首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The packaging of DNA into chromatin creates a number of significant barriers to the detection of DNA lesions and their timely and accurate repair. Eukaryotic cells have evolved a number of enzymes that modulate chromatin structure and facilitate DNA repair. Recent research illustrates how nucleosome remodelling enzymes cooperate with both DNA-damage-inducible and constitutive histone modifications to promote many facets of the cellular response to DNA damage.  相似文献   

3.
4.
The accurate repair of chromosomal double-strand breaks (DSBs) arising from exposure to exogenous agents, such as ionizing radiation (IR) and radiomimetic drugs is crucial in maintaining genomic integrity, cellular viability and the prevention of tumorigenesis. Eukaryotic cells have evolved efficient mechanisms that sense and respond to DSBs. The DNA DSB response is facilitated by hierarchical signaling networks that orchestrate chromatin structural changes, cell-cycle checkpoints and multiple enzymatic activities to repair the broken DNA ends. Sensors and transducers signal to numerous downstream cellular effectors which function primarily by substrate posttranslational modifications including phosphorylation, acetylation, methylation and ubiquitylation. In particular, the past several years have provided important insight into the role of chromatin remodeling and histones-specific modifications to control DNA damage detection, signaling and repair. This review summarizes recently identified factors that influence this complex process and the repair of DNA DSBs in eukaryotic cells.  相似文献   

5.
Salles B  Rodrigo G  Li RY  Calsou P 《Biochimie》1999,81(1-2):53-58
The development of in vitro repair assays with human cell-free extracts led to new insights on the mechanism of excision of DNA damage which consists of incision/excision and repair synthesis/ligation. We have adapted the repair synthesis reaction with cells extracts incubated with damaged plasmid DNA performed in liquid phase to solid phase by DNA adsorption into microplate wells. Since cells extracts are repair competent in base excision and nucleotide excision repair, all types of substrate DNA lesions were detected with chemiluminescence measurement after incorporation of biotin-deoxynucleotide during the repair synthesis step. Derivatives of our initial 3D-assay (DNA damage detection) have been set up to: i) screen antioxidative compounds and NER inhibitors; ii) capture genomic DNA (3D(Cell)-assay) that allows detection of alkylated base and consequently determines the kinetics of the cellular repair; and iii) immunodetect the repair proteins in an ELISA reaction (3D(Rec)-assay). The 3D derived assays are presented and discussed.  相似文献   

6.
Her C  Vo AT  Wu X 《DNA Repair》2002,1(9):719-729
In both mitotic and meiotic processes, cellular surveillance of the integrity of genetic information transmission from parental cells to their subsequent generations is carried out by a network of proteins primarily involved in cell-cycle regulation, DNA replication, DNA repair, and chromosome segregation. Within this context, the mammalian MRE11 represents an essential multifunctional protein that promotes repair of DNA double-strand breaks and plays a role in the signaling of DNA damage response. Mutations in human hMRE11 gene could contribute to the rare "AT-like" disorder. However, at present time the functional roles of hMRE11 in these cellular processes are elusive. In the current study, we provide evidence that hMRE11 interacts physically with the mismatch repair protein hMLH1 through yeast two-hybrid analysis. In addition, we show that recombinant hMRE11 and hMLH1 proteins interact when these two proteins are coexpressed in bacterial cells, and both proteins can be co-immunoprecipitated from human cell extracts. Furthermore, hMRE11 and hMLH1 display similar expression patterns when examined with a human normal/tumor DNA array. Together, these data suggest that hMRE11 and hMLH1 might act in a co-operative fashion during DNA damage detection, signaling, and repair.  相似文献   

7.
Post-translational poly(ADP-ribosyl)ation has diverse essential functions in the cellular response to DNA damage as it contributes to avid DNA damage detection and assembly of the cellular repair machinery but extensive modification eventually also induces cell death. While there are 17 human poly(ADP-ribose) polymerase (PARP) genes, there is only one poly(ADP-ribose) glycohydrolase (PARG) gene encoding several PARG isoforms located in different subcellular compartments. To investigate the recruitment of PARG isoforms to DNA repair sites we locally introduced DNA damage by laser microirradiation. All PARG isoforms were recruited to DNA damage sites except for a mitochondrial localized PARG fragment. Using PARP knock out cells and PARP inhibitors, we showed that PARG recruitment was only partially dependent on PARP-1 and PAR synthesis, indicating a second, PAR-independent recruitment mechanism. We found that PARG interacts with PCNA, mapped a PCNA binding site and showed that binding to PCNA contributes to PARG recruitment to DNA damage sites. This dual recruitment mode of the only nuclear PARG via the versatile loading platform PCNA and by a PAR dependent mechanism likely contributes to the dynamic regulation of this posttranslational modification and ensures the tight control of the switch between efficient DNA repair and cell death.  相似文献   

8.
Viral manipulation of DNA repair and cell cycle checkpoints   总被引:1,自引:0,他引:1  
Recognition and repair of DNA damage is critical for maintaining genomic integrity and suppressing tumorigenesis. In eukaryotic cells, the sensing and repair of DNA damage are coordinated with cell cycle progression and checkpoints, in order to prevent the propagation of damaged DNA. The carefully maintained cellular response to DNA damage is challenged by viruses, which produce a large amount of exogenous DNA during infection. Viruses also express proteins that perturb cellular DNA repair and cell cycle pathways, promoting tumorigenesis in their quest for cellular domination. This review presents an overview of strategies employed by viruses to manipulate DNA damage responses and cell cycle checkpoints as they commandeer the cell to maximize their own viral replication. Studies of viruses have identified key cellular regulators and revealed insights into molecular mechanisms governing DNA repair, cell cycle checkpoints, and transformation.  相似文献   

9.
The kinetics of unscheduled DNA synthesis in normal human fibroblasts was characterized by flow cytometry utilizing the immunofluorescent detection of 5-bromo-2'-deoxyuridine (BrdUrd) incorporated into cellular DNA during the repair process. Quiescent normal human fibroblasts were irradiated with ultraviolet light and incubated in the presence of BrdUrd during a postirradiation repair period. The amount of unscheduled DNA synthesis was then quantified in the quiescent cells by immunofluorescence staining using monoclonal antibodies against BrdUrd incorporated into the DNA. Significant amounts of unscheduled DNA synthesis were measured after doses as low as 0.1 J/m2 and for time periods as short as 15 min. The initial repair rate was found to be linear with time at all doses tested until repair neared completion. Interestingly, the initial repair rate was constant for doses over the range of 5 to 40 J/m2, whereas the time to completion of repair was dose dependent. These results suggest that above 5 J/m2 in normal human fibroblasts, the repair process is saturated but continues to function until all available regions are repaired. Using this methodology for measuring unscheduled DNA synthesis in combination with second and third flow markers, it is now possible to measure unscheduled DNA synthesis in heterogeneous mixtures of cells.  相似文献   

10.
11.
Replication protein A phosphorylation and the cellular response to DNA damage   总被引:12,自引:0,他引:12  
Binz SK  Sheehan AM  Wold MS 《DNA Repair》2004,3(8-9):1015-1024
Defects in cellular DNA metabolism have a direct role in many human disease processes. Impaired responses to DNA damage and basal DNA repair have been implicated as causal factors in diseases with DNA instability like cancer, Fragile X and Huntington's. Replication protein A (RPA) is essential for multiple processes in DNA metabolism including DNA replication, recombination and DNA repair pathways (including nucleotide excision, base excision and double-strand break repair). RPA is a single-stranded DNA-binding protein composed of subunits of 70-, 32- and 14-kDa. RPA binds ssDNA with high affinity and interacts specifically with multiple proteins. Cellular DNA damage causes the N-terminus of the 32-kDa subunit of human RPA to become hyper-phosphorylated. Current data indicates that hyper-phosphorylation causes a change in RPA conformation that down-regulates activity in DNA replication but does not affect DNA repair processes. This suggests that the role of RPA phosphorylation in the cellular response to DNA damage is to help regulate DNA metabolism and promote DNA repair.  相似文献   

12.
In eukaryotic cells, inheritance of both exact DNA sequence and its arrangement into the chromatin is critical for maintaining stability of the genome. Various DNA lesions induced by endogenous and exogenous factors make this maintanance problematic. To understand completely how cells resolve this problem the knowledge on the nature of these lesions, their detection, and repair within the chromatin environment should be integrated. Understanding of these processes is complicated by multiple types of DNA lesions and repair pathways, as well as the intricate organization of the chromatin. Recent advances in all these directions help to get insight on the repair regulation of DNA within the chromatin at the molecular and cellular level.  相似文献   

13.
When repair meets chromatin: First in series on chromatin dynamics   总被引:9,自引:0,他引:9       下载免费PDF全文
In eukaryotic cells, the inheritance of both the DNA sequence and its organization into chromatin is critical to maintain genome stability. This maintenance is challenged by DNA damage. To fully understand how the cell can tolerate genotoxic stress, it is necessary to integrate knowledge of the nature of DNA damage, its detection and its repair within the chromatin environment of a eukaryotic nucleus. The multiplicity of the DNA damage and repair processes, as well as the complex nature of chromatin, have made this issue difficult to tackle. Recent progress in each of these areas enables us to address, both at a molecular and a cellular level, the importance of inter-relationships between them. In this review we revisit the ‘access, repair, restore’ model, which was proposed to explain how the conserved process of nucleotide excision repair operates within chromatin. Recent studies have identified factors potentially involved in this process and permit refinement of the basic model. Drawing on this model, the chromatin alterations likely to be required during other processes of DNA damage repair, particularly double-strand break repair, are discussed and recently identified candidates that might perform such alterations are highlighted.  相似文献   

14.
Checkpoints, which are integral to the cellular response to DNA damage, coordinate transient cell cycle arrest and the induced expression of DNA repair genes after genotoxic stress. DNA repair ensures cellular survival and genomic stability, utilizing a multipathway network. Here we report evidence that the two systems, DNA damage checkpoint control and DNA repair, are directly connected by demonstrating that the Rad55 double-strand break repair protein of the recombinational repair pathway is a terminal substrate of DNA damage and replication block checkpoints. Rad55p was specifically phosphorylated in response to DNA damage induced by the alkylating agent methyl methanesulfonate, dependent on an active DNA damage checkpoint. Rad55p modification was also observed after gamma ray and UV radiation. The rapid time course of phosphorylation and the recombination defects identified in checkpoint-deficient cells are consistent with a role of the DNA damage checkpoint in activating recombinational repair. Rad55p phosphorylation possibly affects the balance between different competing DNA repair pathways.  相似文献   

15.
Changes in DNA repair during aging   总被引:7,自引:1,他引:6  
DNA is a precious molecule. It encodes vital information about cellular content and function. There are only two copies of each chromosome in the cell, and once the sequence is lost no replacement is possible. The irreplaceable nature of the DNA sets it apart from other cellular molecules, and makes it a critical target for age-related deterioration. To prevent DNA damage cells have evolved elaborate DNA repair machinery. Paradoxically, DNA repair can itself be subject to age-related changes and deterioration. In this review we will discuss the changes in efficiency of mismatch repair (MMR), base excision repair (BER), nucleotide excision repair (NER) and double-strand break (DSB) repair systems during aging, and potential changes in DSB repair pathway usage that occur with age. Mutations in DNA repair genes and premature aging phenotypes they cause have been reviewed extensively elsewhere, therefore the focus of this review is on the comparison of DNA repair mechanisms in young versus old.  相似文献   

16.
Unrepaired or inaccurately repaired DNA damage can lead to a range of cell fates, such as apoptosis, cellular senescence or cancer, depending on the efficiency and accuracy of DNA damage repair and on the downstream DNA damage signalling. DNA damage repair and signalling have been studied and modelled in detail separately, but it is not yet clear how they integrate with one another to control cell fate. In this study, we have created an integrated stochastic model of DNA damage repair by non-homologous end joining and of gamma irradiation-induced cellular senescence in human cells that are not apoptosis-prone. The integrated model successfully explains the changes that occur in the dynamics of DNA damage repair after irradiation. Simulations of p53/p21 dynamics after irradiation agree well with previously published experimental studies, further validating the model. Additionally, the model predicts, and we offer some experimental support, that low-dose fractionated irradiation of cells leads to temporal patterns in p53/p21 that lead to significant cellular senescence. The integrated model is valuable for studying the processes of DNA damage induced cell fate and predicting the effectiveness of DNA damage related medical interventions at the cellular level.  相似文献   

17.
Smirnova M  Klein HL 《Mutation research》2003,532(1-2):117-135
The postreplication repair pathway (PRR) is composed of error-free and error-prone sub-pathways that allow bypass of DNA damage-induced replication-blocking lesions. The error-free sub-pathway is also used for bypass of spontaneous DNA damage and functions in cooperation with recombination pathways. In diploid yeast cells, error-free PRR is needed to prevent genomic instability, which is manifest as loss of heterozygosity (LOH) events of increased chromosome loss and recombination. Homologous recombination acts synergistically with the error-free damage avoidance branch of PRR to prevent chromosome loss. The DNA damage checkpoint gene MEC1 acts synergistically with the PRR pathway in maintaining genomic stability. Integration of the PRR pathway with other cellular pathways for preventing genomic instability is discussed. In diploid strains, the most dramatic increase is in the abnormality of chromosome loss when a repair or damage detection pathway is defective.  相似文献   

18.
19.
Defective or abortive repair of DNA lesions has been associated with carcinogenesis. Therefore it is imperative for a cell to accurately repair its DNA after damage if it is to return to a normal cellular phenotype. In certain circumstances, if DNA damage cannot be repaired completely and with high fidelity, it is more advantageous for an organism to have some of its more severely damaged cells die rather than survive as neoplastic transformants. A number of DNA repair inhibitors have the potential to act as anticarcinogenic compounds. These drugs are capable of modulating DNA repair, thus promoting cell death rather than repair of potentially carcinogenic DNA damage mediated by error-prone DNA repair processes. In theory, exposure to a DNA repair inhibitor during, or immediately after, carcinogenic exposure should decrease or prevent tumorigenesis. However, the ability of DNA repair inhibitors to prevent cancer development is difficult to interpret depending upon the system used and the type of genotoxic stress. Inhibitors may act on multiple aspects of DNA repair as well as the cellular signaling pathways activated in response to the initial damage. In this review, we summarize basic DNA repair mechanisms and explore the effects of a number of DNA repair inhibitors that not only potentiate DNA-damaging agents but also decrease carcinogenicity. In particular, we focus on a novel anti-tumor agent, β-lapachone, and its potential to block transformation by modulating poly(ADP-ribose) polymerase-1.  相似文献   

20.
Archaeal DNA repair pathways are not well defined; in particular, there are no convincing candidate proteins for detection of DNA mismatches or the bulky lesions removed by excision repair pathways. Single-stranded DNA-binding proteins (SSBs) play a central role in DNA replication, recombination and repair. The crenarchaeal SSB is a monomer with a single oligonucleotide-binding fold for single-stranded DNA binding coupled to a flexible C-terminal tail reminiscent of bacterial SSB that mediates interactions with other proteins. We demonstrate that Sulfolobus solfataricus SSB can melt DNA containing a mismatch or DNA lesion specifically in vitro. We suggest that a potential role for SSB in archaea is the detection of DNA damage due to local destabilisation of the DNA double helix, followed by recruitment of specific repair proteins. Proteins interacting specifically with a single-stranded DNA:SSB complex include several known or putative DNA repair proteins and DNA helicases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号