首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study sought to clarify the effects of exposure to electromagnetic waves (EMW) used in cellular phones on learning and memory processes. Sprague-Dawley rats were exposed for either 1 h daily for 4 days or for 4 weeks to a pulsed 1439 MHz time division multiple access (TDMA) field in a carousel type exposure system. At the brain, average specific absorption rate (SAR) was 7.5 W/kg, and the whole body average SAR was 1.7 W/kg. Other subjects were exposed at the brain average SAR of 25 W/kg and the whole body average SAR of 5.7 W/kg for 45 min daily for 4 days. Learning and memory were evaluated by reversal learning in a food rewarded T-maze, in which rats learned the location of food (right or left) by using environmental cues. The animals exposed to EMW with the brain average SAR of 25 W/kg for 4 days showed statistically significant decreases in the transition in number of correct choices in the reversal task, compared to sham exposed or cage control animals. However, rats exposed to the brain average SAR of 7.5 W/kg for either 4 days or for 4 weeks showed no T-maze performance impairments. Intraperitoneal temperatures, as measured by a fiber optic thermometer, increased in the rats exposed to the brain average SAR of 25 W/kg but remained the same for the brain average SAR of 7.5 W/kg. The SAR of a standard cellular phone is restricted to a maximum of 2 W/kg averaged over 10 g tissue. These results suggest that the exposure to a TDMA field at levels about four times stronger than emitted by cellular phones does not affect the learning and memory processes when there are no thermal effects.  相似文献   

2.
Su D  Zhao Y  Wang B  Xu H  Li W  Chen J  Wang X 《PloS one》2011,6(11):e27632
Although many studies have shown that isoflurane exposure impairs spatial memory in aged animals, there are no clinical treatments available to prevent this memory deficit. The anticholinergic properties of volatile anesthetics are a biologically plausible cause of cognitive dysfunction in elderly subjects. We hypothesized that pretreatment with the acetylcholinesterase inhibitor donepezil, which has been approved by the Food and Drug Administration (FDA) for the treatment of Alzheimer's disease, prevents isoflurane-induced spatial memory impairment in aged mice. In present study, eighteen-month-old mice were administered donepezil (5 mg/kg) or an equal volume of saline by oral gavage with a feeding needle for four weeks. Then the mice were exposed to isoflurane (1.2%) for six hours. Two weeks later, mice were subjected to the Morris water maze to examine the impairment of spatial memory after exposure to isoflurane. After the behavioral test, the mice were sacrificed, and the protein expression level of acetylcholinesterase (AChE), choline acetylase (ChAT) and α7 nicotinic receptor (α7-nAChR) were measured in the brain. Each group consisted of 12 mice. We found that isoflurane exposure for six hours impaired the spatial memory of the mice. Compared with the control group, isoflurane exposure dramatically decreased the protein level of ChAT, but not AChE or α7-nAChR. Donepezil prevented isoflurane-induced spatial memory impairments and increased ChAT levels, which were downregulated by isoflurane. In conclusions, pretreatment with the AChE inhibitor donepezil prevented isoflurane-induced spatial memory impairment in aged mice. The mechanism was associated with the upregulation of ChAT, which was decreased by isoflurane.  相似文献   

3.
The relationship between amyloid beta and cognitive dysfunction in mouse models of Alzheimer's disease has been evaluated predominantly with the spatial reference memory version of the water maze task. However, as Alzheimer's disease encompasses decline in multiple memory systems, it is important to also utilize non-spatial tasks to fully characterize the role of amyloid on behaviour in animal models. We used the TgCRND8 mouse model of Alzheimer's disease to evaluate the effect of amyloid on spatial reference memory, as well as on the non-spatial task of acquisition of conditioned taste aversion, and on the procedural task of swimming to a visible platform. We demonstrate that 8- to 12-month-old TgCRND8 mice are significantly impaired in all three tasks, and that the levels of soluble amyloid beta are significantly correlated with impairment in spatial reference memory, but not with impairment in conditioned taste aversion or swimming to a visible platform. Insoluble fractions of amyloid, which correspond closely to amyloid plaque burden in the brain, are not associated with any behavioural measure. Our study extends the characterization of the model to stages of advanced amyloid pathology and demonstrates that older TgCRND8 mice are impaired in multiple memory systems, including procedural tasks, which are spared at younger ages. The lack of association between amyloid plaques and memory decline supports clinical findings in Alzheimer's patients.  相似文献   

4.
The increased use of mobile phones has generated public concern about the impact of radiofrequency electromagnetic fields (RF‐EMF) on health. In the present study, we investigated whether RF‐EMFs induce molecular changes in amyloid precursor protein (APP) processing and amyloid beta (Aβ)‐related memory impairment in the 5xFAD mouse, which is a widely used amyloid animal model. The 5xFAD mice at the age of 1.5 months were assigned to two groups (RF‐EMF‐ and sham‐exposed groups, eight mice per group). The RF‐EMF group was placed in a reverberation chamber and exposed to 1950 MHz electromagnetic fields for 3 months (SAR 5 W/kg, 2 h/day, 5 days/week). The Y‐maze, Morris water maze, and novel object recognition memory test were used to evaluate spatial and non‐spatial memory following 3‐month RF‐EMF exposure. Furthermore, Aβ deposition and APP and carboxyl‐terminal fragment β (CTFβ) levels were evaluated in the hippocampus and cortex of 5xFAD mice, and plasma levels of Aβ peptides were also investigated. In behavioral tests, mice that were exposed to RF‐EMF for 3 months did not exhibit differences in spatial and non‐spatial memory compared to the sham‐exposed group, and no apparent change was evident in locomotor activity. Consistent with behavioral data, RF‐EMF did not alter APP and CTFβ levels or Aβ deposition in the brains of the 5xFAD mice. These findings indicate that 3‐month RF‐EMF exposure did not affect Aβ‐related memory impairment or Aβ accumulation in the 5xFAD Alzheimer's disease model. Bioelectromagnetics. 37:391–399, 2016. © 2016 The Authors Bioelectromagnetics published by Wiley Periodicals, Inc. on behalf of Bioelectromagnetics Society.  相似文献   

5.
The present study examined the effects of acute progesterone administration on hippocampal-dependent memory consolidation in ovariectomized middle-aged (16 months old) and aged (22 months old) female mice. Spatial memory was tested in a 2-day Morris water-maze task and object memory was tested using an object recognition task with 24- and 48-h delays. Immediately after water-maze training, mice received i.p. injections of vehicle, or 5.0, 10.0, or 20.0 mg/kg of water-soluble progesterone. Twenty-four hours later, retention of the platform location was tested. No overnight forgetting of the platform location was observed in middle-aged vehicle-treated mice. Acute progesterone administration had no effect on spatial memory in middle-aged mice. However, aged vehicle-treated mice demonstrated impaired memory for the platform location on Day 2 relative to Day 1. Twenty mg/kg, but not 5 or 10 mg/kg, progesterone reversed these deficits, suggesting that 20 mg/kg progesterone can improve spatial memory in aged females. In the object recognition task, mice explored two identical objects and then immediately received vehicle or progesterone injections. In middle-aged mice, 10 and 20 mg/kg progesterone enhanced object memory consolidation, relative to chance, after 24-h, but all doses were ineffective after 48-h. In aged mice, 10 mg/kg progesterone enhanced object memory consolidation, relative to chance, after 24 h, whereas both 5 and 10 mg/kg progesterone enhanced memory after 48 h. Together, these results indicate that acute progesterone differentially enhances hippocampal-dependent memory in middle-aged and aged females.  相似文献   

6.
Selecting and remembering visual information is an active and competitive process. In natural environments, representations are tightly coupled to task. Objects that are task-relevant are remembered better due to a combination of increased selection for fixation and strategic control of encoding and/or retaining viewed information. However, it is not understood how physically manipulating objects when performing a natural task influences priorities for selection and memory. In this study, we compare priorities for selection and memory when actively engaged in a natural task with first-person observation of the same object manipulations. Results suggest that active manipulation of a task-relevant object results in a specific prioritization for object position information compared with other properties and compared with action observation of the same manipulations. Experiment 2 confirms that this spatial prioritization is likely to arise from manipulation rather than differences in spatial representation in real environments and the movies used for action observation. Thus, our findings imply that physical manipulation of task relevant objects results in a specific prioritization of spatial information about task-relevant objects, possibly coupled with strategic de-prioritization of colour memory for irrelevant objects.  相似文献   

7.
Tfm-AR modulates the effects of ApoE4 on cognition   总被引:1,自引:0,他引:1  
Female mice are more susceptible to apolipoprotein E (apoE4)-induced cognitive deficits than male mice. These deficits can be antagonized by stimulating androgen receptors (ARs). To determine the role of AR in the cognitive effects of apoE4, we backcrossed mutant mice with a naturally occurring defect in the AR [testicular feminization mutant ( tfm )] onto the Apoe −/− background to eliminate mouse apoE gene resulting in non-functional AR, and crossed the tfm / Apoe −/− female mice with apoE4 transgenic male mice. We behaviorally compared Apoe −/−, apoE4, tfm, and tfm /apoE4 male mice. Apoe −/−, apoE4, and tfm mice showed hippocampus-dependent novel location recognition but tfm /apoE4 mice did not. In contrast, all groups showed hippocampus-independent novel object recognition. Hippocampus-dependent learning and memory were also assessed in the water maze. In the water maze probe trial following the second day of hidden platform training, Apoe−/− and apoE4 mice showed spatial memory retention, but tfm and tfm /ApoE4 mice did not. In the water maze, probe trial following the third day of hidden platform training, Apoe−/− , apoE4, and tfm /Apoe −/− mice showed spatial memory retention, but tfm mice did not. These data support an important role for AR in protecting against the detrimental effects of apoE4 on hippocampus-dependent learning and memory.  相似文献   

8.
Abstract. Biting flies influence both the physiology and behaviour of domestic and wild animals. This study demonstrates that relatively brief (60min) exposure to stable flies, Stomoxys calcitrans (L.), affects the spatial abilities of male mice. Stable fly exposure resulted in poorer subsequent performance in a water maze task in which individual mice had to learn the spatial location of a submerged hidden platform using extramaze visual cues. Determinations of spatial acquisition and retention were made with mice that had been previously exposed for 60min to either stable flies or house flies, Musca domestica (L.). Mice exposed to stable flies displayed over one day of testing (six blocks or sets of four trials) significantly poorer acquisition and retention of the water maze task than either mice that had been exposed to house flies or fly-naive mice. This attenuation of spatial learning occurred in the absence of any evident sensorimotor or motivational impairments. The reduction in spatial abilites involved endogenous opioid systems, as the decreased performance resulting from stable fly exposure was blocked by pre-treatment with the prototypic opiate antagonist, naltrexone. These results indicate that relatively brief exposure to biting flies can lead to a decrease in spatial abilities which is associated with enhanced endogenous opioid activity. These results support the involvement of endogenous opioid systems in the mediation of the behavioural and physiological effects of biting fly exposure. They further suggest that decreases in spatial abilities and performance may be part of the behavioural consequences of biting fly exposure in domestic and wild animals.  相似文献   

9.
Storage of acetylcholine in synaptic vesicles plays a key role in maintaining cholinergic function. Here we used mice with a targeted mutation in the vesicular acetylcholine transporter (VAChT) gene that reduces transporter expression by 40% to investigate cognitive processing under conditions of VAChT deficiency. Motor skill learning in the rotarod revealed that VAChT mutant mice were slower to learn this task, but once they reached maximum performance they were indistinguishable from wild-type mice. Interestingly, motor skill performance maintenance after 10 days was unaffected in these mutant mice. We also tested whether reduced VAChT levels affected learning in an object recognition memory task. We found that VAChT mutant mice presented a deficit in memory encoding necessary for the temporal order version of the object recognition memory, but showed no alteration in spatial working memory, or spatial memory in general when tested in the Morris water maze test. The memory deficit in object recognition memory observed in VAChT mutant mice could be reversed by cholinesterase inhibitors, suggesting that learning deficits caused by reduced VAChT expression can be ameliorated by restoring ACh levels in the synapse. These data indicate an important role for cholinergic tone in motor learning and object recognition memory.  相似文献   

10.
Serotonin is well known for its role in affection, but less known for its role in cognition. The serotonin transporter (SERT) has an essential role in serotonergic neurotransmission as it determines the magnitude and duration of the serotonin signal in the synaptic cleft. There is evidence to suggest that homozygous SERT knockout rats (SERT−/−), as well as humans with the short SERT allele, show stronger cognitive effects than wild-type control rats (SERT+/+) and humans with the long SERT allele after acute tryptophan depletion. In rats, SERT genotype is known to affect brain serotonin levels, with SERT−/− rats having lower intracellular basal serotonin levels than wild-type rats in several brain areas. In the present study, it was investigated whether SERT genotype affects memory performance in an object recognition task with different inter-trial intervals. SERT−/−, heterozygous SERT knockout (SERT+/−) and SERT+/+ rats were tested in an object recognition test applying an inter-trial interval of 2, 4 and 8 h. SERT−/− and SERT+/− rats showed impaired object memory with an 8 h inter-trial interval, whereas SERT+/+ rats showed intact object memory with this inter-trial interval. Although brain serotonin levels cannot fully explain the SERT genotype effect on object memory in rats, these results do indicate that serotonin is an important player in object memory in rats, and that lower intracellular serotonin levels lead to enhanced memory loss. Given its resemblance with the human SERT-linked polymorphic region and propensity to develop depression-like symptoms, our findings may contribute to further understanding of mechanisms underlying cognitive deficits in depression.  相似文献   

11.
Fragile X syndrome (FXS) is caused by suppressed expression of fragile X mental retardation protein (FMRP), which results in intellectual disability accompanied by many variably manifested characteristics, such as hyperactivity, seizures and autistic‐like behaviors. Treatment of mice that lack FMRP, Fmr1 knockout (KO) mice, with lithium has been reported to ameliorate locomotor hyperactivity, prevent hypersensitivity to audiogenic seizures, improve passive avoidance behavior and attenuate sociability deficits. To focus on the defining characteristic of FXS, which is cognitive impairment, we tested if lithium treatment ameliorated impairments in four cognitive tasks in Fmr1 KO mice, tested if the response to lithium differed in adolescent and adult mice and tested if therapeutic effects persisted after discontinuation of lithium administration. Fmr1 KO mice displayed impaired cognition in the novel object detection task, temporal ordering for objects task and coordinate and categorical spatial processing tasks. Chronic lithium treatment of adolescent (from 4 to 8 weeks of age) and adult (from 8 to 12 weeks of age) mice abolished cognitive impairments in all four cognitive tasks. Cognitive deficits returned after lithium treatment was discontinued for 4 weeks. These results show that Fmr1 KO mice exhibit severe impairments in these cognitive tasks, that lithium is equally effective in normalizing cognition in these tasks whether it is administered to young or adult mice and that lithium administration must be continued for the cognitive improvements to be sustained. These findings provide further evidence that lithium administration may be beneficial for individuals with FXS .  相似文献   

12.
Radiofrequency (RF) emission during mobile phone use has been suggested to impair cognitive functions, that is, working memory. This study investigated the effects of a 2 1/2 h RF exposure (884 MHz) on spatial memory and learning, using a double-blind repeated measures design. The exposure was designed to mimic that experienced during a real-life mobile phone conversation. The design maximized the exposure to the left hemisphere. The average exposure was peak spatial specific absorption rate (psSAR10g) of 1.4 W/kg. The primary outcome measure was a "virtual" spatial navigation task modeled after the commonly used and validated Morris Water Maze. The distance traveled on each trial and the amount of improvement across trials (i.e., learning) were used as dependent variables. The participants were daily mobile phone users, with and without symptoms attributed to regular mobile phone use. Results revealed a main effect of RF exposure and a significant RF exposure by group effect on distance traveled during the trials. The symptomatic group improved their performance during RF exposure while there was no such effect in the non-symptomatic group. Until this new finding is further investigated, we can only speculate about the cause.  相似文献   

13.
A series of four experiments was performed to determine the effect of exposure to a 50 Hz magnetic field on memory-related behaviour of adult, male C57BL/6J mice. Experimental subjects were exposed to a vertical, sinusoidal magnetic field at 0.75 mT (rms), for 45 min immediately before daily testing sessions on a spatial learning task in an eight-arm radial maze. Control subjects were only exposed to a background time-varying field of less than 50 nT and the ambient static field of about 40 μT. In each experiment, exposure significantly reduced the rate of acquisition of the task but did not affect overall accuracy. This finding is consistent with the results of another study that found that prior exposure to 60 Hz magnetic fields affected spatial learning in rats. Bioelectromagnetics 19:79–84, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

14.
Numerous studies have implicated DTNBP1, the gene encoding dystrobrevin‐binding protein or dysbindin, as a candidate risk gene for schizophrenia, though this relationship remains somewhat controversial. Variation in dysbindin, and its location on chromosome 6p, has been associated with cognitive processes, including those relying on a complex system of glutamatergic and dopaminergic interactions. Dysbindin is one of the seven protein subunits that comprise the biogenesis of lysosome‐related organelles complex 1 (BLOC‐1). Dysbindin protein levels are lower in mice with null mutations in pallidin, another gene in the BLOC‐1, and pallidin levels are lower in mice with null mutations in the dysbindin gene, suggesting that multiple subunit proteins must be present to form a functional oligomeric complex. Furthermore, pallidin and dysbindin have similar distribution patterns in a mouse and human brain. Here, we investigated whether the apparent correspondence of pallid and dysbindin at the level of gene expression is also found at the level of behavior. Hypothesizing a mutation leading to underexpression of either of these proteins should show similar phenotypic effects, we studied recognition memory in both strains using the novel object recognition task (NORT) and social novelty recognition task (SNRT). We found that mice with a null mutation in either gene are impaired on SNRT and NORT when compared with wild‐type controls. These results support the conclusion that deficits consistent with recognition memory impairment, a cognitive function that is impaired in schizophrenia, result from either pallidin or dysbindin mutations, possibly through degradation of BLOC‐1 expression and/or function.  相似文献   

15.
The C-terminal Src kinase (Csk) is an essential signaling factor guiding central nervous system (CNS) development. In the adult brain, Csk-mediated control of Src may also modulate glutamatergic synaptic transmission and N-methyl-d-aspartate receptor (NMDAR)-dependent synaptic plasticity. The regulation of N-methyl-d-aspartate (NMDA)-dependent plasticity by a myriad of kinase cascades has been investigated intensively during spatial and fear learning, while little is known about the regulatory kinases and role of NMDA-dependent plasticity during equally critical forms of social learning. We assessed social memory in Csk(+/+) and Csk(+/-) mice backcrossed onto 129P2, an inbred strain with wild-type impairments in social memory. Reduced Csk expression in Csk(+/-) mice was associated with increased NMDAR subunit 2B (NR2B) phosphorylation in the amygdala (AM) and olfactory bulb (OB), and with markedly improved social recognition memory and social transmission of food preference (STFP). In contrast, phosphorylation of NR2B was only slightly increased in the hippocampus of 129P2/Csk(+/-) mice, and the poor spatial object recognition memory of wild-type 129P2/Csk(+/+) mice was not rescued by reduced Csk expression. The Csk pathway appears to be a critical signaling cascade regulating social learning and memory, and presents a possible therapeutic target in diseases such as autism that are characterized by aberrant social behaviors.  相似文献   

16.
长期注射吗啡对戒断后小鼠Y-迷宫空间识别记忆的影响   总被引:1,自引:0,他引:1  
使用急性成瘾性药物会影响大脑功能,随着药物使用时间的延长,这种影响更加广泛、持久,并且在药物戒断后的很长时间内依然存在。实验表明,急性及短期吗啡给予小鼠和戒断均损伤了其Y迷宫空间识别记忆能力,但这种损伤短暂且可逆。本实验小鼠被连续注射吗啡(40 mg/kg•day,i p)或生理盐水21天,利用Y迷宫来检测长期吗啡给予后在戒断第2、9和19天,吗啡对小鼠空间识别记忆的影响。结果表明, 连续吗啡给予21天后,在戒断第2、9和19天,小鼠Y迷宫空识别记忆能力均受到损伤,提示长期给予小鼠吗啡会导致其空间识别记忆能力的长期损伤。  相似文献   

17.
G protein-coupled receptor (GPCR) associated sorting protein-1 (GASP-1) is suspected to play a key role in recycling and degradation of several GPCRs. In a previous study, we have shown that GASP-1-knock-out (GASP-1-KO) mice displayed deficits in acquiring a cocaine self-administration task, associated with an exacerbated down-regulation of striatal dopaminergic and cholinergic receptors. Among several possibilities, GASP-1 deficiency could have impaired memory processes underlying the acquisition of the operant conditioning task. Therefore, the present study investigated cognitive performances of GASP-1-KO mice and their wild-type littermates (WT) in a broad variety of memory tasks. Consistent with a deficit in procedural memory, GASP-1-KO mice showed delayed acquisition of a food-reinforced bar-press task. During water-maze training in hidden- or visible-platform paradigms, mutant and WT mice acquired the tasks at the same rate. However, GASP-1 mice exhibited persistent thigmotaxic swimming, longer distance to the platform, and reduced swim speed. There was no deficit in several tasks requiring simple behavioral responses (Barnes maze, object recognition and passive avoidance tasks). Thus, the ability to acquire and/or express complex responses seems affected in GASP-1-deficient mice. Hippocampal functions were preserved, as the retention of an acquired memory in spatial tasks remained unaffected. The pattern of behavioral deficits observed in GASP-1-KO mice is coherent with current knowledge on the role of striatal GPCRs in acquisition/expression of skilled behavior and in motivation. Together with the previous findings, the so far established phenotype of GASP-1-KO mice makes them a potentially exciting tool to study striatal functions.  相似文献   

18.
Wang  Xiaona  Li  Peng  Liu  Jingsheng  Jin  Xunbo  Li  Lianjun  Zhang  Dong  Sun  Peng 《Neurochemical research》2016,41(6):1401-1409

3,3′-Iminodipropionitrile (IDPN), one of the nitrile derivatives, can induce persistent neurotoxicity, and therefore cause dyskinesia and cognitive impairments. Gastrodin, a main bioactive ingredient of Gastrodia elata Blume, is shown to greatly improve cognitive function. The aim of this study was to further determine whether administration of gastrodin can ameliorate IDPN-induced cognitive deficits in the Morris water maze (MWM) and novel object recognition (NOR) task, and to explore the underlying mechanisms. Results showed that exposure to IDPN (100 mg/kg/day, for 8 days) significantly impaired spatial and object recognition memory and that repeated treatment with gastrodin (150 mg/kg/day, for 6 weeks) could effectively alleviate the IDPN-induced cognitive impairments as indicated by increased spatial memory and discrimination ratio in the MWM and NOR tests. Gastrodin treatment also reverted IDPN-induced decreases of γ-aminobutyric acid (GABA) levels and increases of a2 GABAA receptor protein expression in the prefrontal cortex and hippocampus of IDPN-treated rats. These results suggest that gastrodin treatment may provide a novel pharmacological strategy for IDPN-induced cognitive deficits, which was mediated, at least in part, by normalizing the GABAergic system.

  相似文献   

19.
The calcium dysregulation hypothesis of brain aging posits that an age-related increase in neuronal calcium concentration is responsible for alterations in a variety of cellular processes that ultimately result in learning and memory deficits in aged individuals. We previously generated a novel transgenic mouse line, in which expression of the L-type voltage-gated calcium, CaV1.3, is increased by ~50% over wild-type littermates. Here, we show that, in young mice, this increase is sufficient to drive changes in neuronal physiology and cognitive function similar to those observed in aged animals. Specifically, there is an increase in the magnitude of the postburst afterhyperpolarization, a deficit in spatial learning and memory (assessed by the Morris water maze), a deficit in recognition memory (assessed in novel object recognition), and an overgeneralization of fear to novel contexts (assessed by contextual fear conditioning). While overexpression of CaV1.3 recapitulated these key aspects of brain aging, it did not produce alterations in action potential firing rates, basal synaptic communication, or spine number/density. Taken together, these results suggest that increased expression of CaV1.3 in the aged brain is a crucial factor that acts in concert with age-related changes in other processes to produce the full complement of structural, functional, and behavioral outcomes that are characteristic of aged animals.  相似文献   

20.
In the present paper we describe five tests, 3 of which were designed to be similar to tasks used with rodents. Results obtained from control subjects, patients with selective thermo-coagulation lesions to the medial temporal lobe and results from non-human primates and rodents are discussed. The tests involve memory for spatial locations acquired by moving around in a room, memory for objects subjects interacted with, or memory for objects and their locations. Two of the spatial memory tasks were designed specifically as analogs of the Morris water task and the 8-arm radial-maze tasks used with rats. The Morris water task was modeled by hiding a sensor under the carpet of a room (Invisible Sensor Task). Subjects had to learn its location by using an array of visual cues available in the room. A path integration task was developed in order to study the non-visual acquisition of a cognitive representation of the spatial location of objects. In the non-visual spatial memory task, we blindfolded subjects and led them to a room where they had to find 3 objects and remember their locations. We designed an object location task by placing 4 objects in a room that subjects observed for later recall of their locations. A recognition task, and a novelty detection task were given subsequent to the recall task. An 8-arm radial-maze was recreated by placing stands at equal distance from each other around the room, and asking subjects to visit each stand once, from a central point. A non-spatial working memory task was designed to be the non-spatial equivalent of the radial maze. Search paths recorded on the first trial of the Invisible Sensor Task, when subjects search for the target by trial and error are reported. An analysis of the search paths revealed that patients with lesions to the right or left hippocampus or parahippocampal cortex employed the same type of search strategies as normal controls did, showing similarities and differences to the search behavior recorded in rats. Interestingly, patients with lesions that included the right parahippocampal cortex were impaired relative to patients with lesions to the right hippocampus that spared the parahippocampal cortex, when recall of the sensor was tested after a 30 min delay (Bohbot et al. 1998). No differences were obtained between control subjects and patients with selective thermal lesions to the medial temporal lobe, when tested on the radial-maze, the non-spatial analogue to the radial-maze and the path integration tasks. Differences in methodological procedures, learning strategies and lesion location could account for some of the discrepant results between humans and non-human species. Patients with lesions to the right hippocampus, irrespective of whether the right parahippocampal cortex was spared or damaged, had difficulties remembering the particular configuration and identity of objects in the novelty detection of the object location task. This supports the role of the human right hippocampus for spatial memory, in this case, involving memory for the location of elements in the room; learning known to require the hippocampus in the rat.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号