共查询到20条相似文献,搜索用时 15 毫秒
1.
Dithiocarbamates (DTCs), important therapeutic and industrial chemicals released in high quantities into the environment, exhibit complex chemical and biological activities. Here, we demonstrate an effect of DTCs on glucocorticoid action due to inhibition of 11 beta-hydroxysteroid dehydrogenase (11 beta-HSD) type 2, converting cortisol to cortisone in the kidney, but not 11 beta-HSD1, catalyzing the reverse reaction in liver and adipose tissue. Thus, DTCs may locally increase active glucocorticoid concentrations. Preincubation with the DTC thiram abolished 11 beta-HSD2 activity, suggesting irreversible enzyme inhibition. The sulfhydryl protecting reagent dithiothreitol blocked thiram-induced inhibition and NAD+ partially protected 11 beta-HSD2 activity, indicating that DTCs act at the cofactor-binding site. A 3D-model of 11 beta-HSD2 identified Cys90 in the NAD(+)-binding site as a likely target of DTCs, which was supported by a 99% reduced activity of mutant Cys90 to serine. The interference of DTCs with glucocorticoid-mediated responses suggests a cautious approach in the use of DTCs in therapeutic applications and in exposure to sources of DTCs such as cosmetics and agricultural products by pregnant women and others. 相似文献
2.
11beta-Hydroxysteroid dehydrogenase type 1 (11HSD1) is an enzyme that interconverts active 11-hydroxy glucocorticoids (cortisol, corticosterone) and their inactive 11-oxo derivatives (cortisone, 11-dehydrocorticosterone). Although bidirectional, it is considered to operate in vivo as an 11-reductase that regenerates active glucocorticoids and thus amplifies their local activity in mammals. Here we report the cloning, characterization and tissue distribution of chicken 11HSD1 (ch11HSD1). Its cDNA predicts a protein of 300 amino acids that share 51-56% sequence identity with known mammalian 11HSD1 proteins, while in contrast to most mammals, ch11HSD1 contains only one N-linked glycosylation site. Analysis of the tissue distribution pattern by RT-PCR revealed that ch11HSD1 is expressed in a large variety of tissues, with high expression in the liver, kidney and intestine, and weak in the gonads, brain and heart. 11-Reductase activity has been found in the liver, kidney, intestine and gonads with low or almost zero activity in the brain and heart. These results provide evidence for a role of 11HSD1 as a tissue-specific regulator of glucocorticoid action in non-mammalian vertebrates and may serve as a suitable model for further analysis of 11HSD1 evolution in vertebrates. 相似文献
3.
Licorice-derivatives such as glycyrrhizic acid (GA) competitively inhibit 11β-hydroxysteroid dehydrogenase(11β-HSD) type 2 (11-HSD2) enzymatic activity, and chronic clinical use often results in pseudoaldosteronism. Since the effect of GA on 11-HSD2 expression remains unknown, we undertook in vivo and in vitro studies. Male Wistar rats were given 30, 60 or 120 mg/kg of GA twice a day for 2 weeks. Plasma corticosterone was decreased in those given the 120 mg dose, while urinary corticosterone excretion was increased in those given the 30 and 60 mg doses but decreased in those given 120 mg GA. NAD +-dependent dehydrogenase activity in kidney microsomal fraction was decreased in animals receiving doses of 60 and 120 mg GA. The 11-HSD2 protein and mRNA levels were decreased in those given 120 mg GA. In contrast, in vitro studies using mouse kidney M1 cells revealed that 24 h treatment with glycyrrhetinic acid did not affect the 11-HSD2 mRNA expression levels. Thus, in addition to its role as a competitive inhibitor of 11-HSD2, the chronic high dose of GA suppresses mRNA and protein expression of 11-HSD2 possibly via indirect mechanisms. These effects may explain the prolonged symptoms after cessation of GA administration in some pseudoaldosteronism patients. 相似文献
4.
3-Aryl-5-phenyl-(1,2,4)-triazoles were identified as selective inhibitors of 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1). They are active in both in vitro and an in vivo mouse pharmacodynamic (PD) model. The synthesis and structure activity relationships are presented. 相似文献
5.
Several epidemiological and animal studies have shown that the offsprings of diabetic mothers have higher incidences of glucose intolerance, obesity, insulin resistance, and hypertension in later life. It is well known that glucocorticoid metabolism plays a crucial role on several adult disease originated from fetal environment. The aim of this study was to investigate the relation between diabetic pregnancy and glucocorticoid metabolism of both mother and fetus, focusing on the 11 beta-hydroxysteroid dehydrogenase (11beta-HSD) type 2. A model of diabetic pregnancy was made by intravenous injection of streptozotocin (35 mg/kg body weight) to Sprague-Dawley rats, and blood and tissue samples were collected on day 20 of pregnancy. In the diabetic group, expression of 11 beta-hydroxysteroid dehydrogenase type 2 in placentas and fetal kidneys was decreased remarkably. Corticosterone levels of diabetic mothers were lower than those of control rats. Despite the differences in maternal corticosterone levels, fetal levels of corticosterone did not differ between the groups. Our results lend support to the concept that diabetic pregnancy imprints glucocorticoid regulation in these fetuses, which may contribute to their increased incidence of higher blood pressure as adults. 相似文献
6.
11β-Hydroxysteroid dehydrogenase type 1 (11β-HSD1) regulates glucocorticoid action at the pre-receptor stage by converting cortisone to cortisol. 11β-HSD1 is selectively expressed in many tissues including the liver and adipose tissue where metabolic events are important. Metabolic syndrome relates to a number of metabolic abnormalities and currently has a prevalence of >20% in adult Americans. 11β-HSD1 inhibitors are being investigated by many major pharmaceutical companies for type 2 diabetes and other abnormalities associated with metabolic syndrome. In this area of intense interest a number of structural types of 11β-HSD1 inhibitor have been identified. It is important to have an array of structural types as the physicochemical properties of the compounds will determine tissue distribution, HPA effects, and ultimately clinical utility. Here we report the discovery and synthesis of three structurally different series of novel 11β-HSD1 inhibitors that inhibit human 11β-HSD1 in the low micromolar range. Docking studies with 1–3 into the crystal structure of human 11β-HSD1 reveal how the molecules may interact with the enzyme and cofactor and give further scope for structure based drug design in the optimisation of these series. 相似文献
7.
11beta-Hydroxysteroid dehydrogenase type 1 is a homodimer where the carboxyl terminus of one subunit covers the active site of the dimer partner. Based on the crystal structure with CHAPS, the carboxyl terminal tyrosine 280 (Y280) has been postulated to interact with the substrate/inhibitor at the binding pocket of the dimer partner. However, the co-crystal structure with carbenoxolone argues against this role. To clarify and reconcile these findings, here we report our mutagenesis data and demonstrate that Y280 is not involved in substrate binding but rather plays a selective role in inhibitor binding. The involvement of Y280 in inhibitor binding depends on the inhibitor chemical structure. While Y280 is not involved in the binding of carbenoxolone, it is critical for the binding of glycyrrhetinic acid. 相似文献
8.
Macrophage infiltration in obese adipose tissue provokes local inflammation and insulin resistance. Evidence has accumulated that activation of 11beta-HSD1 in adipocytes is critically involved in dysfunction of adipose tissue. However, the potential role of 11beta-HSD1 in macrophages still remains unclear. We here demonstrate that a murine macrophage cell line, J774.1 cells expressed 11beta-HSD1 mRNA and reductase activity, both of which were augmented by lipopolysaccharide (LPS)-induced cell activation. Three kinds of pharmacological inhibition of 11beta-HSD1 in LPS-treated macrophages significantly suppressed the expression and secretion of interleukin 1beta, tumor necrosis factor alpha or monocyte chemoattractant protein 1, thereby highlighting a novel role of 11beta-HSD1 in pro-inflammatory properties of activated macrophages. 相似文献
10.
The inhibition of 11βhydroxysteroid dehydrogenase 1 (11βHSD1), an enzyme that catalyzes the conversion of inactive cortisone to active cortisol, is an attractive target to treat diabetes by suppressing hepatic gluconeogenesis. To test this hypothesis, we developed a novel glucocorticoid-induced diabetic KK mouse model and used 11βHSD1 antisense oligonucleotide (ASO) as an inhibitory tool. KK mice were treated with 25 or 50 mg/kg/day of 11βHSD1 ASO for 28 days. On day 25, cortisone pellets were surgically implanted to induce diabetes. In the ASO-treated mice, plasma blood glucose levels were significantly reduced by up to 54%. In parallel, cortisol and other diabetes endpoints were also significantly reduced. Hepatic 11βHSD1 mRNA was suppressed by up to 84% with a concomitant respective decrease of up to 49% in the expression of PEPCK. The results suggest that inhibition of 11βHSD1 activity reduces the availability of cortisol to activate the glucocorticoid receptor, down regulates gluconeogenesis and thus reduces plasma glucose levels in cortisone-induced diabetic KK mice. 相似文献
11.
ObjectiveKawasaki disease (KD) is a severe inflammatory disease that occurs in childhood. Recently, the initial corticosteroid therapy for KD has been reconsidered because its efficacy is controversial. The aim of this study was to evaluate the dynamic change in endogenous glucocorticoid levels and their relation with 11beta-hydroxysteroid dehydrogenase (11β-HSD) activity in the acute phase of KD. Study designSixteen KD patients were investigated. Cortisol and cortisone levels, the cortisol/cortisone ratio and C-reactive protein (CRP) levels were measured on admission, before the first intravenous immunoglobulin (IVIG) therapy and convalescence. ResultsThe 16 patients were divided into two groups. Group A included patients who received the first IVIG on admission and blood samples were collected before the first IVIG and convalescence. Group B included patients whose blood samples were collected at three different time points (on admission, before the first IVIG, and convalescence). CRP and cortisol levels and the cortisol/cortisol ratio were markedly higher before the first IVIG than those of convalescence in all patients except in one patient. In Group B patients, both serum cortisol levels and the cortisol/cortisone ratio on admission were significantly increased compared with those before the first IVIG (cortisol: p < 0.005, cortisol/cortisone: p < 0.001). ConclusionsDecreases in cortisol levels and the cortisol/cortisone ratio before the first IVIG may be explained by a reduction in adrenal secretion and/or local glucocorticoid action through 11β-HSD activity. These findings suggest that exogenous glucocorticoid treatment in combination with the first IVIG at the acute stage may play a synergetic role in KD. 相似文献
13.
The 11β-hydroxysteroid dehydrogenase isoenzymes (11β-HSD) catalyse the interconversion of cortisol (F) and cortisone (E). Earlier studies demonstrated that growth hormone (GH) and insulin resistance may exert opposite effects on the conversion of E to F by 11β-HSD type 1. Therefore, in the present study we determined F and E concentrations in 562 plasma samples obtained from acromegalic patients during an active phase (76 patients) and after cure of the disease (68 patients). In addition, we examined whether type 2 diabetes mellitus or impaired glucose tolerance, which are frequently associated with active acromegaly could influence plasma F and E levels in these patients. We found that plasma F concentrations were similar in patients with active acromegaly and in those who were cured with pituitary surgery, irradiation and/or medical therapy (mean ± S.E., 12.4 ± 0.3 and 12.7 ± 0.4 μg/dl, respectively). However, plasma E levels were significantly higher in patients with active compared to those with cured acromegaly (2.8 ± 0.1 and 2.2 ± 0.1 μg/dl, respectively; p < 0.001), resulting in a lower F/E ratio in patients with active disease (4.6 ± 0.1 vs. 5.9 ± 0.2 in the cured group of patients; p < 0.001). When the effect of altered carbohydrate homeostasis on plasma F and E was analysed, the results indicated significantly lower plasma E levels and higher F/E ratios in active acromegalic patients with type 2 diabetes mellitus or impaired glucose tolerance compared to those with normal carbohydrate metabolism (E, 2.5 ± 0.1 and 3.0 ± 0.1 μg/dl, respectively; F/E, 5.1 ± 0.2 and 4.4 ± 0.1; p < 0.001), whereas plasma F concentrations were similar in these two groups (12.1 ± 0.4 and 12.6 ± 0.3 μg/dl, respectively). These findings indicate that disease activity exerts a significant impact on 11β-HSD in acromegalic patients, which is further modified with altered carbohydrate homeostasis, frequently present in patients with active disease. 相似文献
14.
11 β-hydroxysteroid dehydrogenase type 1 (11 β-HSD-1) catalyses the interconversion of active corticosterone and inert 11-dehydrocorticosterone. Short-term glucocorticoid excess upregulates 11 β-HSD-1 in liver and hippocampus leading to suggestions that 11 β-HSD-1 ameliorates the deleterious effects of glucocorticoid excess by its 11 β-dehydrogenase activity. However the predominant activity of 11 β-HSD-1 in vivo is 11 β-reduction, thus generating active glucocorticoid. We have re-examined the time-course of glucocorticoid regulation of 11 β-HSD-1 in the liver, hippocampus and kidney of adult male rats in vivo. Sham operation markedly reduced 11β-HSD-1 mRNA expression in all tissues, and reduced 11β-HSD bioactivity in liver and hippocampus when compared to untouched controls. Adrenalectomy reduced 11β-HSD-1 expression in all tissues in the short-term (7 days), followed by subsequent recovery of enzyme activity by 21 days in liver and hippocampus. Dexamethasone replacement of adrenalectomised rats attenuated the initial decrease in hepatic 11β-HSD-1 activity, but by 21 days dexamethasone reduced activity compared to control levels. Thus glucocorticoids regulate 11β-HSD-1 in a complex tissue- and temporal-specific manner. This pattern of regulation suggests glucocorticoids repress 11β-HSD-1 at least in the liver, a pattern of regulation more consistent with the evidence that 11β-HSD-1 is an 11β-reductase in vivo. Operational stress per se down-regulates 11β-HSD-1 which has implications for interpretation and design of in vivo studies of 11β-HSD-1. 相似文献
15.
The present study demonstrates the expression of hexose-6-phosphate dehydrogenase and 11 beta-hydroxysteroid dehydrogenase type 1 in human neutrophils, and the presence and activity of these enzymes in the microsomal fraction of the cells. Their concerted action together with the previously described glucose-6-phosphate transporter is responsible for cortisone-cortisol interconversion detected in human neutrophils. Furthermore, the results suggest that luminal NADPH generation by the cortisol dehydrogenase activity of 11 beta-hydroxysteroid dehydrogenase type 1 prevents neutrophil apoptosis provoked by the inhibition of the glucose-6-phosphate transporter. In conclusion, the maintenance of the luminal NADPH pool is an important antiapoptotic factor in neutrophil granulocytes. 相似文献
16.
The 11beta-hydroxysteroid dehydrogenase type 1 (11betaHSD1) activates glucocorticoids (GC) by reversibly converting 11-keto-GC to 11-hydroxy-GC, while 11betaHSD2 and 11betaHSD3 only catalyzes the reverse reaction. Recently, rat and human 11betaHSDs were shown to interconvert 7alpha- and 7beta-hydroxy-dehydroepiandrosterone (7alpha- or 7beta-OH-DHEA) with 7-oxo-DHEA. We report that pig kidney microsomes (PKMc) and nuclei (PKN) oxidize 7alpha-OH-DHEA to 7-oxo-DHEA at higher rates with NAD+, than with NADP+. Corticosterone (CS), dehydrocoticosterone (DHC), 11alpha- and 11beta-hydroxyprogesterone, and carbenoxolone completely inhibited these reactions, while 7-oxo-DHEA only inhibited the NAD+-dependent reaction. Conversely, CS oxidation was not inhibited by 7alpha-OH-DHEA or 7-oxo-DHEA. PKMc and PKN did not convert 7-oxo-DHEA to 7-OH-DHEA with either NADPH or NADH. Finally, PKN contained a high affinity, NADPH-dependent 11betaHSD that reduces DHC to CS. The GC effects on interconversion of DHEA metabolites may have clinical significance, since DHEA and its 7-oxidized derivatives have been proposed for treatment of human autoimmune and inflammatory disorders. 相似文献
17.
Microdialysis sampling coupled with liquid chromatography/electrospray ionization mass spectrometry (LC/ESI-MS/MS) was used to observe in vitro 11beta-hydroxysteroid dehydrogenase type 1 (HSD1) enzyme-catalyzed conversion of stable-isotope-labeled cortisone to cortisol in liver microsomes from dog, monkey, and human. Experimental conditions that would affect the microdialysis sampling approach including probe length, perfusion fluid flow rate, extraction efficiency (E(d)), substrate concentration, and enzyme reaction conditions were evaluated. Dialysates containing high salt concentrations (>150 mM) were directly assayed using LC/MS/MS without additional sample cleanup. The sensitivity (with lower level of quantitation at 0.1 ng/mL) and selectivity of this assay allowed detection of the enzyme reactants at physiologically relevant levels. The interconversion from M+4 cortisone to M+4 cortisol was detected in dog, human, and monkey liver microsomes. Results show species-specific reaction profiles, with a five times higher conversion rate in dog liver microsomes than in human and monkey liver microsomes. Based on M+4 cortisol production rate obtained using a microdialysis infusion of M+4 cortisone to the microsomes coincubated with a proprietary 11beta-HSD1 inhibitor of different concentrations, the degrees of enzyme inhibition were found to be 40 and 85%, consistent with values obtained by a traditional in vitro incubation method. The microdialysis sampling methodology with LC/MS/MS provided extensive information about 11beta-HSD1 activities in microsomes from different mammalian species. 相似文献
18.
The human 11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1) catalyzes both the NADP(H)-dependent oxido-reduction of cortisol and cortisone and the inter-conversion of 7alpha- and 7beta-hydroxy-dehydroepiandrosterone (DHEA) through a 7-oxo-DHEA intermediate. As shown with human liver and intestine fractions, 7alpha-hydroxy-epiandrosterone (7alpha-hydroxy-EpiA) and 7beta-hydroxy-EpiA were readily inter-converted with no evidence for a 7-oxo-EpiA intermediate. Whether this inter-conversion resulted from action of the 11beta-HSD1 or from an unknown epimerase is unresolved. Furthermore, whether these steroids could inhibit the cortisol-cortisone oxido-reduction remains a question. The recombinant human 11beta-HSD1 was used to test these questions. NADP(+) supplementation only provided the production of 7beta-hydroxy-EpiA out of 7alpha-hydroxy-EpiA with a V(max)/K(M) ratio at 0.1. With NADPH supplementation, both 7alpha-hydroxy-EpiA and 7beta-hydroxy-EpiA were formed in low amounts from 7beta-hydroxy-EpiA and 7alpha-hydroxy-EpiA, respectively. These inter-conversions occurred without a trace of the putative 7-oxo-EpiA intermediate. In contrast, the 7-oxo-EpiA substrate was efficiently reduced into 7alpha-hydroxy-EpiA and 7beta-hydroxy-EpiA, with V(max)/K(M) ratios of 23.6 and 5.8, respectively. Competitive and mixed type inhibitions of the 11beta-HSD1-mediated cortisol oxidation were exerted by 7alpha-hydroxy-EpiA and 7beta-hydroxy-EpiA, respectively. The 11beta-HSD1-mediated cortisone reduction was inhibited in a competitive manner by 7-oxo-EpiA. These findings suggest that the active site of the human 11beta-HSD1 may carry out directly the epimeric transformation of 7-hydroxylated EpiA substrates. The low amounts of these steroids in human do not support a physiological importance for modulation of the glucocorticoid status in tissues. 相似文献
19.
11β-Hydroxysteroid dehydrogenase type 1 (11β-HSD1) plays an important role in regulating the cortisol availability to bind to corticosteroid receptors within specific tissue. Recent advances in understanding the molecular mechanisms of metabolic syndrome indicate that elevation of cortisol levels within specific tissues through the action of 11β-HSD1 could contribute to the pathogenesis of this disease. Therefore, selective inhibitors of 11β-HSD1 have been investigated as potential treatments for metabolic diseases, such as diabetes mellitus type 2 or obesity. Here we report the discovery and synthesis of some 18β-glycyrrhetinic acid (18β-GA) derivatives (2–5) and their inhibitory activities against rat hepatic11β-HSD1 and rat renal 11β-HSD2. Once the selectivity over the rat type 2 enzyme was established, these compounds’ ability to inhibit human 11β-HSD1 was also evaluated using both radioimmunoassay (RIA) and homogeneous time resolved fluorescence (HTRF) methods. The 11-modified 18β-GA derivatives 2 and 3 with apparent selectivity for rat 11β-HSD1 showed a high percentage inhibition for human microsomal 11β-HSD1 at 10 μM and exhibited IC 50 values of 400 and 1100 nM, respectively. The side chain modified 18β-GA derivatives 4 and 5, although showing selectivity for rat 11β-HSD1 inhibited human microsomal 11β-HSD1 with IC 50 values in the low micromolar range. 相似文献
20.
目的观察微量元素铬对糖尿病大鼠糖脂代谢的影响。方法选糖尿病大鼠经灌胃给予有机铬水溶液治疗12周后,分别观察口服有机铬200μg/d及400μg/d的糖尿病大鼠空腹血糖及血脂水平(血清总胆固醇、甘油三酯、低密度脂蛋白和高密度脂蛋白)。实验分为4组:1组为正常对照组;2组为铬200μg/d组;3组为铬400μg/d组;4组为糖尿病对照组。结果有机铬具有明显降低血糖、血清总胆固醇、低密度脂蛋白和甘油三酯及升高高密度脂蛋白的作用(P0.05~P0.01)。结论有机铬能明显改善糖尿病大鼠的糖脂代谢。 相似文献
|