profile for the membrane-bound over the cytosolic CA isoforms.  相似文献   

16.
The synthesis of carbazole containing pyridopyrimidine‐substituted sulfonamide derivatives ( 3a‐i ) and their inhibitory effects on human carbonic anhydrase (hCA) I and II were studied. Spectral data and elemental analysis confirmed the structures of the compounds synthesized. The results show that all the synthesized compounds inhibited the CA I and II activities. Among them, 3a was found to be the most active ( K i: 14 µM) for hCA I and 3f ( K i: 126 µM) for hCA II.  相似文献   

17.
Abstract

The boron heterocyclic compound dipotassium-trioxohydroxytetrafluorotriborate (K2[B3O3F4OH]) was investigated as inhibitor of the zinc enzyme, carbonic anhydrase (CA, EC 4.2.1.1). Eleven human (h) CA isoforms, hCA I–IV, VA, VI, VII, IX and XII–XIV, were included in the investigations. The anion, similar to tetraborate or phenylboronic acid, inhibited most of them. hCA III was not inhibited by K2[B3O3F4OH], whereas hCA VA, hCA VI, hCA IX and hCA XIII were inhibited in the submillimolar range, with KIs of 0.31–0.63?mM. hCA I and II (cytosolic, widespread isoforms), hCA IV (membrane-bound isoform), hCA XII (tumor-associated, transmembrane) and hCA XIV (transmembrane) were much more effectively inhibited by this anion, with inhibition constants ranging from 25 to 93?µM. hCA VII, a cytosolic enzyme present in the brain and associated to oxidative stress, was very effectively inhibited by K2[B3O3F4OH], with a KI of 8.0?µM. We propose that K2[B3O3F4OH] binds to the metal ion from the enzyme active site, coordinating to the Zn(II) ion monodentately through its B-OH functionality. We hypothesize that some of the beneficial antitumor effects reported for K2[B3O3F4OH] may be due to the inhibition of CAs present in skin tumors.  相似文献   

18.
A series of flavonoids, such as quercetin, catechin, apigenin, luteolin, morin, were investigated for their inhibitory effects against the metalloenzyme carbonic anhydrase (CA). The compounds were tested against four α-CA isozymes purified from human and bovine (hCA I, hCA II, bCA III, hCA IV) tissues. The four isozymes showed quite diverse inhibition profiles with these compounds. The flavonoids inhibited hCA I with KI-s in the range of 2.2–12.8 μM, hCA II with KI-s in the range of 0.74–6.2 μM, bCA III with KI-s in the range of 2.2–21.3 μM, and hCA IV with inhibition constants in the range of 4.4–15.7, with an esterase assay using 4-nitrophenyl acetate as substrate. Some simple phenols/sulfonamides were also investigated as standard inhibitors. The flavonoids incorporate phenol moieties which inhibit these CAs through a diverse, not yet determined inhibition mechanism, compared to classic inhibitors such as the sulfonamide/sulfamate ones.  相似文献   

19.
New secondary benzenesulphonamide-substituted coumarylthiazole derivatives were synthesized and their inhibitory effects on purified carbonic anhydrase I and II were evaluated using CO2 as a substrate. The result showed that all the synthesized compounds exhibited inhibitory activity on both hCA I and hCA II with N-(4-(2-oxo-2H-chromen-3-yl)thiazol-2-yl)naphthalene-2-sulphonamide (5f, IC50 value of 5.63 and 8.48?µM, against hCA I and hCA II, respectively) as the strongest inhibitor revealed from this study. Structure–activity relationship revealed that the inhibitory activity of the synthesized compounds is related to the type of the halogen and bulky substituent on the phenyl ring. In addition, the cupric reducing antioxidant capacities (CUPRAC) and ABTS cation radical scavenging abilities of the synthesized compounds were assayed. 4-methoxy-N-(4-(2-oxo-2H-chromen-3-yl)thiazol-2-yl)benzenesulphonamide (5e) exhibited the strongest ABTS and CUPRAC activity with IC50 value of 48.83?µM and A0.50 value of 23.29?µM, respectively.  相似文献   

20.
Abstract

7-Amino-3,4-dihydro-1H-quinolin-2-one, a compound structurally similar to coumarins, recently discovered class of inhibitors of the α-carbonic anhydrases (CAs, EC 4.2.1.1) was investigated for its interaction with all human (h) CA isoforms, hCA I-XIV. The compound was not an inhibitor of the cytosolic, widespread isoform hCA II (KI?>?10?µM), was a weak inhibitor of hCA I, III, IV, VA, VI and XIII (KIs in the range of 0.90–9.5?µM) but effectively inhibited the cytosolic isoform hCA VII (KI of 480?nM) as well as the transmembrane isoforms hCA IX, XII and XIV (KIs in the range of 16.1–510?nM). Against many CA isoforms this lactam was a better inhibitor compared to the structurally similar 4-methyl-7-aminocoumarin, but unlike this compound, the lactam ring was not hydrolyzed and the inhibition was due to the intact bicyclic amino-quinolinone scaffold. Bicyclic lactams strucurally related to coumarins are thus a new class of CA inhibitors possessing however a distinct inhibition mechanism compared to the coumarins which undergo a hydrolysis of their lactone ring for generating the enzyme inhibitory species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号