首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Summary With slow feeding of xylose to a batch fermentation byPachysolen tannophilus, the yield of ethanol from xylose was improved to 0.41 g/g (80% of theoretical) with a maximum ethanol concentration of 26.5 g/L at 120 h. This is a 41% improvement on the ethanol yield observed for batch fermentations without slow feeding. The optimum level of xylose in the medium was determined to be between 5 and 8g/L; xylose at greater than 10 g/L leads to xylitol accumulation, whereas xylose below 3 g/L permits ethanol to be oxidized to acetate. This latter effect is exacerbated by increased aeration.  相似文献   

2.
Summary Hardwood hemicellulose hydrolysate has been utilized as a substrate for ethanol production. Among the three different yeasts tested, the best performances have been obtained, in decreasing order, usingPachysolen tannophilus, Candida shehatae andPichia stipitis. Several pretreatments of this raw material have been studied to improve ethanol yields; in one such pretreatment a strain ofP. tannophilus produced ethanol with a yield of 0.29 gethanol/gsugars (gP/gS); which is only 15% less than the values observed with synthetic media. Neither aeration nor acetone addition improved the fermentation of this substrate; in fact, only a marked stimulation of biomass growth has been observed at the expense of both ethanol and xylitol production.  相似文献   

3.
The information presented in this publication represents current research findings on the production of glucose and xylose from straw and subsequent direct fermentation of both sugars to ethanol. Agricultural straw was subjected to thermal or alkali pulping prior to enzymatic saccharification. When wheat straw (WS) was treated at 170 degrees C for 30-60 min at a water-to-solids ratio of 7:1, the yield of cellulosic pulp was 70-82%. A sodium hydroxide extration yielded a 60% cellulosic pulp and a hemicellulosic fraction available for fermentation to ethanol. The cellulosic pulps were subjected to cellulase hydrolysis at 55 degrees C for production of sugars to support a 6-C fermentation. Hemicellulose was recovered from the liquor filtrates by acid/alcohol precipitation followed by acid hydrolysis to xylose for fermentation. Subsequent experiments have involved the fermentation of cellulosic and hemicelluosic hydrolysates to ethanol. Apparently these fermentations were inhibited by substances introduced by thermal and alkali treatment of the straws, because ethanol efficiencies of only 40-60% were achieved. Xylose from hydrolysis of wheat straw pentosans supported an ethanol fermentation by Pachysolen tannophilus strain NRRL 2460. This unusual yeast is capable of producing ethanol from both glucose and xylose. Ethanol yields were not maximal due to deleterious substances in the WS hydrolysates.  相似文献   

4.
5.
Summary The fermentation of D-xylose byPachysolen tannophilus Y2460,Pichia stipitis Y7124,Kluyveromyces marxianus Y2415 andCandida shehatae Y12878 was investigated in aerobic, anaerobic and microaerophilic batch cultures. The aeration rate greatly influenced the fermentations; growth, rate of ethanol production and oxidation of ethanol are affected. Of the strains tested,Pichia stipitis appears superior; under anaerobic conditions it converts D-xylose (20 g/l) to ethanol with a yield of 0.40 g/l and it exhibits the highest ethanol specific productivity (3.5 g of ethanol per g dry cell per day) under microaerophilic conditions.  相似文献   

6.
酸解纤维素酒精发酵的毒性问题   总被引:9,自引:0,他引:9  
潘进权  刘耘 《生物技术》2002,12(1):45-47
目前 ,纤维素的酒精发酵主要有两种方法 :一种是酸水解法 ,另一种是酶解法。虽然经过 2 0多年研究 ,在纤维素的酶法水解方面有了一定进展[1,2 ] ,但是与酸法水解发酵相比较 ,仍存在很多不足之处 ,如 :纤维素的酶解效率不高 ,原料没有被充分利用 ,生产周期长 ,成本高。因此 ,纤维素酒精发酵在目前仍以酸法水解工艺为主。这一工艺已经比较成熟 ,目前生产中存在的主要问题就是关于水解产物对发酵微生物的“毒性问题” ,近年来 ,在这方面的研究较多 ,也取得了一定进展。1 纤维素酸解产物对发酵微生物的抑制作用1 1 纤维素类原料水解过程中各物…  相似文献   

7.
The yeast Pachysolen tannophilus was entrapped in calcium alginate beads to ferment D-xylose on a continous basis in the presence of high cell densities. Experimental operating variables included the feed D-xylose concentration, the dilution rate, and the fermentor biomass concentration. Under favorable operating conditions, cultures retained at least 50% of their initial productivity after 26 days of operation. The specific ehanol production rate was dependent on the substrate level in the fermentor, passing through an optimum when the D-xylose concentration was between 28 and 35 g/L. Consequently, reactor productivity increased with dilution rate and feed D-xylose concentration until a maximum was reached. The ethanol content of the effluent always decreased with increasing dilution rate, but excessive dilution rates diminished the ethanol content without increasing productivity. Unlike production rate, ethanol yield declined monotonically from 0.35 g/g as the fermentor substrate concentration increased. The yield was 69% of that theoretically possible when the D-xylose concentration was near zero, as opposed to 42% when it was in the range supporting the optimum specific rate of ethanol production. As long as D-xylose was supplied to cells faster than they could consume it, productivity increased with the mass of cells immobilized. The effectiveness factor associated with the calcium alginte beads used in this system was 0.4, indicating that only 40% of the entrapped biomass was effective in converting D-xylose to ethanol because of diffusion limitations.  相似文献   

8.
The yeast Pachysolen tannophilus was found to be capable of converting D-xylose to ethanol. Batch cultures initially containing 50 g/L D-xylose yielded 0.34 g of ethanol per gram of pentose consumed. Aerobic conditions were required for cell growth but not for ethanol production. Both alcohol formation and growth were optimum when incubation temperature was 32 degrees C, when pH was near 2.5, and when D-xylose and ethanol concentrations did not exceed 50 and 20 g/L, respectively.  相似文献   

9.
Healthy albino male rats were exposed to a simulated high altitude (HA) equivalent to 25000 ft (7620 m) for 6 h daily, continuously for 21 days to study the feeding behaviour. The 24-h food and water intake and body weight once in 3 days were recorded. Blood samples were drawn once a week from the retro-orbital venous plexus for blood sugar analysis. All the parameters were recorded before, during and after exposure to simulated HA. The results show a decrease in 24-h food and water intake and decreased gain in body weight during hypoxic exposure, which showed a tendency to come back to control during the post-exposure period. The blood sugar reflected a state of mild hyperglycaemia during exposure to HA.  相似文献   

10.
Sugar cane bagasse hemicellulosic fraction submitted to hydrolytic treatment with 100 mg of sulfuric acid per gram of dry mass, at 140°C for 20 min, was employed as a substrate for microbial protein production. Among the 22 species of microorganisms evaluated, Candida tropicalis IZ 1824 showed TRS consumption rate of 89.8%, net cell mass of 11.8 g L−1 and yield coefficient (Yx/s) of 0.50 g g−1. The hydrolyzate supplemented with rice bran (20.0 g L−1), P2O5 (2.0 g L−1) and urea (2.0 g L−1) provided a TRS consumption rate of 86.3% and a cell mass of 8.4 g L−1. At pH 4.0 cellular metabolism was inhibited, whereas at pH 6.0 the highest yield was obtained. The presence of furfural (2.0 g L−1) hydroxymethylfurfural (0.08 g L−1) and acetic acid (3.7 g L−1) in the hydrolyzate did not interfere with cultivation at pH 6.0. Received 25 October 1996/ Accepted in revised form 10 March 1997  相似文献   

11.
The oxygen requirements for ethanol production from d-xylose (10 or 20 g l?1) by Pachysolen tannophilus have been determined by controlling the availability of oxygen to shake flasks. Under anaerobic conditions no ethanol was produced whereas under aerobic conditions mainly biomass was formed. Semi-anaerobic conditions resulted in maximum ethanol production. By varying the stirring speed of a fermenter and supplying air to the liquid surface at various rates, the oxygen transfer rate (OTR) was controlled under semi-anaerobic conditions. By increasing the OTR from 0.05 to 16.04 mmol l?1 h?1, the ethanol yield coefficient decreased from 0.28 to 0.18 while the cell yield coefficient increased from 0.14 to 0.22. The accumulation of polyols decreased from 0.88 to 0.56 g l?1 with increasing OTR. At OTRs between 0.09 and 1.18 mmol l?1 h?1, specific ethanol productivity attained a maximum value of 0.07 h?1 and decreased with either increasing or decreasing OTR. The results indicate that the OTR must be carefully controlled for efficient ethanol production from d-xylose by P. tannophilus.  相似文献   

12.
Hemicellulose liquid hydrolyzate from dilute acid pretreated corn stover was fermented to ethanol using Pichia stipitis CBS 6054. The fermentation rate increased with aeration but the pH also increased due to consumption of acetic acid by Pichia stipitis. Hemicellulose hydrolyzate containing 34 g/L xylose, 8 g/L glucose, 8 g/L Acetic acid, 0.73 g/L furfural, and 1 g/L hydroxymethyl furfural was fermented to 15 g/L ethanol in 72 h. The yield in all the hemicellulose hydrolyzates was 0.37–0.44 g ethanol/g (glucose + xylose). Nondetoxified hemicellulose hydrolyzate from dilute acid pretreated corn stover was fermented to ethanol with high yields, and this has the potential to improve the economics of the biomass to ethanol process.  相似文献   

13.
Treatment of wheat straw with 1N trifluoroacetic acid (TFA) for 7 h at reflux temperature yielded 23% xylose based upon initial straw weight. This corresponds to about an 80% xylose yield based on the xylan content of the hemicellulose. The cellulose component of wheat straw was largely unaffected, as evidenced by low glucose yields. Decomposition of xylose by prolonged refluxing (23 h) was minimal in 1N TFA compared to 1N HCl. Treatment of wheat straw with refluxing 1N TFA converts about 10% of the lignin initially present in straw into water-soluble lignin fragments. Fermentation of the xylose-rich wheat straw hydrolyzate to ethanol with Pachysolen tannophilus was comparable to the fermentation of reagent grade xylose, indicating that furfural and toxic lignin by-products were not produced by 1N TFA in sufficient amounts to impair cell growth and ethanol production. Cellulase treatment of the wheat straw residue after TFA hydrolysis resulted in a 70-75% conversion of the cellulose into glucose.  相似文献   

14.
Summary Pachysolen tannophilus, a homothallic yeast, converts xylose to ethanol at a yield of 0.3 (g/g xylose). Concomitant with ethanol production, xylitol accumulates in the culture medium at similar yields (0.3 g/g xylose). The addition of the hydrogen-accepting compound, acetone, increases the amount of ethanol produced by this organism by 50–70%. The increase in ethanol is directly correlated with a decrease in xylitol secreted. The results indicate that conversion of acetone to 2-propanol by the cells provides the NAD+ used as a cofactor by xylitol dehydrogenase, the enzyme responsible for converting xylitol to xylulose.The mention of firm names or trade products does not imply that they are endorsed or recommended by the U. S. Department of Agriculture over other firms or similar products not mentioned.  相似文献   

15.
16.
Effect of chronic ethanol feeding on oxysterols in rat liver   总被引:2,自引:0,他引:2  
It was our hypothesis that, as a consequence of increased oxidative stress, cholesterol-derived hydroperoxides and oxysterols are increased in livers of rats exposed to ethanol. To test this we dosed Wistar rats (approximately 0.1 kg initial body weight) with ethanol chronically (rats fed a nutritionally complete liquid diet containing ethanol as 35% of total calories; sampled liver at approximately 6-7 weeks). We measured concentrations of 7 alpha- and 7 beta-hydroperoxycholest-5-en-3 beta-ol (7 alpha-OOH and 7 beta-OOH) as well as 7 alpha- and 7 beta-hydroxycholesterol (7 alpha-OH and 7 beta-OH), and 3 beta-hydroxycholest-5-en-7-one (also termed 7-ketocholesterol; 7-keto). In response to chronic alcohol feeding, there were significant elevations in the concentrations of 7 alpha-OOH (+169%, P = 0.005) and 7 beta-OOH (+199%, P = 0.011). Increases in the concentrations of hepatic 7-keto (+74%, P = 0.01) and decreases in cholesterol (-43%; P = 0.03) also occurred. In contrast, the concentrations of both 7 alpha-OH and 7 beta-OH were not significant (NS). However, when oxysterols in chronic ethanol-fed rats were expressed relative to cholesterol there were significant increases in 7-keto/cholesterol (P = 0.0006), 7 alpha-OH/cholesterol (P = 0.0018) and 7 beta-OH/cholesterol (P = 0.0047). In conclusion, this is the first report of increased 7 alpha-OOH, 7 beta-OOH, and 7-keto in liver of rats and their elevation in chronic experimental alcoholism represent evidence of increased oxidative stress.  相似文献   

17.
Summary During growth in the presence of fibers composed of cellulose or hemicellulose, various strains of the thermophilic soil bacterium Clostridium thermocellum and several newly isolated thermophilic anaerobic soil bacteria adhered to the fibers. Attachment occurred via a fibrous ruthenium red-staining material. C. thermocellum sporulated while attached to the fibers when the pH dropped below 6.4. It is postulated that the attachment is involved in cellulose breakdown and that C. thermocellum gaines an advantage by remaining attached to its insoluble substrates when the environment is not suitable for rapid growth. The tendency to adhere to cellulose fibers was used in the purification of thermophilic cellulolytic anaerobes.  相似文献   

18.
Summary The yeast Pachysolen tannophilus has been identified as being able to convert an aldopentose, D-xylose, into ethanol. A feature of the conversion is that it can take place under aerobic conditions.Issued as N.R.C.C. Publication No. 19095.  相似文献   

19.
The nature of water sorption to different materials has always been a complex matter to address, partly due to the different possibilities of hydrogen-bond formation. For cellulosic materials this is extremely important for its product performance. In order to gain a deeper understanding of the moisture adsorption mechanisms of cellulose and hemicelluloses, the molecular interaction between moisture and paper and between moisture and some wood polymers was studied using FTIR spectroscopy under stable humid conditions. It was found that all the moisture-sorbing sites adsorbed moisture to the same relative degree, and that the rate of adsorption was the same for all these sites. It was also noticed that the moisture is adsorbed in the form of clusters. A direct relationship was found between the moisture weight gain and the increase in the absorbance peaks for humidities up to 50% relative humidity after which the moisture gain increased faster, a fact that still remains to be explained.  相似文献   

20.
Summary A cellulose hydrolysate from Aspen wood, containing mainly glucose, was fermented into ethanol by a thermotolerant strain MSN77 of Zymomonas mobilis. The effect of the hydrolysate concentration on fermentation parameters was investigated. Growth parameters (specific growth rate and biomass yield) were inhibited at high hydrolysate concentrations. Catabolic parameters (specific glucose uptake rate, specific ethanol productivity and ethanol yield) were not affected. These effects could be explained by the increase in medium osmolality. The results are similar to those described for molasses based media. Strain MSN77 could efficiently ferment glucose from Aspen wood up to a concentration of 60 g/l. At higher concentration, growth was inhibited.Nomenclature S glucose concentration (g/l) - X biomass concentration (g/l) - P ethanol concentration (g/l) - C conversion of glucose (%) - t fermentation time (h) - qS specific glucose uptake rate (g/g.h) - qp specific ethanol productivity (g/g.h) - YINX/S biomass yield (g/g) - Yp/S ethanol yield (g/g) - specific growth rate (h-1)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号