首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Reaction of histamine (Hst) with tetrabromophthalic anhydride and protection of its imidazole moiety with tritylsulfenyl chloride, followed by hydrazinolysis, afforded N-1-tritylsulfenyl histamine, a key intermediate which was further derivatized at its aminoethyl moiety. Reaction of the key intermediate with 4-tosylureido amino acids/dipeptides (ts-AA) in the presence of car-bodiimides, afforded after deprotection of the imidazole moiety, a series of compounds with the general formula ts-AA-Hst (ts = 4-MeC6H4SO2NHCO). Some structurally related dipeptide derivatives with the general formula ts-AA l-AA2-Hst, were also prepared, by in a similar way to the amino acyl compounds mentioned above. The new derivatives were examined as activators of three carbonic anhydrase (CA) isozymes, hCA I, hCA II (cytosolic forms) and bCA IV (membrane-bound form). Efficient activation was observed against all three isozymes, but especially against hCA I and bCA IV, with affinities in the 1-10 nanomolar range for the best compounds. hCA II was on the other hand activatable with affinities around 20-50 nM. This new class of CA activators might lead to the development of drugs/diagnostic agents for the CA deficiency syndrome, a genetic disease of bone, brain and kidneys.  相似文献   

2.
A small series of 2-[4-(4-substituted-phenylsulfonyl)-phenyl]-4-chloromethylthiazoles has been used as a scaffold for the preparation of carbonic anhydrase (CA) inhibitors and activators. For obtaining CA inhibitors, zinc-binding functions of the sulfamide and sulfamate type have been introduced into the molecules of these compounds, by reaction of the chloromethyl derivatives with sodium sulfamide/sodium sulfamate. For obtaining CA activators, the primary amino function has been introduced in these molecules by means of the Gabriel syntheses. The new sulfamide/sulfamates were effective CA II and CA IV inhibitors, but showed no inhibitory activity against isozyme I. The new amines on the other hand were much more effective CA I, II and IV activators compared to histamine, the lead compound used for their synthesis.  相似文献   

3.
Abstract

Sulfamide and sulfamic acid are the simplest compounds containing the SO2NH2 moiety, responsible for binding to the Zn(II) ion within carbonic anhydrase (CA, EC 4.2.1.1) active site, and thus acting as inhibitors of the many CA isozymes presently known. Here we describe two novel classes of CA inhibitors obtained by derivatizations of the lead molecules mentioned above. The new compounds, possessing the general formula RSO2NH-SO2X (X = OH, NH2), were obtained by reaction of sulfamide or sulfamic acid with alkyl/arylsulfonyl halides or aryl-sulfonyl isocyanates. A smaller series of derivatives has been obtained by reaction of aromatic aldehydes with sulfamide, leading to Schiff bases of the type ArCH=NSO2NH2. All the new compounds act as strong inhibitors of isozymes I, II and IV of carbonic anhydrase. Their mechanism of CA inhibition is also discussed based on electronic spectroscopic measurements on adducts with the Co(II)-substituted enzyme. These experiments led to the conclusion that the new inhibitors are directly coordinated (in a monodentate manner) to the metal ion within the enzyme active site, similarly to the classical inhibitors, the aromatic/heterocyclic sulfonamides.  相似文献   

4.
Abstract

Reaction of twenty aromatic/heterocyclic sulfonamides containing a free amino, imino, hydra-zino or hydroxyl group, with tosyl isocyanate or 3,4-dichlorophenyl isocyanate afforded two series of derivatives containing arylsulfonylureido or diarylureido moieties in their molecule respectively. The new derivatives were assayed as inhibitors of three carbonic anhydrase (CA) isozymes, CA I, II (cytosolic forms) and IV (membrane-bound form). Potent inhibition was observed against all three isozymes but especially against CA I, which is generally 10-75 times less susceptible to inhibition by the classical sulfonamides in clinical use as compared to the other major red cell isozyme, CA II, or the membrane-bound one, CA IV. The derivatives obtained from tosyl isocyanate were generally more potent than the corresponding ones obtained from 3,4-dichlorophenyl isocyanate. This is the first reported example of selective inhibition of CA I and might lead to more selective drugs/diagnostic agents from this class of pharmacologically relevant compounds.  相似文献   

5.
Abstract

Reaction of 2-nitrophenyl-and 4-nitrophenylsulfenyl chlorides with aromatic/heterocyclic sulfonamides/bis-sulfonamides containing a free amino, hydrazino or imino group afforded sulfenamido-sulfonamides, or sulfenimido-sulfonamides. Oxidation of these derivatives with potassium permanganate in acetone led to the corresponding bis-sulfonamides. The obtained compounds were assayed as inhibitors of the zinc enzyme carbonic anhydrase (CA), isozymes hCAI, hCAII (human cytosolic forms from red cells) and bCAIV (bovine membrane-associated form). Good inhibition of the three CA isozymes was observed with some of the new compounds, the bis-sulfonamides being more active than the sulfenamido-sulfonamides. Structure-active correlations for the new series of inhibitors are discussed. Some of the sulfenamido-sulfonamides (but not the corresponding bis-sulfonamides) showed topical intraocular pressure lowering effects when applied as a 2% solution directly into the rabbit eye.  相似文献   

6.
Except for sulfonamides, metal complexing anions represent the second class of inhibitors of the zinc enzyme carbonic anhydrase (CA, EC 4.2.1.1). The first inhibition study of the transmembrane, tumor-associated isozyme CA IX with anions is reported here. Inhibition data of the cytosolic isozymes CA I and CA II with a large number of anionic species such as halides, pseudohalides, bicarbonate, nitrate, hydrosulfide, arsenate, etc., are also provided for comparison. Isozyme IX has an inhibition profile by anions different in some aspects from those of CA I and CA II, that may have interesting physiological consequences.  相似文献   

7.
Mono- and dihalogenated histamine derivatives incorporating fluorine, chlorine and bromine have been prepared together with the corresponding boc-protected compounds at the aminoethyl group. They have been investigated as activators of the zinc enzyme carbonic anhydrase (CA, EC 4.2.1.1). The cytosolic human (h) isoforms hCA I and II were moderately activated by the boc-protected halogenated histamines and very effectively activated by the deprotected ones. Low nanomolar and subnanomolar hCA I and II activators have been detected for the first time, starting from histamine as lead which has an affinity of 2 μM against isoform I and of 125 μM against hCA II.  相似文献   

8.
A series of new compounds was obtained by reaction of aromatic/heterocyclic sulfonamides incorporating amino groups with N,N-diphenylcarbamoyl chloride and diphenylacetyl chloride. These sulfonamides were assayed for the inhibition of three carbonic anhydrase (CA, EC 4.2.1.1) isozymes: the cytosolic CA I and CA II, and the transmembrane, cancer-associated isozyme CA IX. Good inhibitors against all these isoforms were detected, and the inhibition profile of the newly investigated isozyme IX was observed to be different from that of the cytosolic isozymes, I and II. This may lead to the development of novel anticancer therapies based on the selective inhibition of CA IX.  相似文献   

9.
Metal complexes of aromatic/heterocyclic sulfonamides act as stronger inhibitors of the zinc enzyme carbonic anhydrase (CA, EC 4.2.1.1) as compared to the uncomplexed sulfonamides from which they are derived. Here we report the synthesis and inhibition studies against the physiologically relevant isozymes CA I, CA II and CA IV, of a series of metal complexes (Co(II), Ni(II) and Cu(II) derivatives) of a Schiff-base ligand, obtained from sulfanilamide and salicylaldehyde. The best activity was observed for the Cu(II) and Co(II) complexes, against CA II and CA IV, for which inhibition constants in the range of 15-39 and 72-108 nM, respectively, were seen. The enhanced efficacy in inhibiting the enzyme may be due to a dual mechanism of action of the metal complexes, which interact with CA both by means of the sulfonamide moieties as well as the metal ions present in their molecule.  相似文献   

10.
A series of new derivatives was prepared by derivatisation of the 7-amino moiety present in 7-amino-3,4-dihydroquinolin-2(1H)-one, a compound investigated earlier as CAI. The derivatisation was achieved by: i) reaction with arylsulfonyl isocyanates/aryl isocyanates; (ii) reaction with fluorescein isothiocyanate; (iii) condensation with substituted benzoic acids in the presence of carbodiimides; (iv) reaction with 2,4,6-trimethyl-pyrylium tetrafluoroborate; (v) reaction with methylsulfonyl chloride and (vi) reaction with maleic anhydride. The new compounds were assayed as inhibitors of four carbonic anhydrases (CA, EC 4.2.1.1) human (h) isoforms of pharmacologic relevance, the cytosolic hCA I and II, the membrane-anchored hCA IV and the transmembrane, tumour-associated hCA IX. hCA IX was the most inhibited isoform (KIs ranging between 243.6 and 2785.6?nm) whereas hCA IV was not inhibited by these compounds. Most derivatives were weak hCA I and II inhibitors, with few of them showing KIs?相似文献   

11.
Reaction of histamine (Hst) with tetrabromophthalic anhydride and protection of its imidazole moiety with tritylsulfenyl chloride, followed by hydrazinolysis, afforded N-1-tritylsulfenyl-histamine, a key intermediate which was further derivatized at its aminoethyl moiety. Reaction of the key intermediate with N-Boc-amino acids/dipeptides (Boc-AA) in the presence of carbodiimides afforded, after deprotection of the imidazolic and amino moieties, a series of compounds with the general formula AA-Hst (AA=amino acyl; dipeptidyl). The new derivatives were assayed as activators of three carbonic anhydrase (CA) isozymes, hCA I, hCA II (cytosolic forms) and bCA IV (membrane-bound form). Efficient activation was observed against all three isozymes, but especially against hCA I and bCA IV, with affinities in the nanomolar range for the best compounds. hCA II was, on the other hand, activatable with affinities around 10–20 nM. This new class of CA activators might lead to the development of drugs/diagnostic agents for the CA deficiency syndrome, a genetic disease of bone, brain and kidneys.  相似文献   

12.
In this work, the inhibitory effect of some symmetric sulfamides derived from phenethylamines were determined against human carbonic anhydrase (hCA) I, and II isoenzymes, and compared with standard compound acetazolamide. IC50 values were obtained from the Enzyme activity (%)-[Symmetric sulfamides] graphs. Also, Ki values were calculated from the Lineweaver-Burk graphs. Some symmetric sulfamides compounds ( 11 – 18 ) demonstrated excellent inhibition effects against hCA I, and II isoenzymes. These compounds demonstrated effective inhibitory profiles with IC50 values in ranging from 21.66–28.88 nM against hCA I, 14.44–30.13 nM against hCA II. Among these compounds, the best Ki value for hCA I (Ki: 8.34±1.60 nM) and hCA II (Ki: 16.40±1.00 nM) is compound number 11 . Besides, the IC50 value of acetazolamide used as a standard was determined as hCA I, hCA II 57.75 nM, 49.50 nM, respectively. Moreover, in silico ADME-Tox study showed that all synthesized compounds ( 11 – 18 ) had good oral bioavailability in light of Jorgensen's rule of three, and of Lipinski's rule of five.  相似文献   

13.
A series of 20 histamine Schiff base was synthesised by reaction of histamine, a well known carbonic anhydrase (CA, E.C 4.2.2.1.) activator pharmacophore, with substituted aldehydes. The obtained histamine Schiff bases were assayed as activators of five selected human (h) CA isozymes, the cytosolic hCA I, hCA II, and hCA VII, the membrane-anchored hCA IV and transmembrane hCA IX. Some of these compounds showed efficient activity (in the nanomolar range) against the cytosolic isoform hCA VII, which is a key CA enzyme involved in brain metabolism. Moderate activity was observed against hCA I and hCA IV (in the nanomolar to low micromolar range). The structure–activity relationship for activation of these isoforms with the new histamine Schiff bases is discussed in detail based on the nature of the aliphatic, aromatic, or heterocyclic moiety present in the aldehyde fragment of the molecule, which may participate in diverse interactions with amino acid residues at the entrance of the active site, where activators bind, and which is the most variable part among the different CA isoforms.  相似文献   

14.
The in vitro and in vivo inhibitory effects of 5-(3α, 12α-dihydroxy-5-β-cholanamido)-1,3,4-thiadiazole-2-sulfonamide (1), 5-(3α, 7α, 12α-trihydroxy-5-β-cholanamido)-1,3,4-thiadiazole-2-sulfonamide (2), 5-(3α, 7α, 12α-triacetoxy-5-β-cholanamido)-1,3,4-thiadiazole-2-sulfonamide (3) and acetazolamide on rainbow trout (Oncorhynchus mykiss) (RT) erythrocyte carbonic anhydrase (CA) were investigated. The RT erythrocyte CA was obtained by affinity chromatography with a yield of 20.9%, a specific activity of 422.5?EU/mg protein and a purification of 222.4-fold. The purity of the enzyme was confirmed by SDS-PAGE. Inhibitory effects of the sulfonamides and acetazolamide on the RT erythrocyte CA were determined using the CO2-Hydratase method in vitro and in vivo studies. From in vitro studies, it was found that all the compounds inhibited CA. The obtained I50 value for the sulfonamides (1), (2) and (3) and acetazolamide were 0.83, 0.049, 0.82 and 0.052?μM, respectively. From in vivo studies, it was observed that CA was inhibited by the sulfonamides (1), (2) and (3) and acetazolamide.  相似文献   

15.
Abstract

Reaction of three aromatic sulfonamides possessing a primary amino group, i.e., sulfanilamide, homosulfanilamide and p-aminoethyl-benzenesulfonamide with heterocyclic and aromatic aldehydes afforded a series of Schiff bases. Metal complexes of some of these Schiff bases with divalent transition ions such as Zn(II), Cu(II), Co(II) and Ni(II) have also been obtained. The new compounds were assayed as inhibitors of three isozymes of carbonic anhydrase (CA). Several of the new compounds showed a modest selectivity for the membrane-bound (bovine) isozyme CA IV (bCA IV) as compared to the cytosolic human isozymes hCA I and II, in contrast to classical inhibitors which generally possess a 17-33 times lower affinity for bCA IV. This greater selectivity toward bCA IV is due mainly to a slightly decreased potency against hCA II relative to classical inhibitors. However, metal complexes of these Schiff bases possessed an increased affinity for hCA II, being less inhibitory against bCA IV. The first type of compounds reported here (i.e., the Schiff bases of aromatic sulfonamides with heterocyclic aldehydes) might thus lead to the development of low molecular weight isozyme specific CA IV inhibitors. The difference in affinity for the three isozymes of the inhibitors reported by us here is tentatively explained on the basis of recent X-ray crystallographic studies of these isozymes and their adducts with substratesiinhibitors  相似文献   

16.
The X-ray crystal structures of 5-amino-1,3,4-thiadiazole-2-sulfonamide (the acetazolamide precursor) and 5-(4-amino-3-chloro-5-fluorophenylsulfonamido)-1,3,4-thiadiazole-2-sulfonamide in complex with the human isozyme II of carbonic anhydrase (CA, EC 4.2.1.1) are reported. The thiadiazole-sulfonamide moiety of the two compounds binds in the canonic manner to the zinc ion and interacts with Thr199, Glu106, and Thr200. The substituted phenyl tail of the second inhibitor was positioned in the hydrophobic part of the binding pocket, at van der Waals distance from Phe131, Val 135, Val141, Leu198, Pro202, and Leu204. These structures may help in the design of better inhibitors of these widespread zinc-containing enzymes.  相似文献   

17.
Metal complexes of a sulfonamide possessing strong carbonic anhydrase (CA) inhibitory properties, 5-(2-chlorophenyl)-1, 3, 4-thiadiazole-2-sulfonamide (chlorazolamide) have been obtained from the sodium salt of the sulfonamide and the following metal ions: Mg(II), Zn(II), Mn(II), Cu(II), Co(II), Ni(II), Be(II), Cd(II), Pb(II), AI(III), Fe(III) and La(III). The original sulfonamide and its complexes were assayed for the in vitro inhibition of three CA isozymes, CA I, II, and IV, some of which play a critical role in ocular fluid secretion. All these compounds (the sulfonamide and its metal complexes) behaved as powerful inhibitors against the three investigated isozymes. The parent sulfonamide possessed an extremely weak topical pressure lowering effect when administered as a 1-2% suspension into the rabbit eye, but some of its metal complexes, such as the Mg(II), Zn(II), Mn(II) and Cu(II) derivatives, lower intraocular pressure (IOP) in experimental animals very well. Ex vivo data showed a 99.5-99.9% CA II inhibition in ocular fluids and tissues of rabbits treated with these agents, proving that the observed IOP lowering is due to CA inhibition. The influence of the different metal ions upon the efficiency of the obtained complexes as pressure lowering drugs are discussed, leading to the possibility of designing more selective; potent pharmacological agents from this class  相似文献   

18.
A series of 4-(thiazol-2-ylamino)-benzenesulfonamides was synthesized and screened for their carbonic anhydrase (CA, EC 4.2.1.1) inhibitory and cytotoxic activity on human breast cancer cell line MCF-7. Human (h) CA isoforms I, II and IX were included in the study. The new sulfonamides showed excellent inhibition of all three isoforms, with KIs in the range of 0.84–702 nM against hCA I, of 0.41–288 nM against hCA II and of 5.6–29.2 against the tumor-associated hCA IX, a validated anti-tumor target, with a sulfonamide (SLC-0111) in Phase I clinical trials for the treatment of hypoxic, metastatic solid tumors overexpressing CA IX. The new compounds showed micromolar inhibition of growth efficacy against breast cancer MCF-7 cell lines.  相似文献   

19.
We report here a series of 2-thiophene-sulfonamides incorporating 1-substituted aryl-1,2,3-triazolyl moieties, prepared by click chemistry from 5-ethynylthiophene-2-sulfonamide and substituted aryl azides. The new sulfonamides were investigated as inhibitors of the zinc metalloenzyme CA (EC 4.2.1.1), and more specifically against the human (h) cytosolic isoforms hCA I and II and the transmembrane, tumor-associated ones hCA IX and XII: The new compounds were medium–weak hCA I inhibitors (KIs in the range of 224–7544 nM), but were compactly, highly effective, low nanomolar hCA II inhibitors (KIs of 2.2–7.7 nM). The tumor-associated hCA IX was inhibited with KIs ranging between 5.4 and 811 nM, whereas hCA XII with inhibition constants in the range of 3.4–239 nM. The X-ray crystal structure of the adducts of two such compounds bound to hCA II (one incorporating 1-naphthyl, the other one 3-cyanophenyl moieties) evidenced the reasons of the high affinity for hCA II. Highly favorable, predominantly hydrophobic interactions between the sulfonamide scaffold and the hCA II active site were responsible for the binding, in addition to the coordination of the sulfamoyl moiety to the zinc ion. The tails of the two inhibitors adopted very diverse orientations when bound to the active site, with the naphthyltriazolyl moiety orientated towards the hydrophobic half of the active site, and the 3-cyanophenyl one pointing towards the hydrophilic half. These data may be used for the structure-based drug design of even more effective hCA II inhibitors, with potential use as antiglaucoma agents or as diuretics.  相似文献   

20.
In this study, 45 bisindolylmethanes having sulfonamide moiety had been synthesized through 3 steps. In vitro assay for inhibition of carbonic anhydrase showed that some of the compounds having sulfonamide moiety are capable of inhibiting carbonic anhydrase II. Bisindoles having halogens at fifth position showed better inhibitory activity as compared to unsubstituted bisindoles. The results obtained from in vitro inhibitory activity were subjected through 3D QSAR and docking studies to identify important features contributing to the activity and further improve the structure. Pharmacophore studies suggest that bisindolylmethane moiety is contributing significantly towards the inhibition activity. Docking studies showed that compounds having nitro substituent (5g and 5i) were found to be able interact with Zn2+ ion, Thr199, His94, His96, and His119, which interferes with the ZnOHThr199Glu106 hydrogen bond network. Bulky nitro substituent at ortho position for compound 5g prevents the compound from interacting with other residues like Thr199 and Thr200. Methyl substituent at ortho position for Compound 5i induces less steric hindrance effect, thus allowing second oxygen atom of sulfonamide to interact with Thr199 (2.51 Å). Hydrogen bonding between NH on indole ring with Glu69 might have increased stability of ligand-receptor complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号