首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Transfection of the cDNA encoding the activated c-raf-1 protein or addition of 12-O-tetradecanoylphorbol-13-acetate (TPA) or dibutyryl cAMP to NIH/3T3 cells activated the c-fos gene enhancer linked to the chloramphenicol acetyltransferase or luciferase reporter gene. Prolonged treatment of NIH/3T3 cells with phorbol 12,13-dibutyrate caused down-regulation of protein kinase C. In these cells, addition of TPA did not stimulate the c-fos gene enhancer any more, but transfection of the c-raf-1 cDNA or addition of dibutyryl cAMP still stimulated the c-fos gene enhancer to the same extent as those induced in the control cells. Transfection of the c-raf-1 cDNA or addition of TPA to NIH/3T3 cells stimulated the serum response element and TPA response element but not the cAMP response element. In contrast, addition of dibutyryl cAMP to NIH/3T3 cells stimulated the cAMP response element but not the serum response element or TPA response element. These results indicate that the activated c-raf-1 protein stimulates the serum response element and TPA response element in a manner independent of protein kinase C and cAMP-dependent protein kinase. Since the c-fos gene enhancer has been shown to contain the serum response element and cAMP response element, it is most likely that the c-raf-1 protein is involved in the regulation of c-fos gene expression through the serum response element.  相似文献   

3.
We have previously identified a protein factor, PEBP2 (polyomavirus enhancer-binding protein), in the nuclear extract from mouse NIH 3T3 cells which binds to the sequence motif, PEA2, located within the polyomavirus enhancer A element. Upon cellular transformation with activated oncogene c-Ha-ras, this factor frequently undergoes drastic molecular modifications into an altered form having a considerably reduced molecular size. In this study, the altered form, PEBP3, was purified to near homogeneity. The purified PEBP3 comprised two sets of families of polypeptides, alpha-1 to alpha-4 and beta-1 to beta-2, which were 30 to 35 kilodaltons and 20 to 25 kilodaltons in size, respectively. Both kinds of polypeptides possessed DNA-binding activities with exactly the same sequence specificity. Individual alpha or beta polypeptides complexed with DNA showed faster gel mobilities than did PEBP3. However, the original gel retardation pattern was restored when alpha and beta polypeptides were mixed together in any arbitrary pair. These observation along with the results of UV- and chemical-cross-linking studies led us to conclude that PEBP3 is a heterodimer of alpha and beta subunits, potentially having a divalent DNA-binding activity. Furthermore, PEBP3 was found to bind a second, hitherto-unnoticed site of the polyomavirus enhancer that is located within the B element and coincides with the sequence previously known as the simian virus 40 enhancer core homology. From comparison of this and the original binding sites, the consensus sequence for PEBP3 was defined to be PuACCPuCA. These findings provided new insights into the biological significance of PEBP3 and PEBP2.  相似文献   

4.
Treatment of leukemic HL-60, NIH 3T3, and baby hamster kidney (BHK-21) cells, prelabeled with [2-14C]ethanolamine, with 12-O-tetradecanoylphorbol-13-acetate (TPA), a potent activator of protein kinase C, resulted in increased degradation of both 14C-labeled phosphatidylethanolamine and its alkenyl (plasmalogen) derivate. A half-maximal and a maximal (approximately 3.4-fold) stimulation of ethanolamine phospholipid degradation required 3 and 10-20 nM TPA, respectively. TPA had a similar concentration-dependent stimulatory effect on the hydrolysis of phosphatidylcholine in cells previously prelabeled with [methyl-14C]choline. Increased phospholipid degradation was not accompanied by the formation of lysophosphatidylethanolamine, indicating that a phospholipase A-type enzyme was not involved. About 80% of total water-soluble degradation products was ethanolamine, suggesting that phospholipid hydrolysis was catalyzed by a phospholipase D-type enzyme. Increased formation of ethanolamine with exposure of cells to TPA was observed only after a 10-min lag period. Mezerein, bryostatin, sn-1-oleoyl-2-acetylglycerol, and polymyxin B, all of which mimic the action of TPA on protein phosphorylation in vivo, also stimulated the hydrolysis of ethanolamine phospholipids in HL-60 cells, suggesting that the TPA effect was mediated by protein kinase C.  相似文献   

5.
Ca(2+)-activated neutral protease calpain is ubiquitously expressed and may have pleiotropic biological functions. We have previously reported that repeated treatment of NIH3T3 mouse fibroblasts with the calpain inhibitor N-acetyl-Leu-Leu-norleucinal (ALLN) resulted in the induction of transformed foci [T. Hiwasa, T. Sawada, and S. Sakiyama (1990) Carcinogenesis 11, 75-80]. To elucidate further the effects of calpain in malignant transformation of NIH3T3 cells, calpastatin, an endogenous specific inhibitor of calpain, was expressed in NIH3T3 cells by transfection with cDNA. G418-selected calpastatin-expressing clones showed a significant increase in the anchorage-independent growth ability. A similar increase in cloning efficiency in soft agar medium was also observed in calpain small-subunit-transfected clones. On the other hand, reduced expression of calpastatin achieved by transfection with calpastatin antisense cDNA in Ha-ras-transformed NIH3T3 (ras-NIH) cells caused morphological reversion as well as a decrease in anchorage-independent growth. When NIH3T3 cells were treated with ALLN for 3 days, cell growth was stimulated by approximately 10%. This growth stimulation by ALLN was not observed in ras-NIH cells, but recovered by expression of a dominant negative form of protein kinase C (PKC)epsilon but not by that of PKCalpha. Western blotting analysis showed that an increase in PKCepsilon was much more prominent than that of PKCalpha in NIH3T3 cells after treatment with ALLN. These results are concordant with the notion that calpain suppresses malignant transformation by predominant degradation of PKCepsilon.  相似文献   

6.
7.
Fibroblast growth factor (FGF) plus insulin induced DNA synthesis in and proliferation of NIH/3T3 cells. The protein kinase C-activating phorbol ester, 12-O-tetradecanoylphorbol-13-acetate (TPA), inhibited both the DNA synthesis and cell proliferation induced by FGF plus insulin. The concentration of TPA required for 50% inhibition of the DNA synthesis was about 5 nM. Phorbol-12,13-dibutyrate, another protein kinase C-activating phorbol ester, also inhibited the DNA synthesis but 4 alpha-phorbol-12,13-didecanoate, known to be inactive for this enzyme, was ineffective. DNA synthesis started at about 12 h after the addition of FGF plus insulin. The inhibitory action of TPA on the DNA synthesis was observed when it was added within 12 h after the addition of FGF plus insulin. These results suggest that phorbol esters exhibit an antiproliferative action through protein kinase C activation in NIH/3T3 cells, and that this action of phorbol esters is due to inhibition of the progression from the late G1 to the S phase of the cell cycle.  相似文献   

8.
9.
The myeloperoxidase (MPO) and neutrophil elastase genes are expressed specifically in immature myeloid cells. The integrity of a polyomavirus enhancer core sequence, 5'-AACCACA-3', is critical to the activity of the murine MPO proximal enhancer. This element binds two species, myeloid nuclear factors 1 alpha and 1 beta (MyNF1 alpha and -beta), present in 32D cl3 myeloid cell nuclear extracts. The levels of the MyNF1s increase during early 32D cl3 cell granulocytic differentiation. Both MyNF1 alpha and -beta supershift with an antiserum raised by using a peptide derived from the N terminus of polyomavirus enhancer-binding protein 2/core-binding factor (PEBP2/CBF) alpha subunit. The specific peptide inhibits these supershifts. In vitro-translated PEBP2/CBF DNA-binding domain binds the murine MPO PEBP2/CBF site. An alternate PEBP2/CBF consensus site, 5'-GACCGCA-3', but not a simian virus 40 enhancer core sequence, 5'-TTCCACA-3', binds the MyNF1s in vitro and activates a minimal murine MPO-thymidine kinase promoter in vivo. The murine neutrophil elastase gene 100-bp 5'-flanking sequences contain several functional elements, including potential binding sites for PU.1, C/EBP, c-Myb, and PEBP2/CBF. The functional element 5'-GGCCACA-3' located at positions -66 to 72 differs from the PEBP2/CBF consensus (5'-PuACCPuCA-3') only by an A-to-G transition at position 2. This DNA element binds MyNF1 alpha and -beta weakly. The N terminis of two PEBP2/CBF alpha subunit family members, PEBP2 alpha A and PEBP2 alpha B (murine AML1), are nearly identical, and 32D c13 cl3 cells contain both corresponding mRNAs. Since t(8;21), t(3;21), and inv(16), associated with myeloid leukemias, disrupt subunits of PEBP2/CBF, we speculate that the resulting oncoproteins, AML1-ETO, AML1-EAP, AML1-Evi1, and CBF beta-MYH11, inhibit early myeloid differentiation.  相似文献   

10.
It has been reported that both c-fos and c-myc mRNAs are induced in NIH/3T3 cells after 12-O-tetradecanoylphorbol-13-acetate (TPA) treatment. We have studied the effect of TPA on the expression of c-fos and c-myc in EJ-ras-transformed NIH/3T3 and its nontumorigenic flat revertant R1 cells. Although TPA treatment induces c-myc mRNA, as in the case of NIH/3T3 cells, the induced level of c-fos mRNA is greatly reduced not only in slow-growing EJ-ras-transformed NIH/3T3 but also in quiescent R1 cells. In addition, serum-induced c-fos expression is also reduced in EJ-ras-transformed NIH/3T3 and R1 cells. These observations suggest that the pathway from TPA to c-fos gene is different from that to c-myc gene and that the former pathway is down-regulated in association not with the transformed phenotype, but with EJ-ras expression, and it is possible that this reduced induction of c-fos is not specific to TPA.  相似文献   

11.
The cellular concentration of phosphocholine has been reported to be significantly elevated in Ha-ras-transformed NIH 3T3 cells, but not in v-sis transformants (J. C. Lacal, J. Moscat, and S. A. Aaronson, Nature [London] 330:269-271, 1987). It was suggested that the phosphocholine arises from constitutive hydrolysis of phosphatidylcholine by phospholipase C, an activity that would also account for the elevated 1,2-diacylglycerol found in ras-transformed cells. I have demonstrated that the increased phosphocholine arises through the induction of choline kinase activity. No increased breakdown of phosphatidylcholine was observed in ras-transformed cells. The elevation in diacylglycerol is therefore unlikely to be a consequence of phosphatidylinositol or phosphatidylcholine turnover.  相似文献   

12.
13.
We cloned a cDNA encoding a novel mouse protein, named A-C1, by differential display between two mouse cell lines: embryonic fibroblast C3H10T1/2 and chondrogenic ATDC5. The deduced amino acid sequence of A-C1 consists of 167 amino acids and shows 46% identity with that of a ras-responsive gene, rat Ha-rev107. Northern blot analysis showed a distinct hybridization band of 3.2 kilobases. Expression of A-C1 mRNA was detected in undifferentiated ATDC5 cells and myoblastic C2C12 cells, while none of C3H10T1/2 cells, NIH3T3 fibroblasts, Balb/c 3T3 fibroblasts, osteoblastic MC3T3-E1 cells, and ST2 bone marrow stromal cells expressed A-C1 mRNA in vitro. Moreover, A-C1 mRNA was expressed in skeletal muscle, heart, brain, and bone marrow in adult mice. By in situ hybridization, A-C1 gene expression was localized in hippocampus as well as bone marrow cells. By immunocytochemistry, A-C1 protein was detected in the cytoplasm as well as perinuclear region of the cells. Transfection of A-C1 cDNA into Ha-ras-transformed NIH3T3 cell line caused increase in the number of flat colonies and inhibition of cell growth. Our data indicate that A-C1 is expressed in some specific tissues in vivo and modulates Ha-ras-mediated signaling pathway.  相似文献   

14.
15.
Autophagy plays a critical role in maintaining cell homeostasis in response to various stressors through protein conjugation and activation of lysosome-dependent degradation. MAP1LC3B/LC3B (microtubule- associated protein 1 light chain 3 β) is conjugated with phosphatidylethanolamine (PE) in the membranes and regulates initiation of autophagy through interaction with many autophagy-related proteins possessing an LC3-interacting region (LIR) motif, which is composed of 2 hydrophobic amino acids (tryptophan and leucine) separated by 2 non-conserved amino acids (WXXL). In this study, we identified a new putative LIR motif in PEBP1/RKIP (phosphatidylethanolamine binding protein 1) that was originally isolated as a PE-binding protein and also a cellular inhibitor of MAPK/ERK signaling. PEBP1 was specifically bound to PE-unconjugated LC3 in cells, and mutation (WXXL mutated to AXXA) of this LIR motif disrupted its interaction with LC3 proteins. Interestingly, overexpression of PEBP1 significantly inhibited starvation-induced autophagy by activating the AKT and MTORC1 (mechanistic target of rapamycin [serine/threonine kinase] complex 1) signaling pathway and consequently suppressing the ULK1 (unc-51 like autophagy activating kinase 1) activity. In contrast, ablation of PEBP1 expression dramatically promoted the autophagic process under starvation conditions. Furthermore, PEBP1 lacking the LIR motif highly stimulated starvation-induced autophagy through the AKT-MTORC1-dependent pathway. PEBP1 phosphorylation at Ser153 caused dissociation of LC3 from the PEBP1-LC3 complex for autophagy induction. PEBP1-dependent suppression of autophagy was not associated with the MAPK pathway. These findings suggest that PEBP1 can act as a negative mediator in autophagy through stimulation of the AKT-MTORC1 pathway and direct interaction with LC3.  相似文献   

16.
17.
We used a dominant inhibitory mutation of c-Ha-ras which changes Ser-17 to Asn-17 in the gene product p21 [p21(Asn-17)Ha-ras] to investigate ras function in mitogenic signal transduction. An NIH 3T3 cell line [NIH(M17)] was isolated that displayed inducible expression of the mutant Ha-ras gene (Ha-ras Asn-17) via the mouse mammary tumor virus long terminal repeat and was growth inhibited by dexamethasone. The effect of dexamethasone induction on response of quiescent NIH(M17) cells to mitogens was then analyzed. Stimulation of DNA synthesis by epidermal growth factor (EGF) and 12-O-tetradecanoylphorbol-13-acetate (TPA) was completely blocked by p21(Asn-17) expression, and stimulation by serum, fibroblast growth factor, and platelet-derived growth factor was partially inhibited. However, the induction of fos, jun, and myc by EGF and TPA was not significantly inhibited in this cell line. An effect of p21(Asn-17) on fos induction was, however, demonstrated in transient expression assays in which quiescent NIH 3T3 cells were cotransfected with a fos-cat receptor plasmid plus a Ha-ras Asn-17 expression vector. In this assay, p21(Asn-17) inhibited chloramphenicol acetyltransferase expression induced by EGF and other growth factors. In contrast to its effect on DNA synthesis, however, Ha-ras Asn-17 expression did not inhibit fos-cat expression induced by TPA. Conversely, downregulation of protein kinase C did not inhibit fos-cat induction by activated ras or other oncogenes. These results suggest that ras proteins are involved in at least two parallel mitogenic signal transduction pathways, one of which is independent of protein kinase C. Although either pathway alone appears to be sufficient to induce fos, both appear to be necessary to induce the full mitogenic response.  相似文献   

18.
In quiescent cultures of Swiss 3T3 cells, prostaglandin E1 (PGE1) known to elevate cAMP increased rapidly cytoplasmic free Ca2+ concentration ([Ca2+]i) as measured with the fluorescent Ca2+ indicator quin2. The primary source of the PGE1-induced elevation of [Ca2+]i was extracellular. Pretreatment of the cells with various doses of 12-O-tetradecanoylphorbol-13-acetate (TPA), a potent protein kinase C-activating phorbol ester, inhibited the PGE1-induced elevation of [Ca2+]i in a dose-dependent manner. Inversely, TPA enhanced slightly the PGE1-induced increase of cAMP. TPA alone did not affect the basal level of [Ca2+]i or cAMP in the absence of PGE1. The inhibitory action of TPA on the PGE1-induced elevation of [Ca2+]i was mimicked by other protein kinase C-activating agents such as phorbol 12,13-dibutyrate and 1-oleoyl-2-acetylglycerol. 4 alpha-Phorbol 12,13-didecanoate known to be inactive for protein kinase C was ineffective in this capacity. Prolonged treatment of the cells with phorbol 12,13-dibutyrate resulted in the down-regulation and disappearance of protein kinase C. In these protein kinase C-deficient cells, PGE1 still elevated [Ca2+]i to the same extent as that in the control cells, but TPA did not inhibit the PGE1-induced elevation of [Ca2+]i. These results strongly suggest that protein kinase C serves as an inhibitor for PGE1-induced Ca2+ influx in Swiss 3T3 cells.  相似文献   

19.
20.
Incubation of the serum-deprived cultures of NIH/3T3 cells with bombesin or platelet-derived growth factor (PDGF) induced the phospholipase C-mediated hydrolysis of phosphoinositides. Protein kinase C-activating 12-O-tetradecanoylphorbol 13-acetate (TPA) and pertussis toxin inhibited the bombesin-induced phospholipase C reactions. AlF4-, a direct activator of GTP-binding proteins (G proteins), also induced the phospholipase C reactions and TPA inhibited the AlF4- -induced reactions. These results suggest that a pertussis toxin-sensitive G protein is involved in the coupling of the bombesin receptor to the phospholipase C and that the coupling of the G protein to the phospholipase C is inhibited by protein kinase C. In contrast, neither TPA nor pertussis toxin inhibited the PDGF-induced phospholipase C reactions, indicating that a pertussis toxin-sensitive G protein is not involved in the coupling of the PDGF receptor to the phospholipase C and that this coupling is insensitive to protein kinase C. These results suggest that the regulatory mechanism of the PDGF receptor for the phospholipase C activation is different from that of the bombesin receptor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号