首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The objective of this study was to compare whole plant growth and physiological responses to salt stress of two Acacia nilotica subspecies (ssp. cupressiformis and ssp. tomentosa ). Salt stress was induced by adding NaCl at different concentrations to the nutrient solution: 0, 75, 100 and 200 m M . After one month under such stress, plants were still healthy and actively growing in both subspecies up to 100 m M NaCl. Water potential (Ψ) and osmotic potential (π) decreased with salinity and the lower π enabled the plants to maintain turgor. Höfler diagrams confirmed that osmotic adjustment had occurred under all treatments. Furthermore, the point of zero turgor occurred at a higher relative water content. An increase in the elastic modulus (ɛ) was observed under stress (low elasticity of the cell wall). Both osmotic adjustment and a high ɛ modified the capacity of both subspecies to maintain a positive water balance. Accumulation of ions (Na+, K+ and Cl) and proline could explain such osmotic adjustment. Acacia nilotica ssp. cupressiformis showed a higher absorption of K+ than ssp. tomentosa up to 100 m M NaCl treatment.  相似文献   

2.
Salinity response of a freshwater charophyte, Chara vulgaris   总被引:2,自引:2,他引:0  
Abstract. Chara vulgaris L. growing in an oligohaline lake was adapted to laboratory conditions and subjected to long-term salinity treatments ranging from 0 to 350 mol m 3 NaCl added to the lake water (40–680 mosmol kg 1). Osmotic potential and concentration of the main osmotically active solutes (K+, Na+, Mg2+, Cl and sucrose) in the vacuolar sap of the central internodal cells were estimated. C. vulgaris did regulate turgor but incompletely. Turgor decreased from 335 mosmol kg 1 under control conditions to 52–111 mosmol kg 1 at 350 mol m 3 NaCl. The enhancement of πi was achieved by increase in both ions and sucrose. Sterile and fertile plants differed in their response to osmotic stress. In sterile plants, the ions accounted for about 87% of the vacuolar osmotic potential. The increase of πi under osmotic stress was exclusively due to an accumulation of Na+ and Cl-. In fertile plants, sucrose accounted for about 35% of πi and ions for about 51% Under osmotic stress, sucrose content increased together with the ionic content of Na+ and Cl-.  相似文献   

3.
Bacteria respond to osmotic stress by a substantial increase in the intracellular osmolality, adjusting their cell turgor for altered growth conditions. Using Escherichia coli as a model organism we demonstrate here that bacterial responses to hyperosmotic stress specifically depend on the nature of osmoticum used. We show that increasing acute hyperosmotic NaCl stress above ∼1.0 Os kg−1 causes a dose-dependent K+ leak from the cell, resulting in a substantial decrease in cytosolic K+ content and a concurrent accumulation of Na+ in the cell. At the same time, isotonic sucrose or mannitol treatment (non-ionic osmotica) results in a gradual increase of the net K+ uptake. Ion flux data are consistent with growth experiments showing that bacterial growth is impaired by NaCl at the concentration resulting in a switch from net K+ uptake to efflux. Microarray experiments reveal that about 40% of upregulated genes shared no similarity in their responses to NaCl and sucrose treatment, further suggesting specificity of osmotic adjustment in E. coli to ionic and non-ionic osmotica. The observed differences are explained by the specificity of the stress-induced changes in the membrane potential of bacterial cells highlighting the importance of voltage-gated K+ transporters for bacterial adaptation to hyperosmotic stress.  相似文献   

4.
A stimulation of the abscisic acid (ABA)-induced increase in proline was observed in leaf segments of barley ( Hordeum vulgare L. cv. Georgie) if K+ or Na+ were supplied in the external medium as salts of monovalent anions such as NO3, Br, Cr and I, but not when sulphate or phosphate were used. To a lesser extent, the effect was evident also with RbCl, but it did not occur when chlorides of Li+. Cs+, NH4+, Mg:+ and Ca2+ were used. Both KC1 and NaCl in the concentration range 2–100 m M influence the ABA-dependent proline accumulation to the same extent; the increase induced was about 100% at 10 m M , and reached a maximum between 60 and 100 m M. The effect is not due to the osmotic activity of the salts and does not seem to depend on changes in K+ and Na+ levels within the leaf tissue, but it is somehow linked to their external concentration. The existence of a specific interaction between ABA and K+ or Na+, possibly at the cell membrane level, is proposed.  相似文献   

5.
Hypocotyl-derived callus cultures of Brassica campestris L. ssp. pekinensis cv. Kim-jung (Chinese cabbage) were grown on Murashige and Skoog medium containing no additional salt, NaCl or Na2SO4. Na2SO4 was more than twice as inhibitory in comparison to the same concentration of NaCl when growth and fresh:dry weight ratios of established callus were measured. Levels of protein, starch, sucrose and α-amino nitrogen were not significantly altered in salt-grown callus. Concentrations of reducing sugars and chlorophyll were 2–3 times greater in callus grown on either salt. Proline concentration increased 15–20 fold on the highest levels of salt. Final concentrations (reached in 20–24 days) were closely correlated to the initial Na+ concentration of the medium, regardless of salt type. The osmotic potential in callus transferred to NaCl or Na2SO4 reached a maximum negative value after 16 days. For both salts, subsequent increases were correlated to increases in fresh:dry weight and growth. On both salts, turgor remained relatively constant (0. 6–0.75 MPa). Changes in Na+, K+, Mg2+ and Ca2+ content were correlated to initial Na+ concentration in the medium, not salt type. Accumulation of Na+ was accompanied by loss of K+ and Mg2+. Six to seven times less sulfate was measured in callus grown on Na2SO4 than chloride in callus grown on similar concentrations of NaCl.  相似文献   

6.
A non-invasive ion-selective microelectrode technique was used to elucidate the ionic mechanisms of osmotic adjustment in a marine protist thraustochytrid. Hypoosmotic stress caused significant efflux of Na+, Cl and K+ from thraustochytrid cells. Model calculations showed that almost complete osmotic adjustment was achieved within the first 30 min after stress onset. Of these, sodium was the major contributor (more than half of the total osmotic adjustment), with chloride being the second major contributor. The role of K+ in the process of osmotic adjustment was relatively small. Changes in Ca2+ and H+ flux were attributed to intracellular signalling. Ion flux data were confirmed by growth experiments. Thraustochytrium cells showed normal growth patterns even when grown in a sodium-free solution provided the medium osmolality was adjusted by mannitol to one of the seawater. That suggests that the requirement of sodium for thraustochytrid growth cycle is due to its role in cell osmotic adjustment rather than because of the direct Na+ involvement in cell metabolism. Altogether, these data demonstrate the evidence for turgor regulation in thraustochytrids and suggest that these cells may be grown in the absence of sodium providing that cell turgor is adjusted by some other means.  相似文献   

7.
Abstract. Nitellopsis cells grown in fresh water have a relatively low cytoplasmic Na+ (11 mol m−3) and high cytoplasmic K+ (90 mol m−3) content. A 30-min treatment with 100 mol m−3 external NaCl resulted in a high [Na+]c (90 mol m−3) and a low [K+]c (33 mol m−3), Subsequent addition of external Ca2+ (10 mol m−3) prevented Na+ influx and then [Na+]c decreased slowly. Changes in [K+]c were opposite to [Na+]c. During the recovery time vacuolar Na+ increased, while vacuolar K+ decreased. Since all these processes proceeded also under ice-cold conditions, the restoration of original cytoplasmic ion compositions is suggested to be a passive nature. The notion that the passive movement of ions across the tonoplast can act as an effective and economic mechanism of salt tolerance under transient or under mild salt stress conditions is discussed.  相似文献   

8.
Gas exchange parameters, water relations and Na+/Cl- content were measured on leaves of one-year-old sweet orange ( Citrus sinensis [L.] Osbeck cv. Hamlin) seedlings grown at increasing levels of salinity. Different salts (NaCl, KCl and NaNO3) were used to separate the effects of Cl and Na+ on the investigated parameters. The chloride salts reduced plant dry weight and increased defoliation. Accumulation of Cl in the leaf tissue caused a sharp reduction in photosynthesis and stomatal conductance. By contrast, these parameters were not affected by leaf Na+ concentrations of up to 478 m M in the tissue water. Leaf water potentials reached values near −1.8 MPa at high NaCl and KCl supplies. This reduction was offset by a decrease in the osmotic potential so that turgor was maintained at or above control values. The changes in osmotic potential were closely correlated with changes in leaf proline concentrations. Addition of Ca2+ (as calcium acetate) increased growth and halved defoliation of salt stressed plants. Furthermore, calcium acetate decreased the concentration of Cl and Na+ in the leaves, and increased photosynthesis and stomatal conductance. Calcium acetate also counteracted the reductions in leaf water and osmotic potentials induced by salinity. In addition, calcium acetate inhibited the accumulation of proline in the leaves which affected the reduction in osmotic potential. These results indicate that adverse effects of salinity in Citrus leaves are caused by accumulation of chloride.  相似文献   

9.
Twenty‐day‐old sunflower plants ( Helianthus annuus L. cv. Sun‐Gro 380) grown in nutrient solutions with different KCl levels were used to study the effects of K+ status of the root and of abcisic acid (ABA) on the exudation rate (Jv), the hydraulic conductivity of the root (Lp), the fluxes of exuded K+ and Na+ (JK and JNa), and the gradient of osmotic pressure between the xylem and the external medium. Jv and Lp increased in direct proportion to the K+ starvation of the root. Also addition of ABA (4 µ M ) at the onset of exudation in the external medium made Jv and Lp rise, and this effect also increased with the degree of K+ starvation. Similarly, K+ starvation and ABA promoted both the flux of exuded Na+ and the accumulation of Na+ in the root. We suggest that ABA acts as a regulating signal for the radial transport of water across the root, and that potassium may be an effector of this mechanism.  相似文献   

10.
Variations in water binding strength, water relations and the accumulation of solutes during water stress of three durum wheat ( Triticum durum Desf.) cultivars are reported and discussed. Water binding strength was determined by constructing adsorption isotherms at 5 and 20°C and by calculating the differential enthalpy (ΔH) after van't Hoff.
Reducing sugars, proline, K+ and Cl were the major contributors to osmotic adjustment. Solutes, such as quaternary ammonium compounds, and non-reducing sugars contributed to osmotic potential at full turgor, but did not increase in proportion to water stress. Genotypic differences have been observed for K+ accumulation capability, the water-stressed leaves of cv. Capeiti 8 showing the largest increase. The same cultivar demonstrated the most negative ΔH values, indicative of strongly bound water, and the highest integrated enthalpy (ΔHinf) values for leaf moisture below 0.1 g H2O per g dry weight, i.e. in the isotherm region where water was presumably chemisorbed to the charged groups of macromolecules. The accumulation of ions (Cl, K+) and proline was concurrent with an increase in the binding-strength of tightly and weakly bound water, respectively.  相似文献   

11.
The effects of NaCl on endogenous free levels of the poluamines putrescine, spermi dine and spermine, and the relationships between polyamines, K+ levels and Na+ accumulation were determined in leaves of the cultivated tomato ( Lycopersicon esculentum Mill.) and its wild, salt-tolerant relative L. pennellii (Correll) D' Arcy at different exposure times during a 32-day period. Both stress treatments (100 and 200 m M NaCl) decreased the levels of putrescine and spermidine, although to a different degree for the cultivated and wild tomato species. The spermine levels did not decrease with salinity in L. pennellii over the salinization period, whereas they decreased in L. esculentum , except at the first application of the 100m M NaCl treatment. In both species, the changes induced by salinity in total polyamines and K+ were very similar, with the accumulation of Na+ in the leaf being concomitant with a decrease in both total polyamines and K+. This suggests that the main role of the polyamines in the leaf tissues. In this sense, a direct relationship between total polyamines and K+, and inverse relationship between polyamines and Na+ and between K+ and Na+ were found for both species. In the short term (up to 4 days) a peculiar physiological behavior was found in L. pennellii , as the total polyamine and K+ levels decreased at 100 m M but not at 200 m M NaCl, while after this time the latter plants had values lower than those of the 100 m M NaCl-treated plants at day 11.  相似文献   

12.
Salt tolerance of the reed plant Phragmites communis   总被引:6,自引:0,他引:6  
Reed plants ( Phragmites communis Trinius) were grown at NaCl concentrations up to 500 m M and their growth, mineral contents and leaf blade osmotic potential were determined. Addition of NaCl up to 300 m M did not affect growth significantly. Sucrose, Cl-and Na+ concentrations in the shoots increased with the salinity of the medium and the shoot water content decreased. K+ always contributed most to the leaf osmotic potential. Even in the presence of 250 m M NaCl in the rooting medium, the leaf blade contained only 50 mM Na+, suggesting that the plants have an efficient mechanism for Na+ exclusion. 22Na+ uptake experiments suggested that the retranslo-cation of absorbed Na+ from shoots to the rooting medium lowered the uptake of Na+.  相似文献   

13.
Cultivated tomato Lycopersicon esculentum (L.) Mill. cv. P-73 and its wild salt-tolerant relative L. pennellii (Correll) D'Arcy accession PE-47 growing on silica sand in a growth chamber were exposed to 0, 70, 140 and 210 m M NaCl nutrient solutions 35 days after sowing. The saline treatments were imposed for 4 days, after which the plants were rinsed with distilled water. Salinity in L. esculentum reduced leaf area and leaf and shoot dry weights. The reductions were more pronounced when sodium chloride was removed from the root medium. Reduction in leaf area and weight in L. pennellii was only observed after the recovery period. In both genotypes salinity induced a progressive reduction in leaf water potential and leaf conductance. During the recovery period leaf water potential (ψ1) and leaf conductance (g1) reached levels similar to those of control plants in wild and cultivated species, respectively. Leaf osmotic potential at full turgor (ψos) decreased in the salt treated plants of both genotypes, whereas the bulk modulus of elasticity was not affected by salinity. Leaf water potential at turgor loss point (ψtlp) and relative water content at turgor loss point (RWCtlp) appeared to be controlled by leaf osmotic potential at full turgor (ψos) and by bulk modulus of elasticity, respectively. At lowest salinity, the wild species carried out the osmotic adjustment based almost exclusively on Cl and Na+, with a marked energy savings. Under highest salinity, this species accommodate the stress through a higher expenditure of energy due to the contribution of organic solutes to the osmotic adjustment. The domesticated species carried out the osmotic adjustment based always on an important contribution of organic solutes.  相似文献   

14.
The response of Suaeda aegyptiaca (Hasselq.) Zoh. to various salinity treatments was tested in sand culture. Growth was promoted by NaCl and by Na2SO4 at all tested concentrations, but not by KCl. The effect of NaCl on growth was stronger than that of Na2SO4 and it increased gradually up to a 125 eq. m−3 optimum. Ion uptake was also affected by the different salts. Cl was taken up in similar quantities from KCl and from NaCl solutions and the content of the respective cations was also similar to one another. The presence of Na+ in the medium lowered the content of K+ in the plants and at the same time increased growth by as much as 900%. Transpiration was reduced and water use efficiency increased by Na+-salts. Highest water use efficiency was exhibited by plants which were treated with 125 eq. m−3 NaCl. It is concluded that Na+ at the macronutrient level has a specific promotive effect on the physiological processes of S. aegyptiaca. This effect is not due to replacement of K+ by Na+; neither can it be achieved by increasing the K+ concentration. Cl has an additional positive effect on growth of S. aegyptiaca. This effect is only expressed in the presence of Na+.  相似文献   

15.
A vacuolar Na^ /H^ antiporter cDNA gene was successfully isolated fromHordeum brevisubulatum (Trin.) Link using the rapid amplification ofcDNA ends (RACE) method. The gene was named HbNHXI and was found to consist of 1 916 bp encoding a predicted polypeptide of 540 amino acids with a conserved amiloride-binding domain. Phylogenetic tree analysis of the Na^ /H^ antiporters showed that the HbNHXI gene shares 55.3%-74.8% similarity with the vacuolar-type Na^ /H^ antiporters. Transgenic tobaccos that contain the HbNHXI gene, integrated by forward insertion into the tobacco genome, were obtained via Agrobacterium tumerfaciens and characterized for the determination of the concentration of Na^ and K^ ions, as well as proline, in the presence of 300 mmol/L NaCl. The T1 transgenic plants showed more tolerance to salt and drought than did wild-type plants. Our data suggest that overexpression of the HbNHXI gene could improve the tolerance of transgenic tobaccos to salt and drought through the function of the vacuolar Na^ /H^ antiporter.  相似文献   

16.
Tomato crop productivity under salinity can be improved by grafting cultivars onto salt-tolerant wild relatives, thus mediating the supply of root-derived ionic and hormonal factors that regulate leaf area and senescence. A tomato cultivar was grafted onto rootstocks from a population of recombinant inbred lines (RILs) derived from a Solanum lycopersicum  ×  Solanum cheesmaniae cross and cultivated under moderate salinity (75 m m NaCl). Concentrations of Na+, K+ and several phytohormones [abscisic acid (ABA); the cytokinins (CKs) zeatin, Z; zeatin riboside, ZR; and the ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC)] were analysed in leaf xylem sap in graft combinations of contrasting vigour. Scion leaf area correlated with photosystem II (PSII) efficiency ( F v/ F m) and determined fruit productivity. Xylem K+ (but not Na+), K+/Na+, the active CK Z, the ratio with its storage form Z/ZR and especially the ratio between CKs and ACC (Z/ACC and Z + ZR/ACC) were positively loaded into the first principal component (PC) determining both leaf growth and PSII efficiency. In contrast, the ratio ACC/ABA was negatively correlated with leaf biomass. Although the underlying physiological mechanisms by which rootstocks mediate leaf area or chlorophyll fluorescence (and thus influence tomato salt tolerance) seem complex, a putative potassium–CK interaction involved in regulating both processes merits further attention.  相似文献   

17.
Kinetic studies of a microsomal (Na++ K++ Mg2+)ATPase from sugar beet roots ( Beta vulgaris L. cv. Monohill) show that sucrose influences the MgATPase in different ways depending on the presence of K+ and/or Na+ 1) In the presence of the substrate MgATP and Na+ the effect of sucrose follows simple Michaelis-Menten kinetics. 2) In the presence of substrate together with K+ or (K++ Na+), sucrose has little effect on the ATPase activity. 3) In the presence of Na+, onabain acts as an uncompetitive inhibitor with respect to MgATP. 4) In the presence of K+ or (K++ Na+), the inhibition by ouabain is somewhat depressed and shows non-linearity when 1/v is plotted versus 1/MgATP. 5) Sucrose and Na+ activate in a competitive way, so that a successive increase of the Na+ level decreases the activation by sucrose. Both Km and V-values are thereby changed. 6) The sucrose activation in the presence of Na+ is also influenced by ouabain. It is, therefore, suggested that Na+ may regulate the interference between the Na+/K+ pump and a sucrose sensitive system.  相似文献   

18.
The effects of NaCl and replacement of K+ by Na+ on the lipid composition of the two sugar beet inbred lines FIA and ADA were studied (a) with increasing additions of NaCl to the basal medium, and (b) with increasing replacement of K+ by Na+ at the same total concentration as in the basal medium. Direct relations were noted between NaCl concentration of the nutrient solution and the phospholipid concentration in the roots of FIA, the genotype characterized by a low K+/Na+ ratio, as well as between NaCl in the medium and the phospholipid concentration in the shoots of ADA, the genotype with a high K +/Na + ratio. The sulfolipid level in the roots of FIA was maintained at higher NaCl concentrations, while it was decreased in ADA. The glycolipid concentration in the shoots of ADA and the degree of unsaturation of the fatty acids of the total lipid fraction were decreased by salinity, indicating reduced biosynthesis of chloroplast glycolipids and/or accelerated oxidation of these lipids in the presence of NaCl.
In the Na+ for K+ replacement experiment a low content of K+ in the medium resulted in decreased levels of total lipids, phospholipids and sulfolipid in the roots of both genotypes, which did not relate to root growth. K+-leakage from the roots at low K+-level in the medium may be reduced by the increase in saturation of the lipids. In the shoots of ADA increased levels of total lipids, phospholipids and Sulfolipid were noted at a low K+-concentration of the nutrient solution.  相似文献   

19.
Arabidopsis mutants with reduced response to NaCl and osmotic stress   总被引:11,自引:0,他引:11  
We isolated 6 mutant lines of Arabidopsis thaliana that expressed reduced sensitivity to salt and osmotic stress during germination. All 6 lines cum recessive mutations in a single gene, designated reduced salt sensitivity (rss), linked to the ADH marker on chromosome 1. The rss mutants are less sensitive than wild type for NaCl and osmotic stress inhibition of germination, tolerating approximately 150 mM higher concentrations of NaCl and about 250 mM higher concentrations of sorbitol in the media. Germination assays on media containing various salts indicate that the rss mutations reduce sensitivity lo Na+ and Rh+ but also, to a much lesser degree, to K+ and Css+. However, the rss mutation does not improve plant growth when plantlets are transferred to high salt or high osmotic pressure media after germination. The rss plantlets accumulate praline to a significantly lesser degree than wild type when they are exposed to either salt or osmotic stress. Thus, the rss mutants differ from wild type both at germination and during vegetative growth indicating that the rss mutations are pleiotropic and might affect perception of solutes or some aspect of stress-induced signaling. The rss mutations do not alter ABA sensitivity and therefore probably do not affect ABA-mediated signaling.  相似文献   

20.
Abstract. Kosteletzkya virginica (L.) Presl., a dicot halophyte native to brackish tidal marshes, was grown on nutrient solution containing 0. 85, 170 or 255 mol m 3 NaCl, and the effects of external salinity on root growth, ion and water levels, and lipid content were examined in successive harvests. Root growth paralleled shoot growth trends, with some enhancement observed at 85 mol m 3 NaCl and a reduction noted at the higher salinities. Root Na+ content increased with increasing external NaCl, but remained constant with time for each treatment. K+ content, although lower in salt-grown plants after 14 d salinization, subsequently increased to levels comparable to unsalinized plants. A strong K+ affinity was reflected in the increased K+/Na+ selectivity of salt-grown plants and by their low Na+/K+ ratios. Cl levels rose in salinized plants and values were double or more those for Na+, indicating the possibility of a sodium-excluding mechanism in roots. Root phospholipids and sterols, principal membrane constituents, were maintained or elevated and the free sterol/phospholipids ratio increased in salinized K. virginica plants, suggesting retention of overall membrane structure and decreased permeability. This response, considered in light of root calcium maintenance and high potassium levels, suggests that salinity-induced changes in membrane lipid composition may be important in preventing K+ leakage from cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号