首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Anthropogenic activities, including the intentional releases of fish for enhancing populations (stocking), are recognized as adversely impacting the adaptive potential of wild populations. Here, the genetic characteristics of European barbel Barbus barbus were investigated using 18 populations in England, where it is indigenous to eastern‐flowing rivers and where stocking has been used to enhance these populations. Invasive populations are also present in western‐flowing rivers following introductions of translocated fish. Two genetic clusters were evident in the indigenous range, centered on catchments in northeast and southeast England. However, stocking activities, including the release of hatchery‐reared fish, have significantly reduced the genetic differentiation across the majority of this range. In addition, in smaller indigenous rivers, populations appeared to mainly comprise fish of hatchery origin. In the nonindigenous range, genetic data largely aligned to historical stocking records, corroborating information that one particular river (Kennet) in southeast England was the original source of most invasive B. barbus in England. It is recommended that these genetic outputs inform management measures to either restore or maintain the original genetic diversity of the indigenous rivers, as this should help ensure populations can maintain their ability to adapt to changing environmental conditions. Where stocking is considered necessary, it is recommended that only broodstock from within the catchment is used.  相似文献   

2.
SUMMARY 1. The freshwater prawn, Macrobrachium australiense (Decapoda: Palaemonidae), is an abundant species throughout the rivers of western Queensland, and it is thought to have effective dispersal capabilities. Given the very low topographical relief of the western Queensland landscape and the vast nature of episodic flooding, it was predicted that widespread dispersal in this species would occur within, and possibly between the four major catchments of the region: the Darling, Bulloo, Cooper and Diamantina. We analysed eight polymorphic allozyme systems and a fragment of the cytochrome c oxidase subunit 1 (COI) mitochondrial DNA (mtDNA) gene to determine the extent of recent and historical patterns of dispersal at nested spatial scales, within and between catchments.
2. Large and significant levels of allozyme and mtDNA differentiation were revealed among all catchments, indicating that dispersal of M. australiense does not occur across catchment boundaries, although this species is reportedly capable of overland movement. In contrast, no significant patterns of genetic differentiation were resolved between major subcatchments of the Darling and Cooper, or between sites within these subcatchments, indicating that populations of M. australiense are panmictic within catchments.
3. The MtDNA data resolved two divergent and reciprocally monophyletic clades, with the first representing the Darling catchment, and the second corresponding to the Bulloo, Cooper and Diamantina catchments. We postulate that extreme variation in historical climatic patterns and palaeohydrologic conditions played an important role in shaping the population structure of M. australiense throughout western Queensland during the Quaternary.  相似文献   

3.
Noble crayfish (Astacus astacus L.), the most highly valued freshwater crayfish in Europe, is threatened due to a long-term population decline caused mainly by the spread of crayfish plague. Reintroduction of the noble crayfish into restored waters is a common practice but the geographic and genetic origin of stocking material has rarely been considered, partially because previous genetic studies have been hampered by lack of nuclear gene markers with known inheritance. This study represents the first large scale population genetic survey of the noble crayfish (633 adults from 18 locations) based on 10 newly developed microsatellite markers. We focused primarily on the Baltic Sea area (Estonia, Finland and Sweden) where the largest proportion of the remaining populations exists. To allow comparisons, samples from the Black Sea catchment (the Danube drainage) were also included. Two highly differentiated population groups were identified corresponding to the Baltic Sea and the Black Sea catchments, respectively. The Baltic Sea catchment populations had significantly lower genetic variation and private allele numbers than the Black Sea catchment populations. Within the Baltic Sea area, a clear genetic structure was revealed with population samples corresponding well to their geographic origin, suggesting little impact of long-distance translocations. The clear genetic structure strongly suggests that the choice of stocking material for re-introductions and supplemental releases needs to be based on empirical genetic knowledge.  相似文献   

4.
Population genetic theory has identified several threats to small populations that have the potential to endanger species in the short and long term. Understanding these threats is particularly pertinent when management actions, such as stocking, have the potential to exacerbate them. In this study we explore existing genetic variation in the threatened Mary River Cod, Maccullochella mariensis, which has had a long stocking history in its endemic populations (Mary River and Tinana–Coondoo Creek) and has been translocated into other catchments in Southeast Queensland (SEQ). Using Bayesian clustering analysis, two genetically distinct sub-populations were detected (Mary and SEQ vs. Tinana–Coondoo), despite decades of stocking from one population (Tinana–Coondoo) into the other (Mary). Overall, genetic diversity (1–9 alleles per locus) and N e (18–56) were low, but bigger in the Mary, relative to Tinana–Coondoo. Interestingly, evidence for historical unidirectional gene flow from Tinana–Coondoo into the Mary was detected, which was not as strongly reflected using contemporary estimators, suggesting stocking has not dramatically altered the existing genetic structure for this species. These results provide an opportunity for managers to strategically design stocking protocols and to improve the condition of this species in the wild.  相似文献   

5.
Summary We used digital map overlays in a geographical information system (GIS) to quantify the potential impact of dryland salinity on the threatened flora and fauna of New South Wales (NSW). Geographical areas of conservation priority were identified based on richness of threatened species with distribution records overlapping dryland salinity. Two alternative schemes – Interim Biogeographical Regionalization for Australia (regions) and catchment boundaries (catchments) – were used to subdivide NSW. Sydney Basin, North Coast and South-western Slopes regions – and Hunter, Sydney, Macquarie, Murrumbidgee and Lachlan catchments – were identified as priority areas with more than 10 salinity-overlap species present. Five threatened plant species were identified as priority species due to more than half of their known distributions overlapping areas of dryland salinity. Threatened animal species of most concern had 10–50% of their records overlapping areas of dryland salinity. Our findings demonstrate that landscape exposure to dryland salinity should be used in conjunction with total richness of threatened species for prioritizing conservation of geographical areas with respect to the potential impact of dryland salinity on threatened species.  相似文献   

6.
Common carp Cyprinus carpio were introduced into Australia on several occasions and are now the dominant fish in the Murray-Darling Basin (MDB), the continent's largest river system. In this study, variability at 14 microsatellite loci was examined in C. carpio ( n = 1037) from 34 sites throughout the major rivers in the MDB, from 3 cultured populations, from Prospect Reservoir in the Sydney Basin and from Lake Sorrell in Tasmania. Consistent with previous studies, assignment testing indicated that the Boolara, Yanco and koi strains of C. carpio are present in the MDB. Unique to this study, however, the Prospect strain was widely distributed throughout the MDB. Significant genetic structuring of populations (Fisher's exact test, AMOVA and distribution of the different strains) amongst the MDB sub-drainages was detected, and was strongly associated with contemporary barriers to dispersal and population history. The distributions of the strains were used to infer the history of introduction and spread of C. carpio in the MDB. Fifteen management units are proposed for control programmes that have high levels of genetic diversity, contain multiple interbreeding strains and show no evidence of founder effects or recent population bottlenecks.  相似文献   

7.
Genetic variation plays a pivotal role in species viability and the maintenance of population genetic variation is a main focus of conservation biology. Threatened species often show reduced genetic variation compared to non-threatened species, and this is considered indicative of lowered evolutionary potential, compromised reproductive fitness, and elevated extinction risk. The southern purple-spotted gudgeon, Mogurnda adspersa, is a small freshwater fish with poor dispersal potential that was once common throughout the Murray–Darling Basin (MDB) and along the central east coast of Australia. Its numbers and distribution have shrunk dramatically in the MDB due to flow alteration, degradation of habitat, decreasing water quality, and introduction of alien species. We used microsatellite DNA markers to assess population structure and genetic variation at both large (i.e. across basin) and fine (i.e. within river catchments) spatial scales using a substantial sampling effort across the species range (n = 579 individuals; 35 localities). The results consistently indicated very low levels of genetic variation throughout, including along the east coast where the species is relatively common. At the broader scale, three highly differentiated groups of populations were found, concordant with previously reported genealogical distinctiveness. Hence we propose each group as a distinct Evolutionarily Significant Unit. We also inferred a minimum of 12 management units in M. adspersa, with no appreciable gene flow between them. Our study discloses findings relevant for both long- and short-term management, as it informs on the geographic context in which conservation priorities should be defined and specifies biological units for population monitoring and translocations.  相似文献   

8.
Studies examining population structure and genetic diversity of benthic marine invertebrates in the Southern Ocean have emerged in recent years. However, many taxonomic groups remain largely unstudied, echinoderms being one conspicuous example. The brittle star Astrotoma agassizii is distributed widely throughout Antarctica and southern South America. This species is a brooding echinoderm and therefore may have limited dispersal capacity. In order to determine the effect of hypothesized isolating barriers in the Southern Ocean, such as depth, geographic distance, and the polar front, 2 mitochondrial DNA markers were used to compare populations from the South American and Antarctic continental shelves. Astrotoma agassizii was shown to be genetically discontinuous across the polar front. In fact, populations previously assumed to be panmictic instead represent 3 separate lineages that lack morphological distinction. However, within lineages, genetic continuity was displayed across a large geographic range (>500 km). Therefore, despite lacking a pelagic larval stage, A. agassizii can disperse across substantial geographic distance within continental shelf regions. These results indicate that geographic distance alone may not be a barrier to dispersal, but rather the combined effects of distance, depth, and the polar front act to prevent gene flow between A. agassizii populations in the Southern Ocean.  相似文献   

9.
We assess the population genetic structure of the invasive riparian weed Impatiens glandulifera, and where possible, determine whether natural or anthropogenic dispersal best explains the observed patterns. Results are compared with a similar contemporary analysis for Heracleum mantegazzianum undertaken in the same catchments, and we suggest that some of the observed differences in genetic structure could be because of life history differences between these species. Our results confirm the importance of at least occasional dispersal events mediated by human activity in the colonisation and subsequent spread of invasive plants in river catchments. However, processes related to river structure, dispersal range and genetic drift also appear to be structuring these populations over short temporal scales. The implication is that local populations can be established as small founders, and therefore eradication programs need to be thorough and undertaken at the catchment scale. Effective management needs to consider the natural spread of riparian species along rivers, but also prevent long-distance dispersal from sources outside the catchment. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

10.
11.
Catchment population structure and divergence patterns of the rainbow darter Etheostoma caeruleum (Percidae: Teleostei), an eastern North American benthic fish, are tested using a landscape genetics approach. Allelic variation at eight nuclear DNA microsatellite loci and two mitochondrial DNA regions [cytochrome (cyt) b gene and control region; 2056 aligned base pairs (bp)] is analysed from 89 individuals and six sites in the Lake Erie catchment (Blanchard, Chagrin, Cuyahoga and Grand Rivers) v. the Ohio River catchment (Big Darby Creek and Little Miami River). Genetic and geographic patterning is assessed using phylogenetic trees, pair‐wise FST analogues, AMOVA partitioning, Mantel regression, Bayesian assignment, 3D factorial correspondence and barrier analyses. Results identify 34 cyt b haplotypes, 22 control region haplotypes and 137 microsatellite alleles whose distributions demonstrate marked genetic divergence between populations from the Lake Erie and Ohio River catchments. Etheostoma caeruleum populations in the Lake Erie and Ohio River catchments diverged c. 1·6 mya during the Pleistocene glaciations. Greater genetic separations characterize the Ohio River populations, reflecting their older habitat age and less recent connectivity. Divergence levels within the Lake Erie catchment denote more recent post‐glacial origins. Notably, the western Lake Erie Blanchard River population markedly differs from the three central basin tributary samples, which are each genetically distinguishable using microsatellites. Overall relationships among the Lake Erie sites refute a genetic isolation by geographic distance hypothesis. Etheostoma caeruleum populations thus exchange few genes and have low migration among tributaries and catchments.  相似文献   

12.
13.
Vertebrate populations at the periphery of their range can show pronounced genetic drift and isolation, and therefore offer unique challenges for conservation and management. These populations are often candidates for management actions such as translocations that are designed to improve demographic and genetic integrity. This is particularly true of coldwater species like brook trout (Salvelinus fontinalis), whose numbers have declined greatly across its historic range. At the southern margin, remnant wild populations persist in isolated headwater streams, and many have a history of receiving translocated individuals through either stocking of hatchery reared fish, relocation of wild fish, or both during restoration attempts. To determine current genetic integrity and resolve the genetic effects of past management actions for brook trout populations in SC, USA, we genetically assessed all 18 documented remaining brook trout populations along with individuals acquired from six hatcheries with recorded stocking events in SC. Our results indicated that six of the 18 streams showed signs of hatchery admixture (range 57–97%) and restored patches retained genetic signatures from multiple source populations. Populations had among the lowest genetic diversity (min average HE?=?0.147) and effective number of breeders (mean Nb?=?31.2) estimates observed throughout the native brook trout range. Populations were highly differentiated (mean pair-wise FST?=?0.396), and substantial genetic divergence was evident across major river drainages (max pair-wise FST?=?0.773). The lowest local genetic diversity and highest genetic differentiation ever reported for this species make its conservation a challenging task, particularly when combined with other threats such as climate change and non-native species. We offer recommendations on managing peripheral populations with depleted genetic characteristics and provide a reference for determining which existing populations will best serve as sources for future translocation efforts aimed at enhancing or restoring wild brook trout genetic integrity.  相似文献   

14.
The platypus, Ornithorhynchus anatinus is a unique, iconic mammal endemic to Australia. Despite being listed as ‘common’ throughout its range, platypus abundance is poorly understood. Dependence on aquatic habitats in Australia renders this species potentially vulnerable to a variety of processes including drought, climate change and habitat loss. To assist with understanding population processes, 180 individuals from Tasmania and Victoria were characterised across thirteen microsatellite loci. Large genetic differences were evident between Tasmanian and Victorian O. anatinus. Within Tasmania, high levels of allelic diversity were detected with genetic differentiation identified among some populations. Similarly, allelic diversity was high within Victorian platypuses, along with significant genetic differentiation among populations. The large genetic differences found between Tasmanian and mainland platypuses indicate long-term isolation and it is likely that the lack of past/present catchment connectedness contributes to differentiation found between populations within these regions. Understanding patterns of genetic differentiation within and between catchments will help guide future conservation management decisions for platypus.  相似文献   

15.
Using genetic techniques (mtDNA, microsatellites and allozymes), this study investigated patterns of gene flow in two plotosid catfish species ( Neosilurus hyrtlii and Porochilus argenteus ), at various hierarchical scales in the dryland rivers of western Queensland, Australia. The study area constituted two major catchments, Cooper and Darling, representing arid and semiarid systems, respectively. Results generally conformed to expectations, with high levels of gene flow observed within catchments and limited contemporary gene flow evident across catchment boundaries. However, the isolation between catchments was more recent than expected, occurring approximately 40 000–72 000 years ago. Also contrary to predictions, genetic structure within the Cooper catchment did not fit the stream hierarchy model of genetic differentiation, which there was evidence of in the Darling catchment. This was hypothesized to relate to the different climatic regimes and hydrological inputs in each system, leading to a more genetically homogeneous system in the Cooper than in the Darling system.  © 2006 The Linnean Society of London, Biological Journal of the Linnean Society , 2006, 87 , 457–467.  相似文献   

16.
Commercial sealing in the 18th and 19th centuries had a major impact on the Antarctic and subantarctic fur seal populations (Arctocephalus gazella and A. tropicalis) in the Southern Ocean. The intensive and unrestricted nature of the industry ensured substantial reductions in population sizes and resulted in both species becoming locally extinct at some sites. However, both species are continuing to recover, through the recolonization of islands across their former range and increasing population size. This study investigated the extent and pattern of genetic variation in each species to examine the hypothesis that higher levels of historic sealing in A. gazella have resulted in a greater loss of genetic variability and population structure compared with A. tropicalis. A 316-bp section of the mitochondrial control region was sequenced and revealed nucleotide diversities of 3.2% and 4.8% for A. gazella and A. tropicalis, respectively. There was no geographical distribution of lineages observed within either species, although the respective PhiST values of 0.074 and 0.19 were significantly greater than zero. These data indicate low levels of population structure in A. gazella and relatively high levels in A. tropicalis. Additional samples screened with restriction endonucleases were incorporated, and the distribution of restriction fragment length polymorphism (RFLP) and sequence haplotypes were examined to identify the main source populations of newly recolonized islands. For A. tropicalis, the data suggest that Macquarie Island and Iles Crozet were probably recolonized by females from Marion Island, and to a lesser extent Ile Amsterdam. Although there was less population structure within A. gazella, there were two geographical regions identified: a western region containing the populations of South Georgia and Bouvetoya, which were the probable sources for populations at Marion, the South Shetland and Heard Islands; and an eastern region containing the panmictic populations of Iles Kerguelen and Macquarie Island. The latter region may be a result of a pronounced founder effect, or represent a remnant population that survived sealing at Iles Kerguelen.  相似文献   

17.
Supportive breeding and stocking performed with non‐native or domesticated fish to support sport fishery industry is a common practice throughout the world. Such practices are likely to modify the genetic integrity of natural populations depending on the extent of genetic differences between domesticated and wild fish and on the intensity of stocking. The purpose of this study is to assess the effects of variable stocking intensities on patterns of genetic diversity and population differentiation among nearly 2000 brook charr (Salvelinus fontinalis) from 24 lakes located in two wildlife reserves in Québec, Canada. Our results indicated that the level of genetic diversity was increased in more intensively stocked lakes, mainly due to the introduction of new alleles of domestic origin. As a consequence, the population genetic structure was strongly homogenized by intense stocking. Heavily stocked lakes presented higher admixture levels and lower levels of among lakes genetic differentiation than moderately and un‐stocked lakes. Moreover, the number of stocking events explained the observed pattern of population genetic structure as much as hydrographical connections among lakes in each reserve. We discuss the implications for the conservation of exploited fish populations and the management of stocking practices.  相似文献   

18.
While the stocking of captive‐bred fish has been occurring for decades and has had substantial immediate genetic and evolutionary impacts on wild populations, its long‐term consequences have only been weakly investigated. Here, we conducted a spatiotemporal analysis of 1428 Atlantic salmon sampled from 1965 to 2006 in 25 populations throughout France to investigate the influence of stocking on the neutral genetic structure in wild Atlantic salmon (Salmo salar) populations. On the basis of the analysis of 11 microsatellite loci, we found that the overall genetic structure among populations dramatically decreased over the period studied. Admixture rates among populations were highly variable, ranging from a nearly undetectable contribution from donor stocks to total replacement of the native gene pool, suggesting extremely variable impacts of stocking. Depending on population, admixture rates either increased, remained stable, or decreased in samples collected between 1998 and 2006 compared to samples from 1965 to 1987, suggesting either rising, long‐lasting or short‐term impacts of stocking. We discuss the potential mechanisms contributing to this variability, including the reduced fitness of stocked fish and persistence of wild locally adapted individuals.  相似文献   

19.
1. Habitat fragmentation has been implicated as a primary cause for the ongoing erosion of global biodiversity, yet our understanding of the consequences in lotic systems is limited for many species and regions. Because of harsh environmental conditions that select for high colonisation rates, prairie stream fishes may be particularly vulnerable to the effects of fragmentation. Hence, there is urgent need for broader understanding of fragmentation in prairie streams such that meaningful conservation strategies can be developed. Further, examination at large spatial scales, including multiple impoundments and un‐impounded catchments, will help identify the spatial extent of species movement through the landscape. 2. Our study used data from 10 microsatellite loci to describe the genetic structure of creek chub (Semotilus atromaculatus) populations across four catchments (three impounded and one un‐impounded) in the Kansas River basin. We investigated whether genetic diversity was eroded in response to habitat fragmentation imposed by reservoirs and whether intervening lentic habitat increased resistance to dispersal among sites within a catchment. 3. Our analyses revealed that genetic diversity estimates were consistent with large populations regardless of the location of the sampled tributaries, and there was little evidence of recent population reductions. Nevertheless, we found a high degree of spatial genetic structure, suggesting that catchments comprise a set of isolated genetic units and that sample sites within catchments are subdivided into groups largely defined by intervening habitat type. Our data therefore suggest that lentic habitat is a barrier to dispersal among tributaries, thus reducing the opportunity for genetic rescue of populations in tributaries draining into reservoirs. Isolation by a reservoir, however, may not be immediately deleterious if the isolated tributary basin supports a large population.  相似文献   

20.
The population genetic structure of an invasive, nonindigenous riparian weed (Heracleum mantegazzianum) in the northeast of England was investigated using microsatellite DNA markers. Data were used to assess the size and frequency of introductions into three catchments and the subsequent spread. We sampled 13 populations, including a remote population (Perivale, London) for comparison. Five loci were screened and considerable variation was found. Results revealed greater overall variation between populations from different catchments than those in the same catchment, and suggested the generation of population structure in the relatively short time since the initial introduction. Between-catchment variation may reflect population structure generated by local founders as the species spread and may indicate a large initial founder population at the time of the introduction into Britain, or multiple introductions. Within-catchment variation was consistent with expectations based on the water-borne dispersal of seeds in this species, and the relatively small dispersal range of likely pollinators. Independent introductions stand out in some cases as exceptions to the general pattern. Taken together the results are consistent with a relatively large initial founder population, and the subsequent spread of the species in local founder populations, followed by some level of inbreeding within local populations and novel introductions in some localities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号