首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Phytochemical investigation of the underground parts of Liriope graminifolia (Linn.) Baker resulted in the isolation of two new steroidal saponins lirigramosides A (1) and B (2) along with four known compounds. The structures were determined by extensive spectral analysis, including two-dimensional (2D) NMR spectroscopy and chemical methods, to be 3-O-{β-d-xylopyranosyl-(1→3)-α-l-arabinopyranosyl-(1→2)-[α-l-rhamnopyranosyl-(1→4)]-β-d-glucopyranosyl-(25S)-spirost-5-ene-3β,17α-diol (1), 1-O-[α-l-rhamnopyranosyl-(1→2)-β-d-xylopyranosyl]-(25R)-ruscogenin (2), 1-O-β-d-xylopyranosyl-3-O-α-l-rhamnopyranosyl-(25S)-ruscogenin (3), 3-O-α-l-rhamnopyranosyl-1-O-sulfo-(25S)-ruscogenin (4), methylophiopogonanone B (5), and 5,7-dihydroxy-3-(4-methoxybenzyl)-6-methyl-chroman-4-one, (ophiopogonanone B, 6), respectively. Compound 1 has a new (25S)-spirost-5-ene-3β,17α-diol ((25S)-pennogenin) aglycone moiety. The isolated compounds were evaluated for their cytotoxic activities against Hela and SMMC-7721 cells.  相似文献   

2.
Two new lanostane-type triterpenoids, ganoderiol A (1) and ganoderiol B (2) were isolated from the fruiting bodies of Ganoderma lucidum, together with known ganodermanontriol (3) and ganodermatriol (4). The compounds were identified as 5α-lanosta-7,9(11)-dien-3β,24,25,26-tetraol (1), 15α,26,27-trihydroxy-5α-lanosta-7,9(11),24-trien-3-one (2), 24,25,26-trihydroxy-5α-lanosta-7,9(11)-dien-3-one (3) and 5α-lanosta-7,9(ll),24-trien-3β,26,27-triol (4), respectively.  相似文献   

3.
Nine hydroxy-derived androstadiene compounds were isolated from the fermentation broth of Neurospora crassa when incubated in the presence of androst-1,4-dien-3,17-dione (ADD; I) for 7 days. Hydroxylations at 6β, 7β, 11α, 14α- positions and 17-carbonyl reduction of the substrate were the characteristics observed in this biotransformation. Their structures were determined by spectroscopic methods as 17β-hydroxyandrost-1,4-dien-3-one (II), 14α-hydroxyandrost-1,4-dien-3,17-dione (III), 6β-hydroxyandrost-1,4-dien-3,17-dione (IV), 11α-hydroxyandrost-1,4-dien-3,17-dione (V), 6β,17β-dihydroxyandrost-1,4-dien-3-one (VI), 7β-hydroxyandrost-1,4-dien-3,17-dione (VII), 14α,17β-dihydroxyandrost-1,4-dien-3-one (VIII), 6β,14α-dihydroxyandrost-1,4-dien-3,17-dione (IX), and 11α,17β-dihydroxyandrost-1,4-dien-3-one (X). A new steroid substance, 6β,14α-dihydroxyandrost-1,4-dien-3,17-dione (IX), was also characterized during this study. The best fermentation condition was found to be 7-day incubation at 25°C and pH values of 5.0–6.0 in the presence of 0.05 g 100 mL?1 of the substrate. At a concentration above 0.075 g 100 mL?1, the biotransformation was completely inhibited.  相似文献   

4.
Inflammation is an essential host defense system particularly in response to infection and injury; however, excessive or undesirable inflammatory responses contribute to acute and chronic human diseases. A high-throughput screening effort searching for anti-inflammatory compounds from medicinal plants deduced that the methanolic extract of Juniperus rigida S. et L. (Cupressaceae) inhibited significantly nitric oxide (NO) production in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophage cells. Activity-guided fractionation and isolation yielded 13 phenolic compounds, including one new phenylpropanoid glycosides, 3,4-dimethoxycinnamyl 9-O-β-D-glucopyranoside (1). Among the isolated compounds, phenylpropanoid glycosides with p-hydroxy group (2, 4) and massoniaside A (7), (+)-catechin (10), amentoflavone (11) effectively inhibited LPS-induced NO production in RAW264.7 cells.  相似文献   

5.
Two furanoditerpenes, 2α,3α-epoxy-2,3,7,8α-tetrahydropenianthic acid methyl ester (1) and 2α,3α-epoxy-2,3-dihydropenianthic acid methyl ester (2) were isolated and identified from the root of Arcangelisia flava (L.) Merr. The configuration of 1 was determined by X-ray crystallographic analysis and two-dimensional NMR. Fibraurin (3), fibleucin (4), 2β, 3α-dihydroxy-2,3,7,8α-tetrahydropenianthic acid-2,17-lactone (5), p-hydroxybenzaldehyde and vanillin were also isolated and identified by NMR and EI-MS or FAB-MS. The 2β, 3α-dihydroxy-2,3,7,8α-tetrahydropenianthic acid-2,17-lactone (5) showed the highest antifungal activity of the isolated five furanoditerpenes against a white-rot fungus (Trametes versicolor) and a brown-rot fungus (Fomitopsis palustris).  相似文献   

6.
A new epoxidic ganoderic acid, 8α,9α-epoxy-3,7,11,15,23-pentaoxo-5α-lanosta-26-oic acid (1), together with the known compounds 3β-hydroxy-7,11,15,23-tetraoxo-5α-lanosta-8-en-26-oic acid (2), ergosta-7,22-diene-3β-yl pentadecanoate (3), ergosta-7,22-diene-3β-ol (4), β-sitosterol (5), fatty acids (610), fatty acid ester (11) and octadecane (12) were isolated from the fruiting bodies of Ganoderma lucidum from south India. Their structures were determined by 1H, 13C, 13C DEPT, 1H–1H COSY, HMBC, HSQC, NOESY NMR, FT-IR, UV–vis and FABMS spectral analysis. Compounds (13) exhibited good antifungal activity against Candida albicans in disc diffusion assay (100 μg/disc). Steroid ester (3) showed moderate anti-inflammatory activity (59.7% inhibition, 100 mg/kg body weight) in carrageenan-induced paw edema.  相似文献   

7.
Withanolide-type steroids, withametelin Q (1) and 12α-hydroxydaturametelin B (2) along with three known withanolides, were isolated from leaves of Datura metel L. (Solanaceae). The respective structures, characterized mainly by NMR spectroscopy, were identified as (20R,22R,24R)-21,24-epoxy-1α,3β-dihydroxywitha-5,25(27)-dienolide-3-O-β-d-glucopyranoside (1) and (20R,22R,24R)-12α,21,27-trihydroxy-1-oxowitha-2,5,24-trienolide-27-O-β-d-glucopyranoside (2). The cytotoxicity of isolated compounds was evaluated against human lung carcinoma cells (A549) and human colorectal adenocarcinoma cells (DLD-1), respectively. Compound 2 exhibited cytotoxicity against A549 and DLD-1 cell lines, with IC50 values of 7 and 2.0 μM, respectively. However, for compounds 6 and 7, cytotoxicities were higher against DLD-1 cells with IC50 values of 0.6 and 0.7 μM. Both compounds blocked the cell cycle in the S-phase and induced apoptosis.  相似文献   

8.
Three new triterpenoid saponins, elucidated as 3-O-β-d-glucopyranosyloleanolic acid 28-O-β-d-xylopyranosyl-(1→4)-α-l-rhamnopyranosyl-(1→2)-β-d-xylopyranoside (parkioside A, 1), 3-O-[β-d-apifuranosyl-(1→3)-β-d-glucopyranosyl]oleanolic acid 28-O-[β-d-apifuranosyl-(1→3)-β-d-xylopyranosyl-(1→4)-[α-l-rhamnopyranosyl-(1→3)]-α-l-rhamnopyranosyl-(1→2)β-d-xylopyranoside (parkioside B, 2) and 3-O-β-d-glucuronopyranosyl-16α-hydroxyprotobassic acid 28-O-α-l-rhamnopyranosyl-(1→3)-β-d-xylopyranosyl-(1→4)-α-l-rhamnopyranosyl-(1→2)-β-d-xylopyranoside (parkioside C, 3), were isolated from the n-BuOH extract of the root bark of Butyrospermum parkii, along with the known 3-O-β-d-glucopyranosyloleanolic acid (androseptoside A). The structures of the isolated compounds were established on the basis of chemical and spectroscopic methods, mainly 1D and 2D NMR data and mass spectrometry. The new compounds were tested for both radical scavenging and cytotoxic activities. Compound 2 showed cytotoxic activity against A375 and T98G cell lines, with IC50 values of 2.74 and 2.93 μM, respectively. Furthermore, it showed an antioxidant activity comparable to that of Trolox or butylated hydroxytoluene (BHT), used as controls, against 2,2-diphenyl-1-picryl hydrazyl (DPPH), 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), oxygen and nitric oxide radicals.  相似文献   

9.
The n-hexane and CHCl3 soluble fractions of the MeOH extract of the aerial parts of Piper kadsura were found to potently inhibit nitric oxide (NO) production in LPS-activated BV-2 cells, a microglial cell line. From the active fractions, a new stereoisomer of guaiane sesquiterpene, 1α,5β-guai-4(15)-ene-6β,10β-diol, kadsuguain A (1) and a new cyclohexadienone, kadsuketanone A (2), together with twelve known compounds (314) were isolated. The structures of these compounds were elucidated by extensive NMR spectral studies. The absolute configuration of 2 was determined by circular dichroism (CD) spectra. Compounds 2, 6, and 1114 significantly inhibited both nitric oxide (NO) and prostaglandin E2 (PGE2) production in the LPS-activated microglia cells. In addition, compounds 4, 6, and 1114 exhibited cytotoxicity against the A549, SK-OV-3, SK-MEL-2, and HCT15 human tumour cells.  相似文献   

10.
Four new bitter terpenoids, lucidenic acids A (1), B (2), C (3) and ganoderic acid C (5), were isolated from the fruiting bodies of Ganoderma lucidum, together with the known bitter ganoderic acid B (4). On the basis of spectroscopic data and chemical conversion, their structures were determined to be 7β-hydroxy-4,4,14α-trimethyl-3,11,15-trioxo-5α-chol-8-en-24-oic acid, 7β,12β-dihydroxy-4,4,14α-trimethyl-3,11,15-trioxo-5α-chol-8-en-24-oic acid, 3β,7β,12β-trihydroxy-4,4,14α-trimethyl-11,15-dioxo-5α-chol-8-en-24-oic acid and 7β-hydroxy-3,11,15,23-tetraoxo-5α-lanost- 8-en-26-oic acid, respectively.  相似文献   

11.
Gao L  Zhang L  Li N  Liu JY  Cai PL  Yang SL 《Carbohydrate research》2011,346(18):2881-2885
Phytochemical investigation of the methanol extract from the whole plants of Patrinia scabiosaefolia Fisch. resulted in the isolation of four new triterpenoid saponins (14) along with six known compounds (510). On the basis of spectroscopic and chemical methods, the structures of the new compounds were established as 3-O-β-d-xylopyranosyl-(1→3)-α-l-rhamnopyranosyl-(1→2)-β-d-xylopyranosyl-12β,30-dihydroxy-olean-28,13β-olide (1), 3-O-α-l-rhamnopyranosyl-(1→2)-β-d-xylopyranosyl-12β,30-dihydroxy-olean-28,13β-olide (2), 3-O-β-d-xylopyranosyl-(1→2)-β-d-glucopyranosyl-12β, 30-dihydroxy-olean-28,13β-olide (3), and 3-O-β-d-glucopyranosyl-(1→4)-β-d-xylopyranosyl-(1→3)-α-l-rhamnopyranosyl-(1→2)-β-d-xylopyranosyl-oleanolic acid 28-O-β-d-glucopyranoside (4), respectively. Compounds 1–3 possess a novel 12β,30-dihydroxy-olean-28,13β-lactone aglycone and a 12β-hydroxy substituent that is rarely found in this kind of triterpenoid saponin.  相似文献   

12.
Two new furostanol saponins, 3-O-[α-l-rhamnopyranosyl-(1→4)-β-d-glucopyranosyl]-26-O-β-d-glucopyranosyl-25(R)-furosta-5,22(23)-dien-3β,20α,26-triol (1), 3-O-[β-d-glucopyranosyl-(1→3)-O-α-l-rhamnopyranosyl-(1→2)-β-d-glucopyranosyl]-26-O-β-d-glucopyranosyl-20(R)-methoxyl-25(R)-furosta-5,22(23)-dien-3β,26-diol (2) were isolated from the Dioscorea panthaica along with five known steroidal saponins (37). The structures of the new saponins were determined by detailed analysis of spectral data (including 2D NMR spectroscopy). The inhibitory activities of the saponins against α-glucosidase were investigated, gracillin (4) and 3-O-[α-l-rhamnopyranosyl-(1→2)-β-d-glucopyranosyl]-26-O-β-d-glucopyranosyl-25(R)-furosta-5,20(22)-dien-3β,26-diol (5) were found to exhibit potent activities with IC50 values of 0.11 ± 0.04 mM and 0.09 ± 0.01 mM.  相似文献   

13.
The in vitro and in vivo inhibitory effects of 5-(3α, 12α-dihydroxy-5-β-cholanamido)-1,3,4-thiadiazole-2-sulfonamide (1), 5-(3α, 7α, 12α-trihydroxy-5-β-cholanamido)-1,3,4-thiadiazole-2-sulfonamide (2), 5-(3α, 7α, 12α-triacetoxy-5-β-cholanamido)-1,3,4-thiadiazole-2-sulfonamide (3) and acetazolamide on rainbow trout (Oncorhynchus mykiss) (RT) erythrocyte carbonic anhydrase (CA) were investigated. The RT erythrocyte CA was obtained by affinity chromatography with a yield of 20.9%, a specific activity of 422.5?EU/mg protein and a purification of 222.4-fold. The purity of the enzyme was confirmed by SDS-PAGE. Inhibitory effects of the sulfonamides and acetazolamide on the RT erythrocyte CA were determined using the CO2-Hydratase method in vitro and in vivo studies. From in vitro studies, it was found that all the compounds inhibited CA. The obtained I50 value for the sulfonamides (1), (2) and (3) and acetazolamide were 0.83, 0.049, 0.82 and 0.052?μM, respectively. From in vivo studies, it was observed that CA was inhibited by the sulfonamides (1), (2) and (3) and acetazolamide.  相似文献   

14.
Abstract

In this article, we describe the synthesis of 5-nitro-1-(2-deoxy-α-D-erythro-pentofuranosyl)cytosine (), 5-nitro-1-(2-deoxy-β-D-erythro-pentofuranosyl)cytosine (), 5-amino-1-(2-deoxy-α-D-erythro-pentofuranosyl)cytosine (), 5-nitro-1- (2-deoxy-β-D-erythro-pentofuranosyl)cytosine (), 5-nitro-1-(2,3-dideoxy-β- D-ribofuranosyl)uracil (), 5-amino-1-(2,3-dideoxy-α,β-D-ribofuranosyl)uracil (7), 5-nitro-1-(2,3-dideoxy-α,β-D-ribofuranosyl)cytosine (8) and 5-amino-1-(2,3-dideoxy-β-D-ribofuranosyl)cytosine (). The prepared compounds were tested for their activity against HIV and HBV viruses, but they did not show significant activity.  相似文献   

15.
Abstract

Biotransformation of 5α-hydroxycaryophylla-4(12),8(13)-diene (1) was studied with Cunninghamella elegans and Rhizopus stolonifer. Incubation of 1 with C. elegans gave regioselective oxidative addition (hydration) and isomerization at the C-4(12) exocyclic double bond and hydroxylation at C-3 and C-15, and thus provided two polar metabolites, (3Z),8(14)-caryophylladiene-5α,(11R)-15-diol (2) and 3β,4β,5α-trihydroxycaryophylla-8(13)-ene (3). Incubation of 1 with R. stolonifer gave a transannular cyclization reaction and afforded 2β-methoxyclovan-9-one (4), clovan-2β-ol-9-one (5) and 8-methoxycaryolane-5α,13β-diol (6). Compounds 3 and 6 are new compounds described here for the first time; their structures were deduced with the help of different spectroscopic techniques.  相似文献   

16.
Eurycoma longifolia has been widely used for various traditional medicinal purposes in South-East Asia. In this study, five new quassinoids, eurylactone E (1), eurylactone F (2), eurylactone G (3), eurycomalide D (4), and eurycomalide E (5), along with ten known quassinoids (615) were isolated from the roots of E. longifolia. Their structures were determined by extensive spectroscopic methods, including 1D and 2D NMR, and MS spectra data. Among the isolated compounds, 13β-methyl,21-dihydroeurycomanone (6) has been reported as a synthetic derivative. However, it was isolated from the natural product for the first time in this study. The cytotoxic activities of fifteen compounds were evaluated against human lung cancer cell line, A549 and human cervical cancer cell line, HeLa.  相似文献   

17.
Achillinin A (2β,3β-epoxy-1α,4β,10α-trihydroxyguai-11(13)-en-12,6α-olide, 1), a new guaianolide isolated from the flower of Achillea millefolium, exhibited potential antiproliferative activity to A549, RERF-LC-kj and QG-90 cells with 50% inhibitory concentration (IC50) values of 5.8, 10 and 0.31 μM, respectively.  相似文献   

18.
New carbohydrate-based surfactants consisting of hydrophilic cellobiosyl and hydrophobic glucosyl residues, methyl β-d-glucopyranosyl-(1→4)-α-d-glucopyranosyl-(1→4)-2,3,6-tri-O-methyl-α-d-glucopyranoside 1 (GβGαMα, G: glucopyranosyl residue, α and β: α-(1→4)- and β-(1→4) glycosidic bonds, M: methyl group), 2 (GβGβMα), 3 (GβGαMβ), 4 (GβGβMβ), 5 (GβGαEα, E: ethyl group), 6 (GβGβEα), 7 (GβGαEβ), 8 (GβGβEβ) and eight α-and β-glycoside mixtures (a mixture of 1 and 2: 1/2 = 62/38 (9), 32/68 (10); a mixture of 3 and 4: 3/4 = 69/31 (11), 32/68 (12); a mixture of 5 and 6: 5/6 = 62/38 (13), 33/67 (14); a mixture of 7 and 8: 7/8 = 59/41 (15), 29/71 (16)) were synthesized via combined methods consisting of acid-catalyzed alcoholysis of cellulose ethers and glycosylation of phenyl thio-cellobioside derivatives. Their surface activities in aqueous solution depended on their chemical structures: α- or β-(1→4) linkage between hydrophilic cellobiosyl and hydrophobic glucosyl blocks, methyl or ethyl groups of hydrophobic glucosyl block, and α- or β-linked ether group at the C-1 of hydrophobic glucosyl block. The mixing effect of α- and β-glycosides on surface activities was also investigated. As a result, ethyl β-d-glucopyranosyl-(1→4)-α-d-glucopyranosyl-(1→4)-2,3,6-tri-O-ethyl-β-d-glucopyranoside 7 (GβGαEβ) had the highest surface activity, and its critical micellar concentration (CMC) and γCMC (surface tension at CMC) values of compound 7 were 0.5 mM (ca. 0.03 wt %) and 34.5 mN/m, respectively. The surface tensions of α- and β-glycoside mixtures except for compounds 9 and 10 were almost equal to those of pure compounds. The syntheses of the mixtures of α- and β-glycosides without purification process are easier than those of pure compounds. Thus, the mixtures should be more practical compounds for industrial use as a surfactant.  相似文献   

19.
利用柱色谱技术从猴头菌(Hercium erinaceus)干燥子实体的甲醇提取物中分离得到11个化合物,经波谱技术分别鉴定为:D-赤藓糖醇(1)、D-阿拉伯糖醇(2)、1-O-β-D-吡哺葡萄糖基-(2S,4E,8E,2'R)-2-N-(2'-羟基十六烷酰)-9-甲基-4,8-sphingadienine(3)、3β-羟基-麦角甾-5,7,22-三烯(4)、3β-羟基-5α,8α-过氧化麦角甾-6,22-二烯(5)、硬脂酸(6)、油酸(7)、hericenone F(8)、hericenone C (9)、hericenone E(10)和hericene A(11).研究结果表明,hericenones型酚类物质在猴头菌子实体中含量丰富,化合物3是从猴头菌子实体中首次分离得到的脑酰胺类物质.  相似文献   

20.
Two new lanostane-type triterpenoids, inonotsutriols D (1) and E (2), were isolated from the sclerotia of Inonotus obliquus (Pers.: Fr.) Pil. (Japanese name: kabanoanatake; Russian name: chaga). Their structures were determined to be lanost-8-ene-3β,22R,24R-triol (1) and lanost-8-ene-3β,22R,24S-triol (2) on the basis of spectral data, including 2D NMR analysis. In addition, major compounds, inotodiol (3), trametenolic acid (4), 3β-hydroxylanosta-8,24-dien-21-al (5), 21-hydroxylanosterol (6), inonotsuoxide A (7) and inonotsuoxide B (8) were identified, and all compounds, except 2, were evaluated for their cancer cell growth inhibitory activity against P388, HL-60, L1210 and KB cell lines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号