首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Most cases of Rett syndrome (RTT) are caused by mutations in the methylated DNA-binding protein, MeCP2. Here, we have shown that frequent RTT-causing missense mutations (R106W, R133C, F155S, T158M) located in the methylated DNA-binding domain (MBD) of MeCP2 have profound and diverse effects on its structure, stability, and DNA-binding properties. Fluorescence spectroscopy, which reports on the single tryptophan in the MBD, indicated that this residue is strongly protected from the aqueous environment in the wild type but is more exposed in the R133C and F155S mutations. In the mutant proteins R133C, F155S, and T158M, the thermal stability of the domain was strongly reduced. Thermal stability of the wild-type protein was increased in the presence of unmethylated DNA and was further enhanced by DNA methylation. DNA-induced thermal stability was also seen, but to a lesser extent, in each of the mutant proteins. Circular dichroism (CD) of the MBD revealed differences in the secondary structure of the four mutants. Upon binding to methylated DNA, the wild type showed a subtle but reproducible increase in alpha-helical structure, whereas the F155S and R106W did not acquire secondary structure with DNA. Each of the mutant proteins studied is unique in terms of the properties of the MBD and the structural changes induced by DNA binding. For each mutation, we examined the extent to which the magnitude of these differences correlated with the severity of RTT patient symptoms.  相似文献   

2.
Some physico-chemical properties of R140G and K141Q mutants of human small heat shock protein HspB1 associated with hereditary peripheral neuropathy were analyzed. Mutation K141Q did not affect intrinsic Trp fluorescence and interaction with hydrophobic probe bis-ANS, whereas mutation R140G decreased both intrinsic fluorescence and fluorescence of bis-ANS bound to HspB1. Both mutations decreased thermal stability of HspB1. Mutation R140G increased, whereas mutation K141Q decreased the rate of trypsinolysis of the central part (residues 5–188) of HspB1. Both the wild type HspB1 and its K141Q mutant formed large oligomers with apparent molecular weight ∼560 kDa. The R140G mutant formed two types of oligomers, i.e. large oligomers tending to aggregate and small oligomers with apparent molecular weight ∼70 kDa. The wild type HspB1 formed mixed homooligomers with R140G mutant with apparent molecular weight ∼610 kDa. The R140G mutant was unable to form high molecular weight heterooligomers with HspB6, whereas the K141Q mutant formed two types of heterooligomers with HspB6. In vitro measured chaperone-like activity of the wild type HspB1 was comparable with that of K141Q mutant and was much higher than that of R140G mutant. Mutations of homologous hot-spot Arg (R140G of HspB1 and R120G of αB-crystallin) induced similar changes in the properties of two small heat shock proteins, whereas mutations of two neighboring residues (R140 and K141) induced different changes in the properties of HspB1.  相似文献   

3.
The site specific mutants of the thermophilic P450 (P450 175A1 or CYP175A1) were designed to introduce residues that could act as acid-base catalysts near the active site to enhance the peroxidases activity. The Leu80 in the distal heme pocket of CYP175A1 was located at a position almost equivalent to the Glu183 that is involved in stabilization of the ferryl heme intermediate in chloroperoxidase (CPO). The Leu80 residue of CYP175A1 was mutated with histidine (L80H) and glutamine (L80Q) that could potentially form hydrogen bond with hydrogen peroxide and facilitate formation and stabilization of the putative redox intermediate of the peroxidase cycle. The mutants L80H and L80Q of CYP175A1 showed higher peroxidase activity compared to that of the wild type (WT) CYP175A1 enzyme at 25 °C. The activity constants (kcat) for the L80H and L80Q mutants of CYP175A1 were higher than those of myoglobin and wild type cytochrome b562 at 25 °C. The optimum temperature for the peroxidase activity of the WT and mutants of CYP175A1 was ~ 70 °C. The rate of catalysis at temperatures above ~ 70 °C was higher for L80Q mutant of CYP175A1 compared to that of the well known natural peroxidase, horseradish peroxidase (HRP) that denatures at such high temperature. The peroxidase activities of the mutants of CYP175A1 were maximum at pH 9, unlike that of HRP which is at pH ~ 5. The results have been discussed in the light of understanding the structure-function relationship of the peroxidase properties of these thermostable heme proteins.  相似文献   

4.
5.
A number of engineered Trichoderma reesei endo-beta-1,4-xylanase (Xyn II) mutants were created and activity tests were performed for increased stability. The stability of the earlier characterized mutant Y5 (T2C, T28C, K58R, +191D) was further increased by the mutations creating the constructs P9 (N97R+F93W+H144K), P12 (H144C+N92C), P15 (F180Q+H144C+N92C) and P21 (H22K+F180Q+H144C+N92C). The resistance towards thermal inactivation at alkaline pH was increased in all of the mutants. Residual activity T(50%) was increased 4-5 degrees C for P9 at pH 9. The performance of the P9 mutant in sulphate pulp bleaching was also tested and was shown to increase brightness markedly compared to the reference. The bleaching results showed the industrial potential of the obtained mutant.  相似文献   

6.
The mammalian peroxidases, including myeloperoxidase and lactoperoxidase, bind their prosthetic heme covalently through ester bonds to two of the heme methyl groups. These bonds are autocatalytically formed. No other peroxidase is known to form such bonds. To determine whether features other than an appropriately placed carboxylic acid residue are important for covalent heme binding, we have introduced aspartate and/or glutamic acid residues into horseradish peroxidase, a plant enzyme that exhibits essentially no sequence identity with the mammalian peroxidases. Based on superposition of the horseradish peroxidase and myeloperoxidase structures, the mutated residues were Leu(37), Phe(41), Gly(69), and Ser(73). The F41E mutant was isolated with no covalently bound heme, but the heme was completely covalently bound upon incubation with H(2)O(2). As predicted, the modified heme released from the protein was 3-hydroxymethylheme. The S73E mutant did not covalently bind its heme but oxidized it to the 8-hydroxymethyl derivative. The hydroxyl group in this modified heme derived from the medium. The other mutations gave unstable proteins. The rate of compound I formation for the F41E mutant was 100 times faster after covalent bond formation, but the reduction of compound I to compound II was similar with and without the covalent bond. The results clearly establish that an appropriately situated carboxylic acid group is sufficient for covalent heme attachment, strengthen the proposed mechanism, and suggest that covalent heme attachment in the mammalian peroxidases relates to peroxidase biology or stability rather than to intrinsic catalytic properties.  相似文献   

7.
Physico-chemical properties of four mutants (T164A, T180I, P182S and R188W) of human small heat shock protein HspB1 (Hsp27) associated with neurodegenerative diseases were analyzed by means of fluorescence spectroscopy, dynamic light scattering, size-exclusion chromatography and measurement of chaperone-like activity. Mutation T164A was accompanied by destabilization of the quaternary structure and decrease of thermal stability without any significant changes of chaperone-like activity. Mutations T180I and P182S are adjacent or within the conserved C-terminal motif IPI/V. Replacement T180⇒I leading to the formation of hydrophobic cluster consisting of three Ile produced small increase of thermal stability without changes of chaperone-like activity. Mutation P182S induced the formation of metastable large oligomers of HspB1 with apparent molecular weight of more than 1000 kDa. Oligomers of P182S have very low thermal stability and undergo irreversible aggregation at low temperature. The P182S mutant forms mixed oligomers with the wild type HspB1 and the properties of these mixed oligomers are intermediate between those of the wild type HspB1 and its mutant. Mutation R188W did not significantly affect quaternary structure or thermal stability of HspB1, but was accompanied by a pronounced decrease of its chaperone-like activity. All mutations analyzed are associated with hereditary motor neuropathies or Charcot–Marie–Tooth disease type 2; however, molecular mechanisms underlying pathological effects are specific for each of these mutants.  相似文献   

8.
Directed evolution of N-carbamyl-D-amino acid amidohydrolase from Agrobacterium tumefaciens NRRL B11291 was attempted in order to simultaneously improve oxidative and thermal stability. A mutant library was generated by DNA shuffling, and positive clones with improved oxidative and thermal stability were screened on the basis of the activity staining method on a solid agar plate containing pH indicator (phenol red) and substrate (N-carbamyl-D-p-hydroxyphenylglycine). Two rounds of directed evolution resulted in the best mutant 2S3 with a significantly improved stability. Oxidative stability of the evolved enzyme 2S3 was about 18-fold higher than that of the wild type, and it also showed an 8-fold increased thermostability. The K(m) value of 2S3 was comparable to that of wild-type enzyme, but k(cat) was slightly decreased. DNA sequence analysis revealed that six amino acid residues (Q23L, V40A, H58Y, G75S, M184L, and T262A) were substituted in 2S3. From the mutational analysis, four mutations (Q23L, H58Y, M184L, and T262A) were found to lead to an improvement of both oxidative and thermal stability. Of them, T262A had the most significant effect, and V40A and G75S only increased the oxidative stability.  相似文献   

9.
Protein misfolding due to missense mutations is a common pathogenic mechanism in cystathionine β-synthase (CBS) deficiency. In our previous studies, we successfully expressed, purified, and characterized nine CBS mutant enzymes containing the following patient mutations: P49L, P78R, A114V, R125Q, E176K, R266K, P422L, I435T, and S466L. These purified mutants exhibited full heme saturation, normal tetrameric assembly, and high catalytic activity. In this work, we used several spectroscopic and proteolytic techniques to provide a more thorough insight into the conformation of these mutant enzymes. Far-UV circular dichroism, fluorescence, and second-derivative UV spectroscopy revealed that the spatial arrangement of these CBS mutants is similar to that of the wild type, although the microenvironment of the chromophores may be slightly altered. Using proteolysis with thermolysin under native conditions, we found that the majority of the studied mutants is more susceptible to cleavage, suggesting their increased local flexibility or propensity for local unfolding. Interestingly, the presence of the CBS allosteric activator, S-adenosylmethionine (AdoMet), increased the rate of cleavage of the wild type and the AdoMet-responsive mutants, while the proteolytic rate of the AdoMet-unresponsive mutants was not significantly changed. Pulse proteolysis analysis suggested that the protein structure of the R125Q and E176K mutants is significantly less stable than that of the wild type and the other mutants. Taken together, the proteolytic data shows that the conformation of the pathogenic mutants is altered despite retained catalytic activity and normal tetrameric assembly. This study demonstrates that the proteolytic techniques are useful tools for the assessment of the biochemical penalty of missense mutations in CBS.  相似文献   

10.
Directed evolution of a fungal peroxidase   总被引:9,自引:0,他引:9  
The Coprinus cinereus (CiP) heme peroxidase was subjected to multiple rounds of directed evolution in an effort to produce a mutant suitable for use as a dye-transfer inhibitor in laundry detergent. The wild-type peroxidase is rapidly inactivated under laundry conditions due to the high pH (10.5), high temperature (50 degrees C), and high peroxide concentration (5-10 mM). Peroxidase mutants were initially generated using two parallel approaches: site-directed mutagenesis based on structure-function considerations, and error-prone PCR to create random mutations. Mutants were expressed in Saccharomyces cerevisiae and screened for improved stability by measuring residual activity after incubation under conditions mimicking those in a washing machine. Manually combining mutations from the site-directed and random approaches led to a mutant with 110 times the thermal stability and 2.8 times the oxidative stability of wild-type CiP. In the final two rounds, mutants were randomly recombined by using the efficient yeast homologous recombination system to shuffle point mutations among a large number of parents. This in vivo shuffling led to the most dramatic improvements in oxidative stability, yielding a mutant with 174 times the thermal stability and 100 times the oxidative stability of wild-type CiP.  相似文献   

11.
Determining how large RNA molecules stabilize their tertiary structures is critical for understanding how they perform their biological functions. Here we use in vitro selection to identify active variants of the Tetrahymena ribozyme with increased stability. The mutant pool converged to a single family that shared nine mutations; an RNA representing the consensus sequence was structurally more stable by 10.5 degrees C and catalytically active at elevated temperatures. Remarkably, of the nine altered sites, most are already known to be involved in tertiary interactions, and the stabilizing mutations primarily improve the packing interactions in the molecular interior. The wild type ribozyme and the selected mutants provide pairs of mesophilic and thermophilic homologs for studying the origin of their thermal stability.  相似文献   

12.
Bartish G  Nygård O 《Biochimie》2008,90(5):736-748
Elongation factor 2 (eEF2) is a member of the G-protein super family. G-proteins undergo conformational changes associated with binding of the guanosine nucleotide and hydrolysis of the bound GTP. These structural rearrangements affects the Switch I region (also known as the Effector loop). We have studied the role of individual amino acids in the Switch I region (amino acids 25-73) of S. cerevisiae eEF2 using functional complementation in yeast. 21 point mutations in the Switch I region were created by site-directed mutagenesis. Mutants K49R, E52Q, A53G, F55Y, K60R, Q63A, T68S, I69M and A73G were functional while mutants R54H, F55N, D57A, D57E, D57S, R59K, R59M, Q63E, R65A, R65N, T68A and T68M were inactive. Expression of mutants K49R, A53G, Q63A, I69M and A73G was associated with markedly decreased growth rates and yeast cells expressing mutants A53G and I69M became temperature sensitive. The functional capacity of eEF2 in which the major part Switch I (amino acids T56 to I69) was converted into the homologous sequence found in EF-G from E. coli was also studied. This protein chimera could functionally replace yeast eEF2 in vivo. Yeast cells expressing this mutant grew extremely slowly, showed increased cell death and became temperature sensitive. The ability of the mutant to replace authentic eEF2 in vivo indicates that the structural rearrangement of Switch I necessary for eEF2 function is similar in eukaryotes and bacteria. The effect of two point mutations in the P-loop was also studied. Mutant A25G but not A25V could functionally replace yeast eEF2 even if cells expressing the mutant grew slowly. The A25G mutation converted the consensus sequences AXXXXGK[T/S] in eEF2 to the corresponding motif GXXXXGK[T/S] found in all other G-proteins, suggesting that the alanine found in the P-loop of peptidyltranslocases are not essential for function.  相似文献   

13.
We have previously used targeted active-site saturation mutagenesis to identify a number of transketolase single mutants that improved activity towards either glycolaldehyde (GA), or the non-natural substrate propionaldehyde (PA). Here, all attempts to recombine the singles into double mutants led to unexpected losses of specific activity towards both substrates. A typical trade-off occurred between soluble expression levels and specific activity for all single mutants, but many double mutants decreased both properties more severely suggesting a critical loss of protein stability or native folding. Statistical coupling analysis (SCA) of a large multiple sequence alignment revealed a network of nine co-evolved residues that affected all but one double mutant. Such networks maintain important functional properties such as activity, specificity, folding, stability, and solubility and may be rapidly disrupted by introducing one or more non-naturally occurring mutations. To identify variants of this network that would accept and improve upon our best D469 mutants for activity towards PA, we created a library of random single, double and triple mutants across seven of the co-evolved residues, combining our D469 variants with only naturally occurring mutations at the remaining sites. A triple mutant cluster at D469, E498 and R520 was found to behave synergistically for the specific activity towards PA. Protein expression was severely reduced by E498D and improved by R520Q, yet variants containing both mutations led to improved specific activity and enzyme expression, but with loss of solubility and the formation of inclusion bodies. D469S and R520Q combined synergistically to improve kcat 20-fold for PA, more than for any previous transketolase mutant. R520Q also doubled the specific activity of the previously identified D469T to create our most active transketolase mutant to date. Our results show that recombining active-site mutants obtained by saturation mutagenesis can rapidly destabilise critical networks of co-evolved residues, whereas beneficial single mutants can be retained and improved upon by randomly recombining them with natural variants at other positions in the network.  相似文献   

14.
15.
Light chain (AL) amyloidosis is an incurable human disease, where the amyloid precursor is a misfolding‐prone immunoglobulin light‐chain. Here, we identify the role of somatic mutations in the structure, stability and in vitro fibril formation for an amyloidogenic AL‐12 protein by restoring four nonconservative mutations to their germline (wild‐type) sequence. The single restorative mutations do not affect significantly the native structure, the unfolding pathway, and the reversibility of the protein. However, certain mutations either decrease (H32Y and H70D) or increase (R65S and Q96Y) the protein thermal stability. Interestingly, the most and the least stable mutants, Q96Y and H32Y, do not form amyloid fibrils under physiological conditions. Thus, Q96 and H32 are key residues for AL‐12 stability and fibril formation and restoring them to the wild‐type residues preclude amyloid formation. The mutants whose equilibrium is shifted to either the native or unfolded states barely sample transient partially folded states, and therefore do not form fibrils. These results agree with previous observations by our laboratory and others that amyloid formation occurs because of the sampling of partially folded states found within the unfolding transition (Blancas‐Mejia and Ramirez‐Alvarado, Ann Rev Biochem 2013;82:745–774). Here we provide a new insight on the AL amyloidosis mechanism by demonstrating that AL‐12 does not follow the established thermodynamic hypothesis of amyloid formation. In this hypothesis, thermodynamically unstable proteins are more prone to amyloid formation. Here we show that within a thermal stability range, the most stable protein in this study is the most amyloidogenic protein.  相似文献   

16.
Substitution of amino acids 70 and 91 in the hepatitis C virus (HCV) core region is a significant predictor of poor responses to peginterferon-plus-ribavirin therapy, while their molecular mechanisms remain unclear. Here we investigated these differences in the response to alpha interferon (IFN) by using HCV cell culture with R70Q, R70H, and L91M substitutions. IFN treatment of cells transfected or infected with the wild type or the mutant HCV clones showed that the R70Q, R70H, and L91M core mutants were significantly more resistant than the wild type. Among HCV-transfected cells, intracellular HCV RNA levels were significantly higher for the core mutants than for the wild type, while HCV RNA in culture supernatant was significantly lower for these mutants than for the wild type. IFN-induced phosphorylation of STAT1 and STAT2 and expression of the interferon-inducible genes were significantly lower for the core mutants than for the wild type, suggesting cellular unresponsiveness to IFN. The expression level of an interferon signal attenuator, SOCS3, was significantly higher for the R70Q, R70H, and L91M mutants than for the wild type. Interleukin 6 (IL-6), which upregulates SOCS3, was significantly higher for the R70Q, R70H, and L91M mutants than for the wild type, suggesting interferon resistance, possibly through IL-6-induced, SOCS3-mediated suppression of interferon signaling. Expression levels of endoplasmic reticulum (ER) stress proteins were significantly higher in cells transfected with a core mutant than in those transfected with the wild type. In conclusion, HCV R70 and L91 core mutants were resistant to interferon in vitro, and the resistance may be induced by IL-6-induced upregulation of SOCS3. Those mechanisms may explain clinical interferon resistance of HCV core mutants.  相似文献   

17.
The ArsA ATPase is the catalytic subunit of the ArsAB As(III) efflux pump. It receives trivalent As(III) from the intracellular metallochaperone ArsD. The interaction of ArsA and ArsD allows for resistance to As(III) at environmental concentrations. A quadruple mutant in the arsD gene encoding a K2A/K37A/K62A/K104A ArsD is unable to interact with ArsA. An error-prone mutagenesis approach was used to generate random mutations in the arsA gene that restored interaction with the quadruple arsD mutant in yeast two-hybrid assays. A number of arsA genes with multiple mutations were isolated. These were analyzed in more detail by separation into single arsA mutants. Three such mutants encoding Q56R, F120I and D137V ArsA were able to restore interaction with the quadruple ArsD mutant in yeast two-hybrid assays. Each of the three single ArsA mutants also interacted with wild type ArsD. Only the Q56R ArsA derivative exhibited significant metalloid-stimulated ATPase activity in vitro. Purified Q56R ArsA was stimulated by wild type ArsD and to a lesser degree by the quadruple ArsD derivative. The F120I and D137V ArsAs did not show metalloid-stimulated ATPase activity. Structural models generated by in silico docking suggest that an electrostatic interface favors reversible interaction between ArsA and ArsD. We predict that mutations in ArsA propagate changes in hydrogen bonding and salt bridges to the ArsA–ArsD interface that affect their interactions.  相似文献   

18.
Unlike general peroxidases, Pleurotus ostreatus MnP2 was reported to have a unique property of direct oxidization of high-molecular-weight compounds, such as Poly R-478 and RNase A. To elucidate the mechanism for oxidation of polymeric substrates by MnP2, a series of mutant enzymes were produced by using a homologous gene expression system, and their reactivities were characterized. A mutant enzyme with an Ala substituting for an exposing Trp (W170A) drastically lost oxidation activity for veratryl alcohol (VA), Poly R-478, and RNase A, whereas the kinetic properties for Mn(2+) and H(2)O(2) were substantially unchanged. These results demonstrated that, in addition to VA, the high-molecular-weight substrates are directly oxidized by MnP2 at W170. Moreover, in the mutants Q266F and V166/168L, amino acid substitution(s) around W170 resulted in a decreased activity only for the high-molecular-weight substrates. These results, along with the three-dimensional modeling of the mutants, suggested that the mutations caused a steric hindrance to access of the polymeric substrates to W170. Another mutant, R263N, contained a newly generated N glycosylation site and showed a higher molecular mass in sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis. Interestingly, the R263N mutant exhibited an increased reactivity with VA and high-molecular-weight substrates. The existence of an additional carbohydrate modification and the catalytic properties in this mutant are discussed. This is the first study of a direct mechanism for oxidation of high-molecular-weight substrates by a fungal peroxidase using a homologous gene expression system.  相似文献   

19.
Deoxyribonuclease I (DNase I) is known to be a glycoprotein, and two potential N-linked glycosylation sites (N18 and N106) are known for mammalian enzymes. In the present study, N18 and N106 were mutated in order to investigate the biological role of N-linked glycosylation in three mammalian (human, bovine, and equine) DNases I. The enzyme activities of N18Q and N106Q were lower than that of the wild type, and that of the double mutant (N18Q/N106Q) was lower than those of the single mutants, in accord with the sugar moiety contents in the three mammals. In addition, all mutant enzymes were unstable to heat, suggesting that both sites are required for heat stability. Moreover, in human and equine enzymes, the N18Q and N106Q mutant enzymes were less resistant to trypsin, while N18Q/N106Q was the most sensitive to trypsin. As for bovine DNase I, the trypsin resistance of N18Q and N106Q was similar to that of the wild type, but that of N18Q/N106Q decreased in a time-dependent manner. On the other hand, N-linked glycosylation was not related to pH sensitivity. The results of the present study suggest that N18 and N106 are both necessary for (i) full enzymatic activity, (ii) heat-stability, and (iii) trypsin resistance.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号