首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bovine pepsin is the second major proteolytic activity of rennet obtained from young calves and is the main protease when it is extracted from adult animals, and it is well recognized that the proteolytic specificity of this enzyme improves the sensory properties of cheese during maturation. Pepsin is synthesized as an inactive precursor, pepsinogen, which is autocatalytically activated at the pH of calf abomasum. A cDNA coding for bovine pepsin was assembled by fusing the cDNA fragments from two different bovine expressed sequence tag libraries to synthetic DNA sequences based on the previously described N-terminal sequence of pepsinogen. The sequence of this cDNA clearly differs from the previously described partial bovine pepsinogen sequences, which actually are rabbit pepsinogen sequences. By cloning this cDNA in different vectors we produced functional bovine pepsinogen in Escherichia coli and Saccharomyces cerevisiae. The recombinant pepsinogen is activated by low pH, and the resulting mature pepsin has milk-clotting activity. Moreover, the mature enzyme generates digestion profiles with alpha-, beta-, or kappa-casein indistinguishable from those obtained with a natural pepsin preparation. The potential applications of this recombinant enzyme include cheese making and bioactive peptide production. One remarkable advantage of the recombinant enzyme for food applications is that there is no risk of transmission of bovine spongiform encephalopathy.  相似文献   

2.
Pepsinogen and Pepsin   总被引:2,自引:0,他引:2       下载免费PDF全文
Evidence relating to the structure and properties of swine pepsinogen and pepsin has been reviewed and used to suggest a tentative two dimensional picture of the skeleton of these two proteins. When pepsinogen, a folded single peptide chain, is converted to pepsin, there is a profound change in the physical and chemical properties of the protein. In an as yet unknown manner, except that it is initiated by a peptic cleavage of the protein chain, a single enzymic site is formed. This site is made up, quite probably, of the secondary carboxyl group of glutamic acid or of aspartic acid and a tyrosine phenol group in close proximity so that they can form hydrogen or hydrophobic bonds with the substrate in some unique manner that permits hydrolysis to occur at an accelerated rate.  相似文献   

3.
Bovine pepsin is the second major proteolytic activity of rennet obtained from young calves and is the main protease when it is extracted from adult animals, and it is well recognized that the proteolytic specificity of this enzyme improves the sensory properties of cheese during maturation. Pepsin is synthesized as an inactive precursor, pepsinogen, which is autocatalytically activated at the pH of calf abomasum. A cDNA coding for bovine pepsin was assembled by fusing the cDNA fragments from two different bovine expressed sequence tag libraries to synthetic DNA sequences based on the previously described N-terminal sequence of pepsinogen. The sequence of this cDNA clearly differs from the previously described partial bovine pepsinogen sequences, which actually are rabbit pepsinogen sequences. By cloning this cDNA in different vectors we produced functional bovine pepsinogen in Escherichia coli and Saccharomyces cerevisiae. The recombinant pepsinogen is activated by low pH, and the resulting mature pepsin has milk-clotting activity. Moreover, the mature enzyme generates digestion profiles with α-, β-, or κ-casein indistinguishable from those obtained with a natural pepsin preparation. The potential applications of this recombinant enzyme include cheese making and bioactive peptide production. One remarkable advantage of the recombinant enzyme for food applications is that there is no risk of transmission of bovine spongiform encephalopathy.  相似文献   

4.
Experiments were carried out on the effects of substrate or competitive inhibitor on the rate of appearance of N-terminal isoleucine residue of pepsin and peptides released from pepsinogen in its conversion to pepsin. Assumptions were made from these experiments, that an active site is initially formed in pepsinogen by acidification of its solution, and that peptide bond between 41-glutamyl and 42-isoleucyl residues locates in the juxtaposition to the active site forming an intramolecular enzyme-substrate complex. Thus, N-terminal tail of pepsinogen is released by a hydrolysis catalyzed by its own active site.

It was Indeed ascertained in this study that neither a small amount of pepsin which could be accompanied by pepsinogen preparation used contributes to the initial step of hydrolysis of pepsinogen nor pepsin formed accelerates the following activation process.

Therefore, it was concluded that the conversion of pepsinogen to pepsin is self-degrad-ation process.  相似文献   

5.
1. Two procedures were developed for the preparation of duck pepsinogen, an enzyme from the family of aspartic proteases (EC 3.4.23.1) and its zymogen. 2. The amino acid composition, sugar content and the partial N- and C-terminal sequences of both the enzyme and the zymogen were determined. These sequences are highly homologous with the terminal sequences of chicken pepsin(ogen). 3. Duck pepsinogen and pepsin are unlike other pepsin(ogen)s in being relatively stable in alkaline media: pepsinogen is inactivated at pH 12.1, pepsin at pH 9.6. 4. Duck pepsin is inhibited by diazoacetyl-D,L-norleucine methyl ester (DAN), 1,2-epoxy-3(p-nitrophe-noxy)propane (EPNP), pepstatin and a synthetic pepsin inhibitor Val-D-Leu-Pro-Phe-Phe-Val-D- Leu. The pH-optimum of duck pepsin determined in the presence of synthetic substrate is pH 4. 5. Duck pepsin has a marked milk-clotting activity whereas its proteolytic activity is lower than that of chicken pepsin. 6. The activation of duck pepsinogen is paralleled by two conformational changes. The activation half-life determined in the presence of a synthetic substrate at pH 2 and 14 degrees C is 20 sec.  相似文献   

6.
Pepsinogen was isolated from the gastric mucosa of Trimeresurus flavoviridis (Habu snake) by DEAE-cellulose and DEAE-Sepharose ion-exchange chromatographies, and Sephacryl S-200 gel-chromatography. The yield calculated from the crude extract was 29% with 6.2-fold purification. The purified pepsinogen gave a single band on both native- and SDS-PAGE. As no other active enzyme was detected on the chromatographies, it was concluded that the Habu snake has one major pepsinogen. The molecular mass of the pepsinogen was estimated to be 38 kDa by SDS-PAGE. The sequence of the N-terminal 26 amino acid residues was determined and compared with those of other pepsinogens. The N-terminal structure of Habu snake pepsinogen was more homologous with those of mammalian pepsinogens C than those of mammalian pepsinogens A. The pepsinogen was rapidly converted to pepsin by way of an intermediate form induced by acidification. The optimum pH of Habu snake pepsin for bovine hemoglobin was 1.5-2.0, and it retained full activity at pH 6.2 and 30 degrees C on incubation for 30 min. The optimum temperature for the snake pepsin was 50 degrees C and it was stable at 40 degrees C on incubation for 10 min. The proteolytic activity of the pepsin toward bovine hemoglobin was about two times higher than that of porcine pepsin A, however, the activity toward oxidized bovine insulin B-chain was lower than that of porcine pepsin A, and it did not hydrolyze oligopeptides. The specificity for oxidized bovine insulin B-chain of the pepsin was different from that of porcine pepsin A. Habu snake pepsin was inhibited by pepstatin A but not by serine, cysteine, or metallo protease inhibitors.  相似文献   

7.
Pepsin contains, in a single chain, two conformationally homologous lobes that are thought to have been evolutionarily derived by gene duplication and fusion. We have demonstrated that the individual recombinant lobes are capable of independent folding and reconstitution into a two-chain pepsin or a two-chain pepsinogen (Lin, X., et al., 1992, J. Biol. Chem. 267, 17257-17263). Pepsin spontaneously inactivates in neutral or alkaline solutions. We have shown in this study that the enzymic activity of the alkaline-inactivated pepsin was regenerated by the addition of the recombinant N-terminal lobe but not by the C-terminal lobe. These results indicate that alkaline inactivation of pepsin is due to a selective denaturation of its N-terminal lobe. A complex between recombinant N-terminal lobe of pepsinogen and alkaline-denatured pepsin has been isolated. This complex is structurally similar to a two-chain pepsinogen, but it contains an extension of a denatured pepsin N-terminal lobe. Acidification of the complex is accompanied by a cleavage in the pro region and proteolysis of the denatured N-terminal lobe. The structural components that are responsible for the alkaline instability of the N-terminal lobe are likely to be carboxyl groups with abnormally high pKa values. The electrostatic potentials of 23 net carboxyl groups in the N-terminal domain (as compared to 19 in the C-terminal domain) of pepsin were calculated based on the energetics of interacting charges in the tertiary structure of the domain. The groups most probably causing the alkaline denaturation are Asp11, Asp159, Glu4, Glu13, and Asp118.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
A study of the kinetics of the transformation of swine pepsinogen into pepsin under a variety of conditions has been made. The results show that the transformation as a whole is essentially autocatalytic in nature under all conditions. Evidence is presented to show the existence of a compound intermediate between pepsinogen and pepsin. This compound was found to be a reversibly dissociable complex of pepsin and a low molecular weight inhibitor. Some of the general properties of the intermediate compound and of the inhibitor have been examined.  相似文献   

9.
An embryo-specific pepsinogen was isolated from the proventriculi of 15-day-old chicken embryos and purified by means of fractionation with ammonium sulfate, filtration on Sephadex G-100, and chromatography on DEAE-Sepharose CL-6B and hydroxyapatite. The properties of this pepsinogen and pepsin derived from it were compared with those of an adult-specific chicken pepsinogen and its pepsin. Though the optimal pH and alkali-stability were similar in the two pepsinogens, molecular weight, sensitivity to pepstatin, and antigenicity were quite different. Among the properties of this embryo-specific pepsinogen, the large molecular weight (56,000 for pepsinogen and 53,000 for pepsin) is especially noteworthy, since the molecular weights of the known pepsinogens of mammals and birds fall into the range of 35,000-48,000.  相似文献   

10.
The mechanism of activation of pepsinogen was studied. It was found that no peptide bond cleavage occurred in the molecule of denatured pepsinogen at pH 2. It was inferred from this that a specific secondary and tertiary structure is formed in the molecule of pepsinogen in acid and that it might be necessary for the hydrolysis of the peptide bond. From the circular dichroism studies on pepsinogen and pepsin, it was found that there is a conformational change in the molecule of pepsinogen at pH 4.3~4.5 and that this change is followed by a gradual formation of pepsin.  相似文献   

11.
12.
M Lyte 《Life sciences》1986,38(13):1163-1170
The in vitro production of large quantities of interleukin-1 (IL-1) in mouse peritoneal exudate macrophages and human peripheral blood monocytes is possible through the use of the proteolytic enzyme pepsin and its zymogen pepsinogen. Equal amounts of IL-1 are generated by pepsin in the absence or presence of polymixin B. The addition of pepsin or pepsinogen had no effect on the proliferation of C3H/HeJ thymocytes to the plant mitogen phytohemagglutinin. Pepsin and pepsinogen are present in significant quantities in immune cells and the plasma. Although little is known concerning the physiological role of pepsin and pepsinogen outside of the gastrointestinal system, it may be proposed that the in vivo production of IL-1 may in part be regulated by the cellular and plasma concentrations of pepsin and pepsinogen.  相似文献   

13.
Immunochemical Studies on the Components of the Pepsinogen System   总被引:3,自引:0,他引:3       下载免费PDF全文
Rabbit antisera to pepsin and pepsinogen were characterized by several immunological criteria. Both antisera inhibited the rennet activity of pepsin. Antipepsinogen protected pepsin from alkaline denaturation. Using antipepsinogen, precipitin analysis at pH 5.5 indicated that the native enzyme resembles the precursor more closely than did the denatured enzyme. However, all three proteins have some antigenic sites in common. Both antisera reacted more efficiently with their homologous antigens. When measured by C' fixation, the pepsinogen-antipepsinogen system was inhibited by pepsin and to a greater degree, by the activation mixture and the pepsin-inhibitor complex. Pepsin-antipepsin was inhibited by pepsinogen. The specificity of these two antibodies toward pepsin and pepsinogen conformation was used to measure the disappearance of pepsinogen and the concomitant appearance of pepsin during autocatalytic conversion at pH 4.6. The experimental results obtained during the conversion could be duplicated by using varying proportions of pepsin and pepsinogen in the model system. The potentialities of employing these antisera to detect conformational changes such as the unmasking of the pepsin moiety in pepsinogen molecules modified by physical or chemical reagents are discussed.  相似文献   

14.
Exposure of pepsinogen to acid for less than 2 min yields a product with proteolytic activity. This activity is due to intramolecular and intermolecular formation of pepsin from pepsinogen. We find no evidence for intermolecular proteolytic activity in the zymogen. These conclusions are based upon two sets of experiments. First, chemical cleavage of pepsinogen during short activation is demonstrated by quantitative analysis of the NH2-terminal 2 residues of the pepsin and pepsinogen in an activation mixture. In addition, quantitative NH2-terminal analyses after activation under different conditions confirm our previous inference that the product of unimolecular pepsinogen activation is homogeneous whereas bimolecular activation produces a pepsin product with a variety of NH2 termini. Second, spectral changes which occur upon acidification of a pepsinogen solution and are reversed by neutralization are shown to be consistent with the chemical cleavage of pepsinogen during acidification. The first order rate constant for pepsinogen activation, calculated from these spectral experiments, agrees well with the value we had determined previously.  相似文献   

15.
Studies on the irreversible step of pepsinogen activation   总被引:1,自引:0,他引:1  
D M Glick  Y Shalitin  C R Hilt 《Biochemistry》1989,28(6):2626-2630
The bond cleavage step of pepsinogen activation has been investigated in a kinetic study in which the denatured products of short-term acidifications were separated on SDS-polyacrylamide gels and the peptide products were quantitated by densitometry. Although several peptide products were observed, under the conditions of the experiments (pH values between 2.0 and 2.8, 22 degrees C), the only one that was a product of an initial bond cleavage was the 44-residue peptide, which upon removal from pepsinogen yields pepsin. The rate constant for this bond cleavage is 0.015 s-1 at pH 2.4, which is the same as that at which the alkali-stable potential activity of pepsinogen had been found to convert to the alkali-labile activity of pepsin. When the conversion of zymogen to enzyme was followed by the change in fluorescence of adsorbed 6-(p-toluidinyl)naphthalene-2-sulfonate (TNS), the rate of change in TNS fluorescence was the same as the conversion to alkali lability. However, pepstatin blocked the bond cleavage of pepsinogen to pepsin, but it permitted the fluorescence change to proceed. In fact, it accelerated the apparent rate of change of TNS fluorescence by shifting the pKa of an essential conjugate acid from 1.7 to 2.6. The conversion to alkali lability, therefore, may be considered to be a composite of a relatively slow conformational change (at the measured rate), followed immediately by a relatively fast bond cleavage.  相似文献   

16.
A crude extract of the proventriculus of the Japanese quail gave at least five bands of peptic activity at pH 2.2 on polyacrylamide gel electrophoresis. The main component, constituting about 40% of the total acid protease activity, was purified to homogeneity by hydroxyapatite and DEAE-Sepharose column chromatographies. At below pH 4.0, the pepsinogen was converted to a pepsin, which had the same electrophoretic mobility as one of the five bands of peptic activity present in the crude extract. The molecular weights of the pepsinogen and the pepsin were 40 000 and 36 000, respectively. Quail pepsin was stable in alkali up to pH 8.5. The optimal pH of the pepsin on hemoglobin was pH 3.0. The pepsin had about half the milk-clotting activity of purified porcine pepsin, but the pepsinogen itself had no activity. The hydrolytic activity of quail pepsin on N-acetyl-L-phenylalanyl-3,5-diiodo-L-tyrosine was about 1% of that of porcine pepsin. Among the various protease inhibitors tested, only pepstatin inhibited the proteolytic activity of the pepsin. The amino acid composition of quail pepsinogen was found to be rather similar to that of chick pepsinogen C, and these two pepsinogens possessed common antigenicity.  相似文献   

17.
The relationship between male infertility and the pepsinogen C content in semen has been investigated. The activation of the seminal pepsinogen C in the vagina has been studied under physiological conditions. Samples of semen from 48 vasectomized males and from 46 males of infertile couples were analyzed for pepsinogen C by radioimmunoassay. No correlation was found between the level of pepsinogen C and seminal characteristics, including sperm concentration, motility, and morphologic features. The mean concentration of pepsinogen C was 42.2 micrograms/ml; the first, second, and third quartile were 18.4, 29.6, and 57.6 micrograms/ml, respectively. No significant difference in the level of pepsinogen C was observed between semen of normal quality, semen of reduced quality, and semen with aspermia. Activation of pepsinogen C occurred within 3 h when semen was incubated at pH below 5.0 at 37 degrees C. Intravaginal activation was investigated in six experiments in which semen from two males was instilled in three females. In four experiments with two couples, post-coital activation was investigated. Pepsin C activity in vaginal fluid was detected an average of 3 h (range 2-5 h) and 5 h (4-7 h) after instillation or ejaculation, respectively. Vaginal pH had then been below 4.5 for approximately 1 h. Pepsin C activity was present in the vagina for more than 24 h thereafter. It is most likely that seminal pepsin C is without influence on the fertilizing spermatozoon. However, pepsin C may exert a local effect in the vagina by degrading seminal proteins, thus preventing an immunogenic response in females.  相似文献   

18.
Primary structure of human pepsinogen gene   总被引:24,自引:0,他引:24  
A recombinant clone, which covers the pepsinogen gene in a single insert, has been isolated by screening a library of human genomic DNA, using a swine pepsinogen cDNA as a probe. Sequence analysis of coding DNA segments of the clone revealed that the pepsinogen gene occupies approximately 9.4-kilobase pairs of the genomic DNA and is separated into nine exons by eight introns of various lengths. The predicted amino acid sequence of human pepsinogen consists of 373 residues and is 82% homologous with that of swine pepsinogen. In addition, the predicted sequence contained a single sequence of 15 amino acid residues at the NH2 terminus, showing that the protein is synthesized as prepepsinogen. The structure of the gene, in which two homologous sequences including the two active site aspartyl residues of pepsin are present in different coding segments, is in support of the view that the pepsinogen gene evolved by duplication of a shorter ancestral gene.  相似文献   

19.
Upon activation of human pepsinogen A at pH 2.0 in the presence of pepstatin, an intermediate form was generated together with pepsin A. This activation intermediate could be separated from pepsinogen A and pepsin A by DE-32 cellulose chromatography at pH 5.5. It had a molecular weight intermediate between those of pepsinogen A and pepsin A, and contained about half the number of basic amino acid residues in pepsinogen A. It had phenylalanine as the amino(N)-terminal amino acid, and was deduced to be generated by release of N-terminal 25 residue segment from pepsinogen A. Amino acid sequence determination of the N-terminal portions of pepsinogen A and the intermediate from enabled us to elucidate the entire acid sequence of the 47-residue activation peptide segment as follow: [Formula: see text]. On the other hand, upon activation of pepsinogen A at pH 2.0 in the absence of pepstatin, cleavage of the activation segment occurred at several additional bonds. In addition, upon activation both in the presence and in the absence of pepsitatin, an additional activation intermediate, designated pepsin A', was formed in minor quantities. This form was identical with pepsin A, except that it had an additional Pro-Thr-Leu sequence preceding the N-terminal valine of pepsin A.  相似文献   

20.
When Japanese monkey pepsinogen was activated at pH 2.0 in the absence of pepstatin, the activation segment of the amino(N)-terminal 47 residues was released as a single intact polypeptide. This clearly shows that the pepsinogen was activated to pepsin directly. This direct activation was called a 'one-step' process. On the other hand, when pepsinogen was activated at pH 2.0 in the presence of pepstatin, an appreciable amount of pepsinogen was converted to an intermediate form between pepsinogen and pepsin, although a part of pepsinogen was activated directly to pepsin. The intermediate form was generated by releasing the N-terminal 25 residues of pepsinogen. This activation through the intermediate form is thought to be a 'two-step' or 'stepwise-activating' process involving a bimolecular reaction between pepstatin-bound pepsinogen and free pepsin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号