共查询到20条相似文献,搜索用时 0 毫秒
1.
Christine R. Matheson Josette Carnahan Janal L. Urich Dora Bocangel T. J. Zhang Qiao Yan 《Developmental neurobiology》1997,32(1):22-32
We compared the effects of glial cell line-derived neurotrophic factor (GDNF) on dorsal root ganglion (DRG) sensory neurons to that of nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), and neurotrophin 3 (NT-3). All of these factors were retrogradely transported to sub-populations of sensory neuron cell bodies in the L4/L5 DRG of neonatal rats. The size distribution of 125I-GDNF-labeled neurons was variable and consisted of both small and large DRG neurons (mean of 506.60 μm2). 125I-NGF was preferentially taken up by small neurons with a mean cross-sectional area of 383.03 μm2. Iodinated BDNF and NT-3 were transported by medium to large neurons with mean sizes of 501.48 and 529.27 μm2, respectively. A neonatal, sciatic nerve axotomy-induced cell death model was used to determine whether any of these factors could influence DRG neuron survival in vivo. GDNF and NGF rescued nearly 100% of the sensory neurons. BDNF and NT-3 did not promote any detectable level of neuronal survival despite the fact that they underwent retrograde transport. We examined the in vitro survival-promoting ability of these factors on neonatal DRG neuronal cultures derived from neonatal rats. GDNF, NGF, and NT-3 were effective in vitro, while BDNF was not. The range of effects seen in the models described here underscores the importance of testing neuronal responsiveness in more than one model. The biological responsiveness of DRG neurons to GDNF in multiple models suggests that this factor may play a role in the development and maintenance of sensory neurons. © 1997 John Wiley & Sons, Inc. J Neurobiol 32: 22–32, 1997. 相似文献
2.
We report the purification from pig brain of a factor supporting the survival of, and fibre outgrowth from, cultured embryonic chick sensory neurons. The purified factor migrates as one single band, mol. wt. 12 300, on gel electrophoresis in the presence of sodium dodecylsulphate (SDS) and is a basic molecule (pI greater than or equal to 10.1). Approximately 1 microgram factor was isolated from 1.5 kg brain. The final degree of purification was estimated to be 1.4 X 10(6)-fold, and the specific activity 0.4 ng/ml/unit, which is similar to that of nerve growth factor (NGF) using the same assay system. This factor is the first neurotrophic factor to be purified since NGF, from which it is clearly distinguished because it has different antigenic and functional properties. 相似文献
3.
Identification of HGF-like protein as a novel neurotrophic factor for avian dorsal root ganglion sensory neurons 总被引:6,自引:0,他引:6
HGF-like protein (HLP) is a member of the hepatocyte growth factor (HGF) family. Although HGF is shown to have neurotrophic activities on many of CNS and PNS neurons, the role of HLP in the nervous system is poorly understood despite the knowledge that Ron/HLP receptor is expressed in embryonic neurons. Here we show that HGF but not HLP promotes neurite extension and migration emanating from chick embryonic day 9 (E9) dorsal root ganglia (DRG) explants in the presence of low levels of NGF, however, HLP does promote neurite extension and cellular migration from E15 chick DRG explants with low levels of NGF. Ron-Fc, a chimeric molecule composed of the extracellular domain of Ron fused with immunoglobulin Fc, eliminated activities of HLP, such as cellular migration and long neurite extension emanating from E15 DRG explants in the presence of NGF, but did not eliminate short neurites. These results suggested that promotion of long neurite extension and migration depends on activities of HLP through its receptor/Ron. Taken together, we propose that HLP may play an important role in chick sensory ganglia at relatively late stages of development. This is the first evidence that HLP functions as a neurotrophic factor. 相似文献
4.
Trina P. V. Steljes Yoshito Kinoshita Esther F. Wheeler Ronald W. Oppenheim Christopher S. von Bartheld 《Developmental neurobiology》1999,41(2):295-315
Neurotrophic factors support the development of motoneurons by several possible mechanisms. Neurotrophins may act as target‐derived factors or as afferent factors derived from the central nervous system (CNS) or sensory ganglia. We tested whether brain‐derived neurotrophic factor (BDNF), neurotrophin 3 (NT‐3), neurotrophin 4 (NT‐4), and glial cell line–derived neurotrophic factor (GDNF) may be target‐derived factors for neurons in the oculomotor (MIII) or trochlear (MIV) nucleus in chick embryos. Radio‐iodinated BDNF, NT‐3, NT‐4, and GDNF accumulated in oculomotor neurons via retrograde axonal transport when the trophic factors were applied to the target. Systemic GDNF rescued oculomotor neurons from developmental cell death, while BDNF and NT‐3 had no effect. BDNF enhanced neurite outgrowth from explants of MIII and MIV nuclei (identified by retrograde labeling in ovo with the fluorescent tracer DiI), while GDNF, NT‐3, and NT‐4 had no effect. The oculomotor neurons were immunoreactive for BDNF and the BDNF receptors p75NTR and trkB. To determine whether BDNF may be derived from its target or may act as an autocrine or paracrine factor, in situ hybridization and deprivation studies were performed. BDNF mRNA expression was detected in eye muscles, but not in CNS sources of afferent innervation to MIII, or the oculomotor complex itself. Injection of trkB fusion proteins in the eye muscle reduced BDNF immunoreactivity in the innervating motoneurons. These data indicate that BDNF trophic support for the oculomotor neurons was derived from their target. © 1999 John Wiley & Sons, Inc. J Neurobiol 41: 295–315, 1999 相似文献
5.
Neurotrophic factor regulation of developing avian oculomotor neurons: differential effects of BDNF and GDNF. 总被引:3,自引:0,他引:3
T P Steljes Y Kinoshita E F Wheeler R W Oppenheim C S von Bartheld 《Journal of neurobiology》1999,41(2):295-315
Neurotrophic factors support the development of motoneurons by several possible mechanisms. Neurotrophins may act as target-derived factors or as afferent factors derived from the central nervous system (CNS) or sensory ganglia. We tested whether brain-derived neurotrophic factor (BDNF), neurotrophin 3 (NT-3), neurotrophin 4 (NT-4), and glial cell line-derived neurotrophic factor (GDNF) may be target-derived factors for neurons in the oculomotor (MIII) or trochlear (MIV) nucleus in chick embryos. Radio-iodinated BDNF, NT-3, NT-4, and GDNF accumulated in oculomotor neurons via retrograde axonal transport when the trophic factors were applied to the target. Systemic GDNF rescued oculomotor neurons from developmental cell death, while BDNF and NT-3 had no effect. BDNF enhanced neurite outgrowth from explants of MIII and MIV nuclei (identified by retrograde labeling in ovo with the fluorescent tracer DiI), while GDNF, NT-3, and NT-4 had no effect. The oculomotor neurons were immunoreactive for BDNF and the BDNF receptors p75(NTR) and trkB. To determine whether BDNF may be derived from its target or may act as an autocrine or paracrine factor, in situ hybridization and deprivation studies were performed. BDNF mRNA expression was detected in eye muscles, but not in CNS sources of afferent innervation to MIII, or the oculomotor complex itself. Injection of trkB fusion proteins in the eye muscle reduced BDNF immunoreactivity in the innervating motoneurons. These data indicate that BDNF trophic support for the oculomotor neurons was derived from their target. 相似文献
6.
To obtain insight into which subpopulations of sensory neurons in dorsal root ganglia are supported by different neurotrophins, we retrogradely labeled cutaneous and muscle afferents in embryonic day 9 chick embryos and followed their survival in neuron-enriched cultures supplemented with either nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), or neurotrophin-3 (NT-3). We found that NGF is a wide survival factor for subpopulations of both cutaneous and muscle afferents, whereas the survival effects of BDNF and NT-3 are restricted primarily to muscle afferents. We also measured soma size in each neurotrophic factor. These new data show that BDNF- and NT-3–dependent cells appear to be a mixture of two populations of neurons: one small diameter and the other large diameter. In contrast, based on size alone, NGF-dependent cells appear to be a single population of only small-diameter neurons. Thus, BDNF and NT-3 may have some new, previously unreported effects on small-diameter afferent neurons. © 1994 John Wiley & Sons, Inc. 1994 John Wiley & Sons, Inc. 相似文献
7.
Chen ZY Sun JX Li JH He C Lu CL Wu XF 《Biochemical and biophysical research communications》2000,273(3):902-906
Recombinant human glial cell line-derived neurotrophic factor (GDNF) has been expressed at high levels and produced in large quantities in baculovirus-infected Trichoplusia ni cells (Tn-5B1-4). The glycosylated protein was purified using immunoaffinity chromatography and gel filtration. Pure, recombinant human GDNF promoted the survival and morphological differentiation of embryonic dopaminergic neurons and enhanced axonal regeneration after sciatic nerve transection. Because recombinant bioactive human GDNF can be obtained in large quantities, and purified to near homogeneity, they are suitable for evaluation in animal models. 相似文献
8.
Unlike in the adult brain, the newborn brain specifically takes up serum albumin during the postnatal period, coinciding with the stage of maximal brain development. Here we shall summarize our knowledge about the role played by albumin in brain development. The role of this protein in brain development is intimately related to its ability to carry fatty acids. Thus, albumin stimulates oleic acid synthesis by astrocytes from the main metabolic substrates available during brain development. Astrocytes internalize albumin in vesicle-like structures by receptor-mediated endocytosis, which is followed by transcytosis, including passage through the endoplasmic reticulum (ER). The presence of albumin in the ER activates the sterol regulatory element-binding protein-1 (SREBP-1) and increases stearoyl-CoA 9-desaturase (SCD) mRNA, the key enzyme in oleic acid synthesis. Oleic acid released by astrocytes is used by neurons for the synthesis of phospholipids and is specifically incorporated into growth cones. In addition, oleic acid promotes axonal growth, neuronal clustering, and the expression of the axonal growth associated protein, GAP-43. All of these observations indicate neuronal differentiation. The effect of oleic acid on GAP-43 synthesis is brought about by the activation of protein kinase C. The expression of GAP-43 is significantly increased by the presence of albumin in neurons co-cultured with astrocytes, indicating that neuronal differentiation takes place by the presence of oleic acid synthesized and released by astrocytes in situ. In conclusion, during brain development the presence of albumin could play an important role by triggering the synthesis and release of oleic acid by astrocytes, thereby inducing neuronal differentiation. 相似文献
9.
10.
11.
The effects and signaling mechanisms of brain-derived neurotrophic factor (BDNF) on translation elongation were investigated in cortical neurons. BDNF increased the elongation rate approximately twofold, as determined by measuring the ribosomal transit time. BDNF-accelerated elongation was inhibited by rapamycin, implicating the mammalian target of rapamycin (mTOR). To explore the mechanisms underlying these effects, we examined the protein phosphorylation cascades that lead to the activation of translation elongation in neurons. BDNF increased eukaryote elongation factor 1A (eEF1A) phosphorylation and decreased eEF2 phosphorylation. Whereas eEF2 phosphorylation levels altered by BDNF were inhibited by rapamycin, eEF1A phosphorylation was not affected by rapamycin or PD98059, a mitogen-activated protein kinase kinase (MEK) inhibitor. BDNF induced phosphorylation of eEF2 kinase (Ser366), as well as decreased its kinase activity. All these events were inhibited by rapamycin. Furthermore, mTOR siRNA, which reduced mTOR levels up to 50%, inhibited the BDNF-induced enhancement in elongation rate and decrease in eEF2 phosphorylation. These results strongly suggest that BDNF enhances translation elongation through the activation of the mTOR-eEF2 pathway. 相似文献
12.
Comparison of mammalian, chicken and Xenopus brain-derived neurotrophic factor coding sequences 总被引:2,自引:0,他引:2
We have used the polymerase chain reaction (PCR) to amplify and clone coding sequences of the mature region of brain-derived neurotrophic factor (BDNF) from monkey, rat, chicken and Xenopus genomic DNA. Consistent with previous reports, the predicted amino acid sequences obtained in this manner from monkey and rat were identical to other mammalian BDNF sequences. The chicken and Xenopus BDNF sequences are also highly conserved, but contain 7 and 8 amino acid substitutions, respectively, compared to mammalian BDNF. Comparison of these sequences with the homologous NGF and NT3 coding regions provides further insight into amino acid residues that may be responsible for the different receptor specificities of these factors. 相似文献
13.
Fiumelli H Kiraly M Ambrus A Magistretti PJ Martin JL 《Journal of neurochemistry》2000,74(5):1870-1877
Regulation of calbindin and calretinin expression by brain-derived neurotrophic factor (BDNF) was examined in primary cultures of cortical neurons using immunocytochemistry and northern blot analysis. Here we report that regulation of calretinin expression by BDNF is in marked contrast to that of calbindin. Indeed, chronic exposure of cultured cortical neurons for 5 days to increasing concentrations of BDNF (0.1-10 ng/ml) resulted in a concentration-dependent decrease in the number of calretinin-positive neurons and a concentration-dependent increase in the number of calbindin-immunoreactive neurons. Consistent with the immunocytochemical analysis, BDNF reduced calretinin mRNA levels and up-regulated calbindin mRNA expression, providing evidence that modifications in gene expression accounted for the changes in the number of calretinin- and calbindin-containing neurons. Among other members of the neurotrophin family, neurotrophin-4 (NT-4), which also acts by activating tyrosine kinase TrkB receptors, exerted effects comparable to those of BDNF, whereas nerve growth factor (NGF) was ineffective. As for BDNF and NT-4, incubation of cortical neurons with neurotrophin-3 (NT-3) also led to a decrease in calretinin expression. However, in contrast to BDNF and NT-4, NT-3 did not affect calbindin expression. Double-labeling experiments evidenced that calretinin- and calbindin-containing neurons belong to distinct neuronal subpopulations, suggesting that BDNF and NT-4 exert opposite effects according to the neurochemical phenotype of the target cell. 相似文献
14.
A Rosenthal D V Goeddel T Nguyen M Lewis A Shih G R Laramee K Nikolics J W Winslow 《Neuron》1990,4(5):767-773
During development, each tissue receives and maintains a number of specific neuronal projections that are adequate to sustain its function. The mechanism by which this intricate process occurs is not well understood, but it has been proposed that diffusible neurotrophic factors derived from the target tissue may be involved. Here we describe the identification of a novel human protein that is important for the growth, differentiation, and survival of primary sympathetic and placode-derived sensory neurons. This polypeptide, designated neuronotrophin-3, has a broad tissue distribution and is structurally related to both nerve growth factor and brain-derived neurotrophic factor. Its unique range of trophic and differentiation-inducing activities suggests that it is likely to play a wide role in defining the fate and function of nerve cells during development. 相似文献
15.
16.
Laurikainen A Hiltunen JO Thomas-Crusells J Vanhatalo S Arumäe U Airaksinen MS Klinge E Saarma M 《Journal of neurobiology》2000,43(2):198-205
Neurturin (NRTN), a member of the GDNF family of neurotrophic factors, promotes the survival and function of several neuronal populations in the peripheral and central nervous system. Recent gene ablation studies have shown that NRTN is a neurotrophic factor for many cranial parasympathetic and enteric neurons, whereas its significance for the sacral parasympathetic neurons has not been studied. NRTN signals via a receptor complex composed of the high-affinity binding receptor component GFRalpha2 and the transmembrane tyrosine kinase Ret. The aim of this study was to determine whether NRTN could be an endogenous trophic factor for penis-projecting parasympathetic neurons. NRTN mRNA was expressed in smooth muscle of penile blood vessels and corpus cavernosum in adult rat as well as in several intrapelvic organs, whereas GFRalpha2 and Ret mRNAs were expressed in virtually all cell bodies of the penile neurons, originating in the major pelvic ganglia. (125)I-NRTN injected into the shaft of the penis was retrogradely transported into the major pelvic and dorsal root ganglia. Mice lacking the GFRalpha2 receptor component had significantly less nitric oxide synthase-containing nerve fibers in the dorsal penile and cavernous nerves. In conclusion, these data suggest that NRTN acts as a target-derived survival and/or neuritogenic factor for penile erection-inducing postganglionic neurons. 相似文献
17.
18.
Nerve growth factor (NGF) and glial cell line-derived neurotrophic factor (GDNF) regulate substance P release in adult spinal sensory neurons 总被引:8,自引:0,他引:8
NGF increases expression and content of substance P in developing and mature spinal sensory neurons. The role this neurotrophin plays in peptide release, however, is less clear. Accordingly, we examined substance P release from cultures of mature rat sensory neurons, which do not require NGF for survival. Neurons grown without NGF have a low but detectable basal release, which increases with depolarization by KCl (50 mM) but never achieves statistical significance. In contrast, basal release is 3 times higher from neurons that have been cultured in the presence of NGF, and KCl depolarization triples the amount of SP released. Stimulation with capsaicin (10–7 M) yields similar results. Residual peptide remaining after capsaicin stimulation is refractory to release for up to 24 h. Bradykinin does not induce SP secretion from mature neurons nor does it potentiate the action of capsaicin. GDNF, which also increases SP content, mimics NGF. Addition of NGF to the bath during release does not directly induce SP secretion, nor does it alter the effects of KCl, capsaicin, or bradykinin. It appears therefore that NGF increases SP release indirectly by increasing intracellular stores. 相似文献
19.
The focus of this review is to highlight the importance of glial cell line-derived neurotrophic factor (GDNF) for the motor nervous system. GDNF is the most potent survival factor for motor neurons, where it enhances maintenance and survival of both developing and mature motor neurons in vivo and in vitro. GDNF aids in neuromuscular junction formation, maintenance, and plasticity, where skeletal muscle-derived GDNF may be responsible for this phenomenon. Increased levels of physical activity can increase GDNF protein levels in skeletal muscle, where alterations in acetylcholine and acetylcholine receptor activation may be involved in regulation of these changes observed. With inactivity and disuse, GDNF expression shows different patterns of regulation in the central and peripheral nervous systems. Due to its potent effects for motor neurons, GDNF is being extensively studied in neuromuscular diseases. 相似文献
20.
Macrophage stimulating protein (MSP) is a pleiotropic growth factor that signals via the Ron receptor tyrosine kinase. We report that Ron mRNA is expressed by NGF-dependent sensory and sympathetic neurons and that these neurons survive and grow with MSP at different stages of development. Whereas NGF-dependent sensory neurons become increasingly responsive to MSP with age, sympathetic neurons exhibit an early response to MSP that is lost by birth. MSP mRNA expression increases with age in sensory neuron targets and decreases in sympathetic targets. After the phase of naturally occurring neuronal death, significant numbers of NGF-dependent sensory neurons, but not sensory neurons, dependent on other neurotrophins, are lost in mice lacking a functional Ron receptor. These results show that MSP is a target-derived neurotrophic factor for subsets of sensory and sympathetic neurons at different times during their development. 相似文献