首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A phosphoprotein phosphatase (phosphoprotein phosphohydrolase, EC 3.1.3.16) was partially purified from pig heart using as substrate H2B histone which had been phosphorylated at Ser-32 and Ser-36 by adenosine 3',5'-monophosphate-dependent protein kinase (EC 2.7.1.37). The enzyme had a molecular weight of approx. 250 000 and was converted to a smaller form with a molecular weight of approx. 30 000 upon treatment with ethanol. Phosphorylase alpha (EC 2.4.1.1) and phosphorylated H1 histone also served as substrates for both forms of the enzyme. The conversion of the large form of the enzyme to the small form decreased the phosphohistone phosphatase activity to 25-50% with a concomitant 7-fold increase in the phosphorylase alpha phosphatase activity. Ser-36 phosphate was removed 6- and 15-fold more rapidly than was Ser-32 phosphate by the large and small forms of the enzyme, respectively. Among Ser-36-containing tryptic phosphopeptides derived from phosphorylated H2B histone, Lys-Glu-Ser(P)-Tyr-Ser-Val-Tyr was the shortest phosphopeptide which was dephosphorylated at a significant reaction rate with the phosphoprotein phosphatase. The Km values for phosphorylated H2B histone and the tryptic phosphopeptide were 23.7 micron and 187.1 micron, respectively, with the large form, and 81.4 micron and 90.0 micron, respectively, with the small form of the enzyme.  相似文献   

2.
A phosphoprotein phosphatase which is active against chemically phosphorylated protamine has been purified about 500-fold from bovine adrenal cortex. The enzyme has a pH optimum between 7.5 and 8.0, and has an apparent Km for phosphoprotamine of about 50 muM. The hydrolysis of phosphoprotamine is stimulated by salt, and by Mn2+. Hydrolysis of phosphoprotamine is inhibited by ATP, ADP, AMP, and Pi, but is not affected by AMP or cyclic GMP. The purified phosphoprotein phosphatase preparation also dephosphorylates p-nitrophenyl phosphate and phosphohistone, and catalyzes the inactivation of liver phosphorylase, the inactivation of muscle phosphorylase a (and its conversion to phosphorylase b), and the inactivation of muscle phosphorylase b kinase. Phosphatase activities against phosphoprotamine and muscle phosphorylase a copurify over the last three stages of purification. Phosphoprotamine inhibits phosphorylase phosphatase activity, and muscle phosphorylase a inhibits the dephosphorylation of phosphoprotamine. These results suggest that one enzyme possesses both phosphoprotamine phosphatase and phosphorylase phosphatase activities. The stimulation of phosphorylase phosphatase activity, but not of phosphoprotamine phosphatase activity, by caffeine and by glucose, suggests that the different activities of this phosphoprotein phosphatase may be regulated separately.  相似文献   

3.
A recombinant protein-tyrosine-phosphatase has been expressed in Escherichia coli and purified to a single band by sodium dodecyl sulfate-polyacrylamide gel electrophoresis using affinity chromatography. When the phosphatase was allowed to react with 32P-labeled substrates and then rapidly denaturated, a 32P-labeled phosphoprotein could be visualized by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Transient formation of a 32P-labeled phosphoprotein was observed, and the 32P-labeled protein disappeared as substrate was consumed. In the presence of 32P-labeled p-nitrophenyl phosphate, 0.27 mol of phosphate was incorporated per mol of protein-tyrosine-phosphatase. Site-directed mutagenesis of a catalytically essential cystine residue (position 215) in the recombinant protein resulted in an inactive enzyme, and no phosphoprotein was formed. The 32P-labeled phosphoprotein showed a maximum lability between pH 2.5 and 3.5 and was rapidly decomposed in the presence of iodine. These properties, along with additional site-directed mutations, suggest that the protein-tyrosine-phosphatase forms a covalent thiol phosphate linkage between Cys215 and phosphate.  相似文献   

4.
A phosphoprotein phosphatase (phosphoprotein phosphohydrolase, EC 3.1.3.16) has been partially purified from rat liver homogenates by (NH4)2SO4 and ethanol precipitations followed by DEAE-cellulose and Sepharose 6B chromatography. The phosphoprotein phosphatase is capable of cleaving [32P]phosphate from radiolabelled phosphopyruvate kinase (type L) (EC 2.7.1.40), phosphohistones, and phosphoprotamine. However, it did not detectably dephosphorylate ATP, ADP, DL-phosphorylserine or beta-glycerophosphate. Dephosphorylation of [32P]phosphopyruvate kinase was stimulated by divalent cations and inhibited by ATP, ADP, Fru-1,6-P2, and orthophosphate. Divalene cations could reverse inhibition induced by ADP or ATP. At least one function of the phosphoprotein phosphatase may be to remove phosphate groups from the phosphorylated form of pyruvate kinase in the liver.  相似文献   

5.
Exogenous purified rabbit skeletal-muscle glycogen synthase was used as a substrate for adipose-tissue phosphoprotein phosphatase from fed and starved rats in order to (1) compare the relationship between phosphate released from, and the kinetic changes imparted to, the substrate and (2) ascertain if decreases in adipose-tissue phosphatase activity account for the apparent decreased activation of endogenous glycogen synthase from starved as compared with fed rats. Muscle glycogen synthase was phosphorylated with [gamma-(32)P]ATP and cyclic AMP-dependent protein kinase alone, or in combination with a cyclic AMP-independent protein kinase, to 1.7 or 3mol of phosphate per subunit. Adipose-tissue phosphatase activity determined with phosphorylated skeletal-muscle glycogen synthase as substrate was decreased by 35-60% as a consequence of starvation. This decrease in phosphatase activity had little effect on the capacity of adipose-tissue extracts to activate exogenous glycogen synthase (i.e. to increase the glucose 6-phosphate-independent enzyme activity), although there were marked differences in the activation profiles for the two exogenous substrates. Glycogen synthase phosphorylated to 1.7mol of phosphate per subunit was activated rapidly by adipose-tissue extracts from either fed or starved rats, and activation paralleled enzyme dephosphorylation. Glycogen synthase phosphorylated to 3mol of phosphate per subunit was activated more slowly and after a lag period, since release of the first mol of phosphate did not increase the glucose 6-phosphate-independent activity of the enzyme. These patterns of enzyme activation were similar to those observed for the endogenous adipose-tissue glycogen synthase(s): the glucose 6-phosphate-independent activity of the endogenous enzyme from fed rats increased rapidly during incubation, whereas that of starved rats, like that of the more highly phosphorylated muscle enzyme, increased only very slowly after a lag period. The observations made here suggest that (1) changes in glucose 6-phosphate-independent glycogen synthase activity are at best only a qualitative measure of phosphoprotein phosphatase activity and (2) the decrease in glycogen synthase phosphatase activity during starvation is not sufficient to explain the differential glycogen synthase activation in adipose tissue from fed and starved rats. However, alterations in the phosphorylation state of glycogen synthase combined with decreased activity of phosphoprotein phosphatase, both as a consequence of starvation, could explain the apparent markedly decreased enzyme activation.  相似文献   

6.
Three peaks of protein phosphatase (phosphoprotein phosphohydrolase, EC 3.1.3.16) activity (fractions a, b and c) acting on muscle phosphorylase (1,4-alpha-D-glucan:orthophosphate alpha-D-glucosyltransferase, EC 2.4.1.1) were separated by DEAE-cellulose chromatography of yeast extracts. In contrast to fractions a and b, only fraction c was able to liberate phosphate from 32P-labelled inactivated yeast phosphorylase. The activity of fraction c on both substrates was totally dependent on the presence of bivalent metal ions (Mg2+, Mn2+), and was activated by Mg . ATP. Following freezing in the presence of mercaptoethanol, fractions a and b were also able to dephosphorylate yeast phosphorylase. Rabbit muscle phosphoprotein phosphatase inhibitors 1 and 2 showed that yeast phosphatases acting on muscle phosphorylase were inhibited by inhibitor 2 but not by inhibitor 1. The action of fraction c on yeast phosphorylase was not inhibited by either inhibitor. The native yeast phosphorylase phosphatase (EC 3.1.3.17) was purified 8000-fold by ion-exchange chromatography, casein-Sepharose chromatography and Sephadex G-200 gel filtration. The purified enzyme was unable to dephosphorylate rabbit muscle phosphorylase a, but acted on casein phosphate (Km 3.3 mg/ml). Molecular weight was estimated to be 78 000 and pH optimum 6.5-7.5. Activity of the enzyme was dependent on bivalent metal ions (Mg2+, Mn2+) and was inhibited by fluoride (Ki 20 mM) and succinate (Ki 10 mM).  相似文献   

7.
The NAD-dependent glutamate dehydrogenase from Candida utilis was isolated from 32P-labeled cells following enzyme inactivation promoted by glutamate starvation and found to exist in a phosphorylated form. Analysis of purified, fully active NAD-dependent glutamate dehydrogenase (a form) and inactive NAD-dependent glutamate dehydrogenase (b form) for alkalilabile phosphate revealed that the a form contained 0.09 +/- 0.06 mol of phosphate/mol of enzyme subunit and b form 1.25 +/- 0.06 mol of phosphate/mol of enzyme subunit. Phosphorylation caused a 10-fold reduction in enzyme specific activity. Dephosphorylation (release of 32P) and enzyme reactivation occurred on incubation with cell-free yeast extracts, indicating the presence of a phosphoprotein phosphatase in such preparations.  相似文献   

8.
That red muscle pyruvate kinase from anoxic Busycotypus canaliculatum (PK-anoxic) is a phosphoprotein was demonstrated by the anoxia-dependent, in vivo, covalent incorporation of injected [32P]orthophosphate into the enzyme molecule. Specificity in labelling of PK-anoxic was strongly suggested by: (a) coincidental elution of pyruvate kinase activity and radioactivity following chromatography of purified PK-anoxic on Sepharose CL-6B, and (b) comigration of the area containing [32P]phosphate and Coomassie-Blue-staining protein following SDS-polyacrylamide gel electrophoresis of homogenous PK-anoxic. The [32P]phosphate content of the enzyme was calculated to be 7.3 mol phosphate/mol enzyme (233 kDa, 180 units/mg protein). Evidence for the reversibility of this phosphorylation was provided by the consistent kinetic similarities between purified red muscle pyruvate kinase from aerobic animals (PK-aerobic) and homogenous, unlabelled, alkaline phosphatase treated PK-anoxic. Comparison of the electrophoretic mobilities of products derived from acid hydrolysis of purified 32P-labelled PK-anoxic with authentic substances suggest the presence of an O-phospho-L-threonine residue in the protein. That this residue plays a probable role in an interconversion mechanism was suggested by the lack of phosphate exchange of homogenous 32P-labelled PK-anoxic in the presence of all substrates. A possible role of protein phosphorylation as a mechanism for the overall control of molluscan anaerobic metabolism is suggested.  相似文献   

9.
The major secreted isoenzyme of human prostatic acid phosphatase (PAcP) (EC 3.1.3.2), which catalyses p-nitrophenyl phosphate (PNPP) hydrolysis at acid pH values, was found to have phosphotyrosyl protein phosphatase activity since it dephosphorylated three different phosphotyrosine-containing protein substrates. Several lines of evidence are presented to show that the phosphotyrosyl phosphatase and PAcP are the same enzyme. A highly purified PAcP enzyme preparation which contains a single N-terminal peptide sequence was used to test for the phosphotyrosyl phosphatase activity. Both activities comigrated during gel filtration by high performance liquid chromatography. Phosphotyrosyl phosphatase activity and PNPP acid phosphatase activity exhibited similar sensitivities to different effectors. Both phosphatase activities showed the same thermal stability. Specific anti-PAcP antibody reacted to the same extent with both phosphatase activities. PNPP acid phosphatase activity was competitively inhibited by the phosphotyrosyl phosphatase substrate. To characterize further the phosphotyrosyl phosphatase activity, the Km values using different phosphoprotein substrates were determined. The apparent Km values for phosphorylated angiotensin II, anti-pp60src immunoglobulin G and casein were in the nM range for phosphotyrosine residues, which was about 50-fold lower than the Km for phosphoserine residues in casein.  相似文献   

10.
Several properties of partially purified phosphoprotein phosphatase from chick embryo are described. The enzyme was active toward casein, phosvitin and phosphopeptone, but not toward low molecular weight phosphate esters including aliphatic and aromatic phos-phomonoesters, a phosphodiester, pyrophosphates and phosphoamides. The enzyme was not activated by reducing compounds. Heavy metal ions and sulfhydryl inhibitors inhibited the enzyme activity, but the inhibited enzyme was partially reactivated with cysteine. Metal chelating agents also inhibited the activity. To the oxalate treated enzyme, Fe++ and Co++ had a stimulatory effect. Differences in property between phosphoprotein phosphatases of chick embryo and of mammalian tissues are discussed.  相似文献   

11.
A phosphoprotein phosphatase which has an apparent molecular weight of 240,000 was partially purified (500-fold) from the glycogen-protein complex of rabbit skeletal muscle. The enzyme exhibited broad substrate specificity as it dephosphorylated phosphorylase, phosphohistones, glycogen synthase, phosphorylase kinase, regulatory subunit of cAMP-dependent protein kinase, and phosphatase inhibitor 1. The phosphatase showed high specificity towards dephosphorylation of the beta-subunit of phosphorylase kinase and site 2 of glycogen synthase. With the latter substrate, the presence of phosphate in sites 1a and 1b decreased the apparent Vmax, perhaps by inhibiting the dephosphorylation of site 2. The phosphorylated form of inhibitor 1 did not significantly inhibit this high-molecular-weight phosphatase. However, an inhibitor 1-sensitive phosphatase activity could be derived from this preparation by limited trypsinization. Furthermore, greater than 70% of the phosphatase activity in skeletal muscle extracts and in the glycogen-protein complex was insensitive to inhibitor 1. Limited trypsinization of each fraction obtained from the phosphatase purification increased the total activity (1.5- to 2-fold) and converted the enzyme into a form which was inhibited by inhibitor 1. The results suggest that inhibitor 1-sensitive phosphatase may be a proteolyzed enzyme.  相似文献   

12.
A purification procedure, which included ethanol treatment as a step for dissociating the large molecular forms of type I phosphoprotein phosphatase, was employed for the studies of the alkaline phosphatase and phosphoprotein phosphatase activities in bovine brain, heart, spleen, kidney, and uterus, rabbit skeletal muscle and liver, and lobster tail muscle. The results indicate that the major phosphoprotein phosphatase (phosphorylase a as a substrate) and alkaline phosphatase (p-nitrophenyl phosphate as a substrate; Mg2+ and dithiothreitol as activators) activities in the extracts of all tissues studied were copurified as an entity of Mr = 35,000. The purified enzymes from different tissues exhibit similar physical and catalytic properties with respect to either the phosphoprotein phosphatase or the alkaline phosphatase activity. The present findings indicate that (a) the Mr = 35,000 species, which represents a catalytic entity of the large molecular forms of type I phosphoprotein phosphatase, is widespread in animal tissues, indicating that it is a multifunctional phosphatase; (b) the association of type I alkaline phosphatase activity with type I phosphoprotein phosphatase is a general phenomenon.  相似文献   

13.
《Insect Biochemistry》1991,21(2):137-144
Protein phosphatase activity in tick salivary glands was inhibited by heat-stable protein(s) from tick salivary glands as well as by an inhibitor protein from rabbit skeletal muscle. Inhibitor activity was increased after phosphorylation of inhibitor proteins with the catalytic subunit (C) of cyclic AMP-dependent protein kinase and ATP. C inhibited protein phosphatase activity of the partially purified enzyme, while purified cyclic AMP-dependent protein kinase inhibitor protein prevented inhibition of tick salivary gland protein phosphatase by C suggesting that the inhibitor phosphoprotein coelutes with the partially purified enzyme. A soluble heat-stable protein with a molecular weight of approx. 26 kDa was phosphorylated by C, suggesting that a protein phosphatase inhibitor protein similar to inhibitor-1 in mammalian tissue, is present in tick salivary glands.  相似文献   

14.
The phosphoprotein phosphatase(s) acting on muscle phosphorylase a was purified from rabbit liver by acid precipitation, high speed centrifugation, chromatography on DEAE-Sephadex A-50, Sephadex G-75, and Sepharose-histone. Enzyme activity was recovered in the final step as two distinct peaks tentatively referred to as phosphoprotein phosphatases I and II. Each phosphatase showed a single broad band when examined by sodium dodecyl sulfate gel electrophoresis; the molecular weights derived by this method were approximately 30,500 for phosphoprotein phosphatase I and 34,000 for phosphoprotein phosphatase II. The s20, w value for each enzyme was 3.40. Using this value and values for the Stokes radii, the molecular weight for each enzyme was calculated to be 34,500. Both phosphatases, in addition to catalyzing the conversion of phosphorylase a to b, also catalyzed the dephosphorylation of glycogen synthase D, activated phosphorylase kinase, phosphorylated histone, phosphorylated casein, and the phosphorylated inhibitory component of troponin (TN-I). The relative activities of the phosphatases with respect to phosphorylase a, glycogen synthase D, histone, and casein remained essentially constant throughout the purification. The activities of both phosphatases with different substrates decreased in parallel when they were denatured by incubation at 55 degrees and 65 degrees. The Km values of phosphoprotein phosphatase I for phosphorylase a, histone, and casein were lower than the values obtained for phosphoprotein phosphatase II. With glycogen synthase D as substrate, each enzyme gave essentially the same Km value. Utilizing either enzyme, it was found that activity toward a given substrate was inhibited competitively by each of the alternative substrates. The results suggest that phosphoprotein phosphatases I and II are each active toward all of the substrates tested.  相似文献   

15.
Endogenous dephosphorylation of the light-harvesting chlorophyll-protein complex of photosystem II in pea (Pisum sativum, L. cv Progress 9) thylakoids drives the state 2 to state 1 transition; the responsible enzyme is a thylakoid-bound, fluoride-sensitive phosphatase with a pH optimum of 8.0 (Bennett J [1980] Eur J Biochem 104: 85-89). An enzyme with these characteristics was isolated from well-washed thylakoids. Its molecular mass was estimated at 51.5 kD, and this monomer was catalytically active, although the activity was labile. The active site could be labeled with orthophosphate at pH 5.0. High levels of alkaline phosphatase activity were obtained with the assay substrate, 4-methylumbelliferyl phosphate (350 micromoles per minute per milligram purified enzyme). The isolated enzyme functioned as a phosphoprotein phosphatase toward phosphorylated histone III-S and phosphorylated, photosystem II-enriched particles from pea, with typical activities in the range of 200 to 600 picomoles per minute per milligram enzyme. These activities all had a pH optimum of 8.0 and were fluoride sensitive. The enzyme required magnesium ion for maximal activity but was not dependent on this ion. Evidence supporting a putative function for this phosphatase in dephosphorylation of thylakoid proteins came from the inhibition of this process by a polyclonal antibody preparation raised against the partially purified enzyme.  相似文献   

16.
1. Phosphoprotein phosphatase IB is a form of rat liver phosphoprotein phosphatase, distinguished from the previously studied phosphoprotein phosphatase II [Tamura et al. (1980) Eur. J. Biochem. 104, 347-355] by earlier elution from DEAE-cellulose, by higher molecular weight on gel filtration (260000) and by lower activity toward phosphorylase alpha. This enzyme was purified to apparent homogeneity by chromatography on DEAE-cellulose, aminohexyl--Sepharose-4B, histone--Sepharose-4B, protamine--Sepharose-4B and Sephadex G-200. 2. The molecular weight of purified phosphatase IB was 260000 by gel filtration and 185000 from S20,W and Stokes' radius. Using histone phosphatase activity as the reference for comparison, the phosphorylase phosphatase activity of purified phosphatase IB was only one-fifth that of phosphatase II. 3. Sodium dodecyl sulfate gel electrophoresis revealed that phosphatase IB contains three types of subunit, namely alpha, beta and gamma, whose molecular weights are 35000, 69000 and 58000, respectively. The alpha subunit is identical to the alpha subunit of phosphatase II. While the beta subunit is also identical or similar to the beta subunit of phoshatase II, the gamma subunit appears to be unique to phosphatase IB. 4. When purified phosphatase IB was treated with 2-mercaptoethanol at -20 degrees C, the enzyme was dissociated to release the catalytically active alpha subunit. Along with this dissociation, there was a 7.4-fold increase in phosphorylase phosphatase activity; but histone phosphatase activity increased only 1.6-fold. The possible functions of the gamma subunit are discussed in relation to this activation of enzyme.  相似文献   

17.
Phosphoprotein phosphatase activity is found in preparations of sarcoplasmic reticulum isolated from canine heart when assayed with either phosphate or phosphorylated sarcoplasmic reticulum as substrate. Phosphoprotein phosphatase-catalyzed dephosphorylation of the 22,000 dalton phosphoprotein of cardiac sarcoplasmic reticulum is stimulated markedly by MnCl2 (5 mM) and to a lesser extent by MgCl2 (5 mM); inorganic phosphate (50 mM) and NaF (25 mM) are inhibitory. Dephosphorylation of this 22,000 dalton phosphoprotein is correlated with a decreased initial rate of calcium transport. The close structural and functional relationship of phosphoprotein phosphatase to the cardiac sarcoplasmic reticulum suggests a possible role of this enzyme in reversing the relaxation-promoting effects of catecholamines on the intact heart.  相似文献   

18.
A high molecular weight phosphoprotein phosphatase was purified from rabbit liver using high speed centrifugation, acid precipitation, ammonium sulfate fractionation, chromatography on DEAE-cellulose, Sepharose-histone, and Bio-Gel A-0.5m. The purified enzyme showed a single band on a nondenaturing polyacrylamide anionic disc gel which was associated with the enzyme activity. The enzyme was made up of equimolar concentrations of two subunits whose molecular weights were 58,000 (range 58,000-62,000) and 35,000 (range 35,000-38,000). Two other polypeptides (Mr 76,000 and 27,000) were also closely associated with our enzyme preparation, but their roles, if any, in phosphatase activity are not known. The optimum pH for the reaction was 7.5-8.0. Km value of phosphoprotein phosphatase for phosphorylase a was 0.10-0.12 mg/ml. Freezing and thawing of the enzyme in the presence of 0.2 M beta-mercaptoethanol caused an activation (100-140%) of phosphatase activity with a concomitant partial dissociation of the enzyme into a Mr 35,000 catalytic subunit. Divalent cations (Mg2+, Mn2+, and Co2+) and EDTA were inhibitory at concentrations higher than 1 mM. Spermine and spermidine were also found to be inhibitory at 1 mM concentrations. The enzyme was inhibited by nucleotides (ATP, ADP, AMP), PPi, Pi, and NaF; the degree of inhibition was different with each compound and was dependent on their concentrations employed in the assay. Among various types of histones examined, maximum activation of phosphoprotein phosphatase activity was observed with type III and type V histone (Sigma). Further studies with type III histone indicated that it increased both the Km for phosphorylase a and the Vmax of the dephosphorylation reaction. Purified liver phosphatase, in addition to the dephosphorylation of phosphorylase a, also catalyzed the dephosphorylation of 32P-labeled phosphorylase kinase, myosin light chain, myosin, histone III-S, and myelin basic protein. The effects of Mn2+, KCl, and histone III-S on phosphatase activity were variable depending on the substrate used.  相似文献   

19.
A cytosolic phosphoprotein phosphatase of Mr = 95,000 purified from bovine cardiac muscle, which contains a catalytic subunit of Mr = 35,000, is known to be associated with a Mg2+-activated p-nitrophenyl phosphatase activity. We have found that the enzyme preparation is also active toward phosphotyrosyl-IgG and -casein phosphorylated by pp60v-src, the transforming gene product of Rous sarcoma virus. The properties of this phosphotyrosyl protein phosphatase activity closely resemble those of the p-nitrophenyl phosphatase activity but sharply differ from those of the phosphorylase phosphatase activity. Comparative studies of the activities of the Mr = 95,000 phosphatase, bovine kidney alkaline phosphatase, and ATP X Mg-dependent phosphatase toward phosphoseryl, phosphothreonyl, and phosphotyrosyl proteins and p-nitrophenyl phosphate under various conditions have been carried out. The results indicate that the Mr = 95,000 enzyme exhibits higher activity toward phosphoseryl and phosphothreonyl proteins than toward phosphotyrosyl proteins, while the kidney alkaline phosphatase preferentially dephosphorylates phosphotyrosyl proteins. ATP X Mg-dependent phosphatase is inactive toward phosphotyrosyl proteins.  相似文献   

20.
A metal-ion-independent, nonspecific phosphoprotein phosphatase (Mr = 35000) which represents the major phosphorylase phosphatase activity in bovine adrenal cortex has been purified to apparent homogeneity. An alkaline phosphatase activity (p-nitrophenyl phosphate as a substrate) of the same molecular weight, which requires both a metal ion (Mg2+ greater than Mn2+ greater than Co2+) and a sulfhydryl compound for activity, has been found to co-purify with the phosphoprotein phosphatase throughout the purification procedures. Characterization of the phosphoprotein and the alkaline phosphatase activities with respect to their catalytic properties, substrate and metal ion specificities, relationship with large molecular forms of the enzymes and responses to various effectors has been carried out. The results indicate that the phosphoprotein phosphatase can be converted by pyrophosphoryl compounds (e.g. PPi and ATP) to a metal-ion-dependent form which, subsequently, can be reactivated by Co2+ greater than Mn2+ but not by Mg2+ or Zn2+. The results also indicate that, although the phosphoprotein and the alkaline phosphatase activities are closely associated, they exhibit distinct physical and catalytic properties. Discussions concerning whether these two activities represent two different forms of the same protein or two different yet very similar polypeptide chains have been presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号