首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 16 毫秒
1.
AIM: To purify and analyse antimicrobial substances produced by the tomato pathogen Clavibacter michiganensis ssp. michiganensis (Cmm), with potential application in control of Clavibacter michiganensis ssp. sepedonicus (Cms), the causal agent of bacterial ring rot of potato. METHODS AND RESULTS: After selection of a suitable producer and indicator strain, antimicrobial compounds were isolated using chromatographic techniques. The resulting preparations were analysed with respect to heat and protease sensitivity, amino acid composition, amino acid sequence and mass. Using this procedure we discovered one post-translationally modified 2145 Da peptide bacteriocin, one 14 kDa antimicrobial protein as well as low molecular weight (<1000 Da) antimicrobial compounds, putatively belonging to the tunicamycin family. CONCLUSIONS: Clavibacter michiganensis ssp. michiganensis produces various antibacterial substances that are active against Cms. SIGNIFICANCE AND IMPACT OF THE STUDY: This study describes the first attempt to characterize antimicrobial substances from Cmm at the molecular level. This is an important step towards investigation of the possible use of these compounds to control the potato ring rot pathogen.  相似文献   

2.
Aims: To evaluate the effectiveness of the optimized immunomagnetic separation (IMS)‐plating protocol in relation to other culture, serological and molecular techniques currently used for Clavibacter michiganensis subsp. michiganensis in seed‐testing laboratories. Methods and results: Bacterial suspensions, tomato seed extracts spiked with the pathogen and naturally infected seeds were IMS‐plated for the detection of C. m. subsp. michiganensis. These results were compared with plating on general (YPGA) and semiselective (mSCM) media, double‐antibody sandwich enzyme‐linked immunosorbent assay (DAS‐ELISA), immunofluorescent assay (IF) or polymerase chain reaction (PCR). Different seed lots and pathogen strains were also tested. IMS‐plating allowed the detection of less than 10 CFU ml?1 of pathogen in all assayed samples. The mSCM medium provided positive results for 10 CFU ml?1 in naturally infected seeds, but up to 14 days was necessary for the typical colonies of the target to be come visible. By serological techniques, 103 and up to 104 CFU ml?1 were detected by IF and ELISA, respectively. DNA extraction was required to obtain positive results by PCR in seed extracts containing 103 CFU ml?1 or more. Conclusions: Among the evaluated methods, IMS‐plating provided the best results regarding sensitivity and specificity for C. m. subsp. michiganensis detection, allowing the recovery of viable bacteria from seed extracts. Significance and impact of the study: IMS‐plating increases isolation rates of C. m. subsp. michiganensis and could improve standard protocols currently used for routine analysis.  相似文献   

3.
F. Nazari    G. R. Niknam    A. Ghasemi    S. M. Taghavi    H. Momeni    S. Torabi 《Journal of Phytopathology》2007,155(9):563-569
Tomato bacterial canker disease was first reported from Urmiyeh in West Azerbaijan province in Iran. The disease causes lesion (canker), wilting and dryness of infected plants, leaf and fruit spots and the decline of the whole plant. Out of 102 isolates obtained from the fields in the major tomato producing areas of understudy regions, 98 were found Gram positive, yellow‐pigmented isolates, identified as Clavibacter michiganensis subsp. michiganensis based on the morphological and biochemical characteristics described in previous studies. Among these strains, 64 were virulent and 34 showed poor virulence. A strain of Cmm (NCPPB382) was used as a check (standard) in all steps of this study. DNA fingerprinting with repetitive‐sequence‐based PCR (rep‐PCR) (BOX primer) carried out among 11 representative strains (eight strains from West Azerbaijan, two from Golestan and one as standard). The most virulent strain was chosen as representative in each location. Dendrograms were prepared using NTSYS‐pc version 2/o2e software, unweighted pair group with arithmetic average method and simple matching similarity coefficient. According to the site of cut‐off line, three groups (clusters) with 82/5% similarity and six groups with 55% similarity were separated based on biochemical and SDS‐PAGE data, and rep‐PCR reactions respectively. Low similarity among groups (55%) can be explained as high genetic diversity among the strains. One strain of west Azerbaijan and the strains of Golestan, clustered in the same group suggesting that they may have been originated from a common source. Other strains of west Azerbaijan were clustered into different groups including II, III, IV, V and VI, suggesting the possibility of occurrence of different populations in a geographical region.  相似文献   

4.
Hybridization of Clavibacter michiganensis subsp. michiganensis total DNA against the pathogenicity gene pat-1 indicated the presence of pat-1 homologous nucleotide sequences on the chromosome and on plasmid pCM2. Isolation of the corresponding DNA fragments and nucleotide sequence determination showed that there are three pat-1 homologous genes: chpA (chromosome) and phpA and phpB (plasmid pCM2). The gene products share common characteristics, i.e. a signal sequence for Sec-dependent secretion, a serine protease motif, and six cysteine residues at conserved positions. Gene chpA located on the chromosome is a pseudogene since it contains a translational stop codon after 97 of 280 amino acids. In contrast to pat-1, cloning of the plasmid encoded homologs phpA and phpB into the avirulent plasmid free Cmm strain CMM100 did not result in a virulent phenotype. So far no proteolytic activity could be demonstrated for Pat-1, however, site specific mutagenesis of pat-1 showed that the serine residue in the motif GDSGG is required for the virulent phenotype of pat-1 and thus Pat-1 could be a functional protease.  相似文献   

5.
6.
Hamedan province of Iran is a suitable niche for alfalfa growth but many diseases including alfalfa bacterial wilt, bacterial crown and root rot diseases cause economic crop losses. Bacterial wilt is caused by Clavibacter michiganensis subsp. insidiosus, and bacterial crown and root rot diseases are caused by Pseudomonas viridiflava. In this study, we investigated the pathogenicity of C. michiganensis subsp. insidiosus and P. viridiflava strains collected from the main alfalfa growing areas of Hamedan province. Pathogenicity of the virulent strains was tested on alfalfa and the bacterial strains caused symptoms, and data were collected about stem length, root length, wet weight and dry weight of the infected plantlets. The data about the pathogenicity of C. michiganensis subsp. insidiosus and P. viridiflava on alfalfa were compared with each other and were analysed by SAS software and Dunkan's test. Resulted data showed more pathogenicity of C. michiganensis subsp. insidiosus than P. viridiflava on alfalfa. These data also showed that both of these bacteria produced the most losses on wet weight and dry weight of alfalfa plantlets.  相似文献   

7.
The Gram-positive bacterium Clavibacter michiganensis subsp. sepedonicus is the causal agent of bacterial wilt and ring rot of potato. So far, only two proteins have been shown to be essential for virulence, namely a plasmid-encoded cellulase CelA and a hypersensitive response-inducing protein. We have examined the relative expression of CelA and eight putative virulence factors during infection of potato and in liquid culture, using quantitative real-time PCR. The examined putative virulence genes were celB, a cellulase-encoding gene and genes encoding a pectate lyase, a xylanase and five homologues of the Clavibacter michiganensis subsp. michiganensis pathogenicity factor Pat-1 thought to encode a serine protease. Six of the nine assayed genes were up-regulated during infection of potato, including celA, celB, the xylanase gene, and two of the pat genes. The pectate lyase gene showed only slightly elevated expression, whereas three of the five examined pat genes were down-regulated during infection in potato. Interestingly, the two up-regulated pat genes showed a noticeable sequence difference compared to the three down-regulated pat genes. These results reveal several new proteins that are likely to be involved in Clavibacter michiganensis subsp. sepedonicus pathogenicity.  相似文献   

8.
9.
10.
11.
12.
13.
Clavibacter michiganensis subsp. michiganensis is a Gram-positive bacterium that causes wilting and cankers, leading to severe economic losses in commercial tomato production worldwide. The disease is transmitted from infected seeds to seedlings and mechanically from plant to plant during seedling production, grafting, pruning, and harvesting. Because of the lack of tools for genetic manipulation, very little is known regarding the mechanisms of seed and seedling infection and movement of C. michiganensis subsp. michiganensis in grafted plants, two focal points for application of bacterial canker control measures in tomato. To facilitate studies on the C. michiganensis subsp. michiganensis movement in tomato seed and grafted plants, we isolated a bioluminescent C. michiganensis subsp. michiganensis strain using the modified Tn1409 containing a promoterless lux reporter. A total of 19 bioluminescent C. michiganensis subsp. michiganensis mutants were obtained. All mutants tested induced a hypersensitive response in Mirabilis jalapa and caused wilting of tomato plants. Real-time colonization studies of germinating seeds using a virulent, stable, constitutively bioluminescent strain, BL-Cmm17, showed that C. michiganensis subsp. michiganensis aggregated on hypocotyls and cotyledons at an early stage of germination. In grafted seedlings in which either the rootstock or scion was exposed to BL-Cmm17 via a contaminated grafting knife, bacteria were translocated in both directions from the graft union at higher inoculum doses. These results emphasize the use of bioluminescent C. michiganensis subsp. michiganensis to help better elucidate the C. michiganensis subsp. michiganensis-tomato plant interactions. Further, we demonstrated the broader applicability of this tool by successful transformation of C. michiganensis subsp. nebraskensis with Tn1409::lux. Thus, our approach would be highly useful to understand the pathogenesis of diseases caused by other subspecies of the agriculturally important C. michiganensis.Clavibacter michiganensis subsp. michiganensis is a Gram-positive, aerobic bacterium that belongs to a group of plant-pathogenic actinomycetes (37). Infections by C. michiganensis subsp. michiganensis cause bacterial canker and wilt in tomato, which is considered one of the most destructive and economically significant diseases of this crop. Severe epidemics can cause up to 80% yield loss, mainly due to wilting and death of plants and lesions on fruit. Bacterial canker was first discovered in Michigan greenhouses in 1909 and has now been reported to occur in most tomato production areas around the world (11, 40).Plant wounds facilitate but are not required for infection by C. michiganensis subsp. michiganensis, which invades the xylem vessels and causes vascular disease with high titers (109 bacteria/g of plant tissue) (2, 29), impairing water transport and leading to plant wilting, canker stem lesions, and death (17, 23). Alternatively, asymptomatic infections can be induced by C. michiganensis subsp. michiganensis during late stages of plant development, resulting in the production of contaminated seeds, a major source of outbreaks of C. michiganensis subsp. michiganensis infections in tomato production (13, 34). Traditional bacterial-disease management measures, such as applications of antibiotics and copper bactericides, have not been successful against this disease, and canker-resistant tomato cultivars are not available. As a result, C. michiganensis subsp. michiganensis has been included under international quarantine regulation (10, 11). Consequently, seed testing and maintaining pathogen-free seeds and transplants is currently the most appropriate approach to minimize the spread of disease (23). However, even a low C. michiganensis subsp. michiganensis transmission rate (0.01%) from seed to seedling can cause a disease epidemic under favorable conditions (5). Due to overcrowding of seedlings during transplant production, the pathogen can easily spread through splashing of irrigation water and leaf contact. Despite its apparent significance in C. michiganensis subsp. michiganensis epidemiology, the mechanism of seed-to-seedling transmission of C. michiganensis subsp. michiganensis is not well understood.Another critical point for disease spread is the grafting process, which is now a common practice for the majority of plants used in production greenhouses. Desirable tomato cultivars (scions) are grafted onto rootstocks that provide greater vigor, longevity, or, in some cases, disease resistance (26). Grafting requires cutting both rootstock and scion, providing a quick way for C. michiganensis subsp. michiganensis to spread from plant to plant. However, grafting is a relatively recent innovation in tomato production, and little is known about how grafting affects the dynamics of C. michiganensis subsp. michiganensis infection. Developing adequate control measures for C. michiganensis subsp. michiganensis is complicated by the complexity of genetic manipulation of Gram-positive bacteria, which impairs analysis and characterization of pathogenesis mechanisms (23). Consequently, there is a need to develop molecular techniques that would allow a better understanding of C. michiganensis subsp. michiganensis infections.One method of interest is using engineered bioluminescent bacteria to monitor plant-pathogen interactions in real time. By exploiting natural light-emitting reactions that are encoded by the luxCDABE genes, bioluminescent bacteria have been used to assess gene expression and to monitor the internalization and distribution of bacteria in hosts (3, 6, 7, 8, 9, 12, 15, 24, 31, 35, 36). In particular, bioluminescent phytopathogenic Xanthomonas campestris pathovars and Pseudomonas spp. have been used to track bacterial movement and distribution in host plants (7, 8, 15, 31, 36), as well as to assess host susceptibility quantitatively (15). Likewise, the lux genes have also been transferred to beneficial bacteria, such as Rhizobium leguminosarum and Pseudomonas spp. to visualize colonization patterns in rhizospheres (3, 9).The genes that carry the function of light emission are luxAB, which express luciferase enzymes that catalyze the bioluminescent reaction, while luxCDE encode the enzymes required for biosynthesis of a fatty aldehyde substrate necessary for the reaction (28, 39). Bioluminescence involves an intracellular oxidation of the reduced form of flavin mononucleotide and the fatty aldehyde by luciferase in the presence of molecular oxygen; therefore, bacterial bioluminescence also requires oxygen, a source of energy (38). Cells that express the lux operon spontaneously emit photons that can be captured by a sensitive charge-coupled-device (CCD) camera, enabling imaging and visualization of bacterial cells (22). Luciferase activity depends on the metabolic integrity of the cell, while the number of photons emitted correlates with the biomass of living bacteria (12, 31). Furthermore, since the half-life of luciferase binding to its substrate is several seconds (28), captured light events reflect processes in real time and are not artifacts of accumulated signals. Consequently, live imaging of bioluminescence provides a sensitive means of visualizing bacterial colonization and invasion of hosts and allows real-time representation and examination of pathogen-plant interactions (24, 36).Very little information is available about the mechanisms of C. michiganensis subsp. michiganensis pathogenesis and its colonization of seeds and subsequent transmission to seedlings. This is largely attributable to a lack of tools and difficulties in genetically manipulating this Gram-positive bacterium (30). However, recent development of an insertion sequence element IS1409 (Tn1409)-based efficient transposon mutagenesis system for C. michiganensis subsp. michiganensis has increased our knowledge of the pathogenesis of tomato canker (16, 25). To better understand the dynamics of seed-to-seedling transmission of C. michiganensis subsp. michiganensis, as well as movement of C. michiganensis subsp. michiganensis in grafted plants, we constructed a bioluminescent C. michiganensis subsp. michiganensis strain using the Tn1409 transposon mutagenesis system. Our results demonstrated the utility of using a bioluminescent C. michiganensis subsp. michiganensis strain as a novel approach to elucidate the interaction of plants with this economically important pathogen.  相似文献   

14.
Clavibacter michiganensis subsp. nebraskensis (CMN) is a gram-positive bacterium and an incitant of Goss's bacterial wilt and leaf blight or "leaf freckles" in corn. A population structure of a wide temporal and geographic collection of CMN strains (n = 131), originating between 1969 and 2009, was determined using amplified fragment length polymorphism (AFLP) analysis and repetitive DNA sequence-based BOX-PCR. Analysis of the composite data set of AFLP and BOX-PCR fingerprints revealed two groups with a 60% cutoff similarity: a major group A (n = 118 strains) and a minor group B (n = 13 strains). The clustering in both groups was not correlated with strain pathogenicity. Group A contained two clusters, A1 (n = 78) and A2 (n = 40), with a linkage of 75%. Group A strains did not show any correlation with historical, geographical, morphological, or physiological properties of the strains. Group B was very heterogeneous and eight out of nine clusters were represented by a single strain. The mean similarity between clusters in group B varied from 13% to 63%. All strains in group B were isolated after 1999. The percentage of group B strains among all strains isolated after 1999 (n = 69) was 18.8%. Implications of the findings are discussed.  相似文献   

15.
Symptoms of bacterial canker disease on tomato were first observed in June 1998, in three tomato fields in the semi‐mountainous region of Eptagonia (Limassol district). In two of these fields, which were planted with cv. FA 179, infection was almost 100%, with heavy losses. The third field, planted with cv. Graziella, had only sporadic infections. An extensive survey during 1998–99 detected 10 additional cases of bacterial canker, all in the wider agro‐ecological zone of initial disease detection. The pathogen Clavibacter michiganensis. ssp. michiganensis was consistently isolated from diseased plants, identified, and its pathogenicity proved. This is the first report of bacterial canker disease on tomato in Cyprus.  相似文献   

16.
The survival of Clavibacter michiganensis subsp. sepedonicus (Cms), the causal organism of bacterial ring rot in potato, was studied in water, to assess the risks for dissemination of Cms via surface water and infection of potato crops by irrigation. Cms was able to survive for a maximum period of 7 days in non‐sterile surface water at 10°C, a period during which Cms can be transported over long distances, but will also be strongly diluted. It is concluded that contamination of surface water with Cms can pose a threat on potato production only if aquatic host plants can multiply Cms in high densities. Survival of a fluidal and non‐mucoid strain was also studied in sterile ditch water and simulated ‘drainage water’, in sterile MilliQ water, in tap water, in physiological salt and in artificial xylem fluid. In addition, the influence of temperature and low oxygen conditions on persistence of Cms in some of these diluents was studied. A maximum survival period of 35 days was found for Cms in sterile tap water at 20°C, independent of the strain used. In the other diluents survival periods ranged between 0 and 21 days. Relatively poor survival was found in MilliQ water and artificial xylem fluid. Low temperatures of 4°C do not favour survival as it does in soil. Oxygen depletion affected survival detrimentally. Survival periods determined by agar dilution plating and a direct viable counting method, based on the use of indicators for esterase activity and membrane integrity were similar. Therefore, it was concluded that under the experimental conditions studied, Cms did not form cells in a viable but non‐culturable state.  相似文献   

17.
Leaf discs provided better recovery ofCylindrocladium candelabrum from soil than stem, or twig segments. Leaf discs of eucalypt (Eucalyptus grandis), azalea (Rhododendron sp.), and geranium (Pelargonium sp.) were the best of seven plant baits evaluated. Twig segments of azalea and eucalypt also provided a high percentage of the pathogen recovery, whereas stem segments of pine seedlings (Pinus elliottii) proved unsatisfactory. Although slightly less effective, twig segments were easier to handle than leaf discs which were quickly decomposed in soil. Colonization of eucalypt twig segments byCylindrocladium spp. varied with inoculum level, soil moisture content, and incubation period. The highest percentage of recovery ofC. candelabrum (approx. 95%) was calculated at a field capacity moisture level of 155.9% after 75h of incubation.  相似文献   

18.
Bacterial wilt and canker caused by Clavibacter michiganensis (Cm) inflict considerable damage in tomato‐growing regions around the world. Cm has a narrow host range and can cause disease in tomato but not in many eggplant varieties. The pathogenicity of Cm is dependent on secreted serine proteases, encoded by the chp/tomA pathogenicity island (PI), and the pCM2 plasmid. Screening combinations of PI deletion mutants and plasmid‐cured strains found that Cm‐mediated hypersensitive response (HR) in the Cm‐resistant eggplant variety Black Queen is dependent on the chp/tomA PI. Singular reintroduction of PI‐encoded serine proteases into Cm∆PI identified that the HR is elicited by the protease ChpG. Eggplant leaves infiltrated with a chpG marker exchange mutant (CmΩchpG) did not display an HR, and infiltration of purified ChpG protein elicited immune responses in eggplant but not in Cm‐susceptible tomato. Virulence assays found that while wild‐type Cm and the CmΩchpG complemented strain were nonpathogenic on eggplant, CmΩchpG caused wilt and canker symptoms. Additionally, bacterial populations in CmΩchpG‐inoculated eggplant stem tissues were c.1000‐fold higher than wild‐type and CmΩchpG‐complemented Cm strains. Pathogenicity tests conducted in multiple Cm‐resistance eggplant varieties demonstrated that immunity to Cm is dependent on ChpG in all tested varieties, indicating that ChpG‐recognition is conserved in eggplant. ChpG‐mediated avirulence interactions were disabled by alanine substitution of serine231 of the serine protease catalytic triad, suggesting that protease activity is required for immune recognition of ChpG. Our study identified ChpG as a novel avirulence protein that is recognized in resistant eggplant varieties and restricts the host range of Cm.  相似文献   

19.
20.
We show in this work that collagenolytic Rathayibacter sp. are isolated with phytopathogenic Clavibacter michiganensis subsp. michiganensis strains. The Rathayibacter strains isolated all produced collagenases. One of these collagenases (from the strain 1715) was purified by ammonium sulphate precipitation, DEAE cellulose and Sephadex G 200 chromatography. Characterization of the enzyme showed that it is a true collagenase which is able to degrade both native collagen, gelatin and probably other proteins from plants sharing sequence homologies with collagen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号