首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
M Szabó  J Kiss  G Kótány  F Olasz 《Plasmid》1999,42(3):192-209
In the present study we report on the excision of IS30 elements and IS30-derived composite transposons. Frequent loss of IS30 was observed during dissolution of dimeric IS30 structures, containing IR-IR junctions, leading to resealed donor molecules. In contrast, unambiguous transpositional excision resulting in resealed remainder products could not be identified in the case of a monomeric element. The bias in the excision of monomeric and dimeric IS30 structures indicates a difference in the molecular mechanism of transposition of IS30 monomers and dimers. Sequence data on the rarely detected plasmids missing full IS or Tn copies rather suggest that all products were derived from illegitimate recombination. The reaction occurred between short homologies and was independent of the transposase activity. Similar IS30 excision events accompanied by multiple plasmid or genome rearrangements were detected in Pseudomonas putida and Rhizobium meliloti, yielding stable replicons that retained the selective marker gene of the transposon. We provide evidence that both transposition and illegitimate recombination can contribute to the stabilization of replicons through the elimination of IS elements, which emphasizes the evolutionary significance of these events.  相似文献   

2.
Using a combined in vivo and in vitro approach, we demonstrated that the transposition products generated by IS911 from a dimeric donor plasmid are different from those generated from a plasmid monomer. When carried by a monomeric plasmid donor, free IS911 transposon circles are generated by intra-IS recombination in which one IS end undergoes attack by the other. These represent transposition intermediates that undergo integration using the abutted left (IRL) and right (IRR) ends of the element, the active IRR-IRL junction, to generate simple insertions. In contrast, the two IS911 copies carried by a dimeric donor plasmid not only underwent intra-IS recombination to generate transposon circles but additionally participated in inter-IS recombination. This also creates an active IRR-IRL junction by generating a head-to-tail IS tandem dimer ([IS]2) in which one of the original plasmid backbone copies is eliminated in the formation of the junction. Both transposon circles and IS tandem dimers are generated from an intermediate in which two transposon ends are retained by a single strand joint to generate a figure 8 molecule. Inter-IS figure 8 molecules generated in vitro could be resolved into the [IS]2 form following introduction into a host strain by transformation. Resolution did not require IS911 transposase. The [IS]2 structure was stable in the absence of transposase but was highly unstable in its presence both in vivo and in vitro. Previous studies had demonstrated that the IRR-IRL junction promotes efficient intermolecular integration and intramolecular deletions both in vivo and in vitro. Integration of the [IS]2 derivative would result in a product that resembles a co-integrate structure. It is also shown here that the IRR-IRL junction of the [IS]2 form and derivative structures can specifically target one of the other ends in an intramolecular transposition reaction to generate transposon circles in vitro. These results not only demonstrate that IS911 (and presumably other members of the IS3 family) is capable of generating a range of transposition products, it also provides a mechanistic framework which explains the formation and activity of such structures previously observed for several other unrelated IS elements. This behaviour is probably characteristic of a large number of IS elements.  相似文献   

3.
C Sengstag  J C Shepherd    W Arber 《The EMBO journal》1983,2(10):1777-1781
A restriction fragment of the bacteriophage P1 genome known to serve as a hot target for IS2 insertion in its host, Escherichia coli K12, was entirely sequenced. It is 1756 bp long and it contains four long open reading frames, all in the same orientation. The two middle frames overlap partially. Eight of the nine studied IS2 insertions affecting phage reproduction map within three of these reading frames. No common feature was found between the nine target sites which have served for IS2 integration. However, there are two structural elements which might possibly contribute to rendering the studied DNA segment a hot region for IS2 insertion. The first is formed by two neighbouring, 30 and 40 bp regions of homology with an internal segment of IS2. The second is the pentanucleotide 5' GGTAT3', which is carried nine times in the sequenced fragment and which is found always in at least one copy within a variable distance of less than 100 bp of each inserted IS2 element.  相似文献   

4.
IS30 is an insertion element common in E. coli strains but rare or absent in Salmonella. Transfer of the IS30-flanked transposon Tn2700 to Salmonella typhimurium was assayed using standard delivery procedures of bacterial genetics (conjugation and transduction). Tn2700 'hops' were rare and required transposase overproduction, suggesting the existence of host constraints for IS30 activity. Sequencing of three Tn2700 insertions in the genome of S. typhimurium revealed that the transposon had been inserted into sites with a low homology to the IS30 consensus target, suggesting that inefficient Tn2700 transposition to the Salmonella genome might be caused by a lack of hotspot targets. This view was confirmed by the introduction of an IS30 'hot target sequence', whose sole presence permitted Tn2700 transposition without transposase overproduction. Detection of IS30-induced DNA rearrangements in S. typhimurium provided further evidence that the element undergoes similar activities in E. coli and S. typhimurium. Thus, hotspot absence may be the main (if not the only) limitation for IS30 activity in the latter species. If these observations faithfully reproduce the scenario of natural populations, establishment of IS30 in the Salmonella genome may have been prevented by a lack of DNA sequences closely related to the unusually long (24 bp) IS30 consensus target.  相似文献   

5.
We have analysed the transposition and target selection strategy of IS1655, a typical IS30 family member resident in Neisseria meningitidis. We have redefined IS1655 as a 1080 bp long element with 25 bp imperfect inverted repeats (IRs), which generates a 3 bp target duplication and have shown that it transposes using an intermediate with abutted IRs separated by 2 bp. IS1655 exhibits bipartite target specificity inserting preferentially either next to sequences similar to its IRs or into an unrelated but well defined sequence. IR-targeting leads to the formation of a new junction in which the targeted IR and one of the donor IRs are separated by 2 bp. The non-IR targets were characterized as an imperfect 19 bp palindrome in which the central five positions show slight GC excess and the distal region is AT-rich. Artificial targets designed according to the consensus were recognized by the element as hot spots for insertion. The organization of IS1655 is similar to that of other IS30 family members. Moreover, it shows striking similarity to IS30 in transposition strategy even though their transposases differ in their N-terminal regions, which, for IS30, appears to determine target specificity. Comparative analysis of the transposases and the evolutionary aspects of sequence variants are also briefly discussed.  相似文献   

6.
The most commonly used DNA transfection method, which employs the calcium phosphate co-precipitation of the donor DNA, involves several discrete steps (1,2). These include the uptake of the donor DNA by the recipient cells, the transport of the DNA to the nucleus, transient expression prior to integration into the host cell genome, concatenation and integration of the transfected DNA into the host cell genome and finally the stable expression of the integrated genes (2,3). Both the concatenation and the integration of the donor DNA into the host genome involve the formation and ligation of DNA strand-breaks. In the present study we demonstrate that the nuclear enzyme, adenosine diphosphoribosyl transferase (ADPRT, E.C. 2.4.2.30), which is dependent on the presence of DNA strand breaks for its activity (4,5) and necessary for the efficient ligation of DNA strand-breaks in eukaryotic cells (4,6), is required for the integration of donor DNA into the host genome. However, ADPRT activity does not influence the uptake of DNA into the cell, its episomal maintenance or replication, nor its expression either before or after integration into the host genome. These observations strongly suggest the involvement of ADPRT activity in eukaryotic DNA recombination events.  相似文献   

7.
F Olasz  T Farkas  J Kiss  A Arini    W Arber 《Journal of bacteriology》1997,179(23):7551-7558
In the present study, we demonstrate that the terminal inverted repeats of the Escherichia coli insertion sequence IS30 are functional target sites for the transposition of the (IS30)2 dimer, which represents an intermediate structure in the transposition of IS30. Comparative analysis of various target regions revealed that the left and right ends differ in their "attractivity." In our experiments, the joined left and right ends, i.e., the (IS30)2 intermediate structure, was found to be the most preferred target. It was also shown that flanking sequences can influence the target activity of the terminal repeats. The functional part of the target region was localized in the inverted repeats by means of mutational analysis, and it corresponds to the binding site of IS30 transposase. Insertion of 1 bp into the right inverted repeat resulted in unusual target duplication accompanied by gene conversion. The choice of the terminal inverted repeats as targets in transposition leads to the reconstruction of the (IS30)2 structure, which may induce a cascade of further rearrangements. Therefore, this process can play a role in the evolution of the genome.  相似文献   

8.
Replication of retroviruses requires integration of the linear viral DNA genome into the host chromosomes. Integration requires the viral integrase (IN), located in high-molecular-weight nucleoprotein complexes termed preintegration complexes (PIC). The PIC inserts the two viral DNA termini in a concerted manner into chromosomes in vivo as well as exogenous target DNA in vitro. We reconstituted nucleoprotein complexes capable of efficient concerted (full-site) integration using recombinant wild-type human immunodeficiency virus type I (HIV-1) IN with linear retrovirus-like donor DNA (480 bp). In addition, no cellular or viral protein cofactors are necessary for purified bacterial recombinant HIV-1 IN to mediate efficient full-site integration of two donor termini into supercoiled target DNA. At about 30 nM IN (20 min at 37 degrees C), approximately 15 and 8% of the input donor is incorporated into target DNA, producing half-site (insertion of one viral DNA end per target) and full-site integration products, respectively. Sequencing the donor-target junctions of full-site recombinants confirms that 5-bp host site duplications have occurred with a fidelity of about 70%, similar to the fidelity when using IN derived from nonionic detergent lysates of HIV-1 virions. A key factor allowing recombinant wild-type HIV-1 IN to mediate full-site integration appears to be the avoidance of high IN concentrations in its purification (about 125 microg/ml) and in the integration assay (<50 nM). The results show that recombinant HIV-1 IN may not be significantly defective for full-site integration. The findings further suggest that a high concentration or possibly aggregation of IN is detrimental to the assembly of correct nucleoprotein complexes for full-site integration.  相似文献   

9.
Cut-and-paste (simple insertion) and replicative transposition pathways are the two classical paradigms by which transposable elements are mobilized. A novel variation of cut and paste, a two-step transposition cycle, has recently been proposed for insertion sequences of the IS3 family. In IS2 this variation involves the formation of a circular, putative transposition intermediate (the minicircle) in the first step. Two aspects of the minicircle may involve its proposed role in the second step (integration into the target). The first is the presence of a highly reactive junction formed by the two abutted ends of the element. The second is the assembly at the minicircle junction of a strong hybrid promoter which generates higher levels of transposase. In this report we show that IS2 possesses a highly reactive minicircle junction at which a strong promoter is assembled and that the promoter is needed for the efficient completion of the pathway. We show that the sequence diversions which characterize the imperfect inverted repeats or ends of this element have evolved specifically to permit the formation and optimal function of this promoter. While these sequence diversions eliminate catalytic activity of the left end (IRL) in the linear element, sufficient sequence information essential for catalysis is retained by the IRL in the context of the minicircle junction. These data confirm that the minicircle is an essential intermediate in the two-step transposition pathway of IS2.  相似文献   

10.
Target specificity of insertion element IS30   总被引:2,自引:2,他引:0  
The Escherichia coli resident mobile element IS 30 has pronounced target specificity. Upon transposition, the element frequently inserts exactly into the same position of a preferred target sequence. Insertion sites in phages, plasmids and in the genome of E. coli are characterized by an exceptionally long palindromic consensus sequence that provides strong specificity for IS 30 insertions, despite a relatively high level of degeneracy. This 24-bp-long region alone determines the attractiveness of the target DNA and the exact position of IS 30 insertion. The divergence of a target site from the consensus and the occurrence of 'non-permitted' bases in certain positions influence the target activity. Differences in attractiveness are emphasized if two targets are present in the same replicon, as was demonstrated by quantitative analysis. In a system of competitive targets, the oligonucleotide sequence representing the consensus of genomic IS 30 insertion sites proved to be the most efficient target. Having compared the known insertion sites, we suppose that IS 30 -like target specificity, which may represent an alternative strategy in target selection among mobile elements, is characteristic of the insertion sequences IS 3 , IS 6 and IS 21 , too.  相似文献   

11.
J. Bender  J. Kuo    N. Kleckner 《Genetics》1991,128(4):687-694
Tn10 and IS10 transpose by a nonreplicative mechanism in which the transposon is excised from the donor molecule and integrated into a target DNA site, leaving behind a break at the original donor site. The fate of this broken donor DNA molecule is not known. We describe here two experiments that address this issue. One experiment demonstrates that a polar IS10 element gives rise to polarity-relief revertants at less than 1% the frequency of transposition of the same element in the same culture. In a second experiment, transpositions of an IS10 element from one site in the bacterial genome to another are selected and the resulting isolates examined for alterations at the donor site; none of 1088 such isolates exhibited a detectable change at the donor locus. These results are compatible with two possible fates of the transposon donor molecule: degradation (``donor suicide'), or restoration of the original information at the donor site by a recombinational repair mechanism analogous to double-strand break repair. These results argue against the possibility that the donor molecule gap is simply resealed by intramolecular rejoining.  相似文献   

12.
We report the efficient concerted integration of a linear virus-like DNA donor into a 2.8 kbp circular DNA target by integrase (IN) purified from avian myeloblastosis virus. The donor was 528 bp, contained recessed 3' OH ends, was 5' end labeled, and had a unique restriction site not found in the target. Analysis of concerted (full-site) and half-site integration events was accomplished by restriction enzyme analysis and agarose gel electrophoresis. The donor also contained the SupF gene that was used for genetic selection of individual full-site recombinants to determine the host duplication size. Two different pathways, involving either one donor or two donor molecules, were used to produce full-site recombinants. About 90% of the full-site recombinants were the result of using two donor molecules per target. These results imply that juxtapositioning an end from each of two donors by IN was more efficient than the juxtapositioning of two ends of a single donor for the full-site reaction. The formation of preintegration complexes containing integrase and donor on ice prior to the addition of target enhanced the full-site reaction. After a 30 min reaction at 37 degrees C, approximately 20-25% of all donor/target recombinants were the result of concerted integration events. The efficient production of full-site recombinants required Mg2+; Mn2+ was only efficient for the production of half-site recombinants. We suggest that these preintegration complexes can be used to investigate the relationships between the 3' OH trimming and strand transfer reactions.  相似文献   

13.
Three new insertion elements, ISMbov1, ISMbov2 and ISMbov3, which are closely related to ISMag1 (Mycoplasma agalactiae), ISMmy1 and IS1634 (both Mycoplasma mycoides subsp. mycoides SC), respectively, have been discovered in Mycoplasma bovis, an important pathogen of cattle. Southern blotting showed that the genome of M. bovis harbours 6-12 copies of ISMbov1, 11-15 copies of ISMbov2 and 4-10 copies of ISMbov3, depending on the strain. A fourth insertion element, the IS30-like element, is present in 4-8 copies. This high number of IS elements in M. bovis, which represent a substantial part of its genome, and their relatedness with IS elements of both M. agalactiae and M. mycoides subsp. mycoides SC suggest the occurrence of two evolutionary events: (i) a divergent evolution into M. agalactiae and M. bovis upon infection of different hosts; (ii) a horizontal transfer of IS elements during co-infection with M. mycoides subsp. mycoides SC and M. bovis of a same bovine host.  相似文献   

14.
Analysis of one of the regions of catabolic plasmid pP51 which encode chlorobenzene metabolism of Pseudomonas sp. strain P51 revealed that the tcbA and tcbB genes for chlorobenzene dioxygenase and dehydrogenase are located on a transposable element, Tn5280. Tn5280 showed the features of a composite bacterial transposon with iso-insertion elements (IS1066 and IS1067) at each end of the transposon oriented in an inverted position. When a 12-kb HindIII fragment of pP51 containing Tn5280 was cloned in the suicide donor plasmid pSUP202, marked with a kanamycin resistance gene, and introduced into Pseudomonas putida donor plasmid pSUP202, marked with a kanamycin resistance gene, and introduced into Pseudomonas putida KT2442, Tn5280 was found to transpose into the genome at random and in single copy. The insertion elements IS1066 and IS1067 differed in a single base apir located in the inner inverted repeat and were found to be highly homologous to a class of repetitive elements of Bradyrhizobium japonicum and distantly related to IS630 of Shigella sonnei. The presence of the catabolic genes tcbA and tcbB on Tn5280 suggests a mechanism by which gene clusters can be mobilized as gene cassettes and joined with others to form novel catabolic pathways.  相似文献   

15.
IS30, a new insertion sequence of Escherichia coli K12   总被引:6,自引:0,他引:6  
Summary Three independent spontaneous mutations of prophage P1 affecting the ability of the phage to reproduce vegetatively are due to the insertion of a mobile genetic element, called IS 30. The same sequence is also carried in the R plasmid NR 1-Basel, but not in the parental plasmid NR 1. Southern hybridisation study indicates that the Escherichia coli K 12 chromosome carries several copies of IS 30 as a normal resident. IS 30 is 1.2 kb long and contains unique restriction cleavage sites for Bg/II, ClaI, HindIII, NciI and HincII, and it is cleaved twice by the enzymes HpaII and TaqI. The ends of IS 30 are formed by 26 bp long inverted repeats with 3 bases mismatched. Upon transposition IS 30 generates a duplication of only 2 bp of the target. The following observations suggest a pronounced specificity in target selection by IS 30. In transposition to the phage P 1 genome a single integration site was used three times independently, and in both orientations. A short region of sequence homology has been identified between the P 1 and NR 1-Basel insertion sites. IS 30 has mediated cointegration as well as deletion. The entire IS 30 sequences were duplicated in the cointegrates between a pBR 322 derivative containing IS 30 and the genome of phage P 1–15, and several loci on the P1–15 genome served as fusion sites, some of which were used more than once.  相似文献   

16.
Data are presented on the identification and characterisation of 17 chromosomal integration loci of the insertion element IS901 in the Mycobacterium avium (cervine strain JD88/118) genome. Thirteen of these integration loci have been mapped to their corresponding positions on the M. avium strain 104 (an IS901(-) strain) genome (The Institute for Genome Research (TIGR) unfinished genome-sequencing project). Sequence data for both upstream and downstream sequence flanking regions were obtained for 12 insertion loci, while upstream sequence was obtained for five others. A consensus IS901 insertion target sequence compiled from all 17 integration sites was in broad agreement with earlier reports that were based on only two such loci. Analysis of IS901 integration site flanking sequences revealed that, like IS900 in M. avium subspecies paratuberculosis, IS901 inserts preferentially between a putative ribosome-binding sequence (RBS) and the translational start codon of an open reading frame (ORF). In BLAST X and BLAST P searches of the GenBank database, these ORFs were shown to share significant homologies with a number of other prokaryotic genes.  相似文献   

17.
Is10 Promotes Adjacent Deletions at Low Frequency   总被引:4,自引:2,他引:2       下载免费PDF全文
Some transposable elements move by a replicative mechanism involving cointegrate formation. Intramolecular cointegration can generate a product called an ``adjacent deletion' in which a contiguous chromosomal segment adjacent to the transposon is deleted while the element responsible remains intact. Insertion sequence IS10 is thought to transpose by a nonreplicative mechanism. In the simplest models, nonreplicative transposition cannot give rise to an adjacent deletion because an intrinsic feature of such transposition is excision of the IS element from the donor location. We report here that IS10 can generate adjacent deletions, but at a frequency which is approximately 1/30th the frequency of transposition for the same element. We suggest that these deletions might arise either by nonreplicative transposition events that involve two IS10 elements located on sister chromosomes or by aberrant nonreplicative events involving cleavage and ligation at only one end of the element.  相似文献   

18.
Insertion mutations arising spontaneously in the P1 prophage and affecting vegetative phage reproduction were screened for the presence of insertion sequence 2 (IS2). Filter hybridization identified 28 out of 44 independent insertions as IS2. Their target specificity is not random. A region that amounts to < 2% of the phage genome had trapped 15 of the 28 IS2 elements. However, precise mapping of nine mutants in this hot spot segment revealed no preferred insertion site. Rather, the nine IS2 are distributed over the whole target segment and IS2 are found in both orientations. Sequence data indicate that at least two sequence variants of IS2 participated in mutagenesis of the phage genome. The detectable transposition of IS2 from the host chromosome to the prophage occurs with a frequency of 3 x 10(-5) per cell per generation under the particular experimental conditions. It is concluded that IS2, a natural resident of Escherichia coli K12 strains, is an important agent for spontaneous mutagenesis and exerts this action non-randomly along the genome.  相似文献   

19.
Transposable elements are being developed as tools for genomics and for the manipulation of insect genotypes for the purposes of biological control. An understanding of their transposition behavior will facilitate the use of these elements. The behavior of an autonomous Hermes transposable element from Musca domestica in the soma and germ-line of Drosophila melanogaster was investigated using the method of transposon display. In the germ-line, Hermes transposed at a rate of approximately 0.03 jumps per element per generation. Within the soma Hermes exhibited markedly non-random patterns of integration. Certain regions of the genome were distinctly preferred over others as integration targets, while other regions were underrepresented among the integration sites used. One particular site accounted for 4.4% of the transpositions recovered in this experiment, all of which were located within a 2.5-kb region of the actin5C promoter. This region was also present within the Hermes element itself, suggesting that this clustering is an example of transposable element "homing". Clusters of integration sites were also observed near the original donor sites; these represent examples of local hopping. The information content (sequence specificity) of the 8-bp target site was low, and the consensus target site resembles that determined from plasmid-based integration assays.  相似文献   

20.
N. Ke  D. F. Voytas 《Genetics》1997,147(2):545-556
Retroelement cDNA can integrate into the genome using the element-encoded integrase, or it can recombine with preexisting elements using the recombination system of the host. Recombination is a particularly important pathway for the yeast retrotransposon Ty5 and accounts for ~30% of the putative transposition events when a homologous substrate is carried on a plasmid and ~7% when the substrate is located at the chromosomal URA3 locus. Characterization of recombinants revealed that they are either simple replacements of the marker gene or tandem elements. Using an assay system in which the donor element and recombination substrates are separated, we found that the long terminal repeats (LTRs) are critical for tandem element formation. LTR-containing substrates generate tandem elements at frequencies more than 10-fold higher than similarly sized internal Ty5 sequences. Internal sequences, however, facilitate tandem element formation when associated with an LTR, and there is a linear relationship between frequencies of tandem element formation and the length of LTR-containing substrates. We propose that recombination is initiated between the LTRs of the cDNA and substrate and that internal sequences promote tandem element formation by facilitating sequence alignment. Because of its location in subtelomeric regions, recombinational amplification of Ty5 may contribute to the organization of chromosome ends.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号